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Genetically modified T-cell immunotherapies are revolutionizing the therapeutic

options for hematological malignancies, especially those of B-cell origin.

Impressive efficacies of CD19-directed chimeric antigen receptor (CAR)-T

therapy have been reported in refractory/relapsed (R/R) B-cell non-Hodgkin

lymphoma (NHL) patients who were resistant to current standard therapies, with

a complete remission (CR) rate of approximately 50%. At the same time,

problems of resistance and relapse following CAR-T therapy have drawn

growing attention. Recently, great efforts have been made to determine

various factors that are connected to the responses and outcomes following

CAR-T therapy, which may not only allow us to recognize those with a higher

likelihood of responding and who could benefit most from the therapy but also

identify those with a high risk of resistance and relapse and to whom further

appropriate treatment should be administered following CAR-T therapy. Thus,

we concentrate on the biomarkers that can predict responses and outcomes

after CD19-directed CAR-T immunotherapy. Furthermore, the mechanisms that

may lead to treatment failure are also discussed in this review.
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Introduction

It has been more than ten years since the primary data of hematological malignancies

that were resistant to standard therapies and successfully treated with chimeric antigen

receptor (CAR)-T therapy were reported (1–3). CD19-directed CAR-T therapy achieved

meaningful success in refractory/relapsed (R/R) chronic lymphocytic leukemia (CLL)

patients, and the results warrant subsequent clinical trials that explore CAR-T therapy
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targeting different tumor antigens in various types of hematological

malignancies. To date, several CAR-T products have been approved

worldwide, which broaden the therapeutic options for R/R

aggressive B-cell lymphoma, acute leukemia of B-cell origin and

multiple myeloma.

CAR-T therapy targeting CD19 has been most widely studied.

For R/R B-cell NHL, five CAR-T therapies, Tisagenlecleucel (tisa-

cel, Kymriah), Brexucabtagene autoleucel (brexu-cel, Tecartus),

Axicabtagene ciloleucel (axi-cel, Yescarta), Lisocabtagene

maraleucel (liso-cel, Breyanzi) and relmacabtagene autoleucel

(relma-cel, Carteyva), were FDA/NMPA approved. Several pivotal

trials reported overall response rates (ORRs) between 52% and 82%

(4–6). The long-term follow-up data revealed that the OS rates at 12

months were 49% to 59%, with progression-free survival (PFS) rates

of 44% to 65% (4–6). Apart from the promising results, we should

note the limitations that among patients who initially achieved

response, the cancers of 21% to 35% of patients in JULIET and

approximately half of patients in ZUMA-1 ultimately relapsed (7).

With the widespread application of CAR-T therapy, an

increasing number of patients have been successfully treated; at

the same time, growing attention has been drawn to resistance to

this therapy. Numerous studies have tried to define some factors

that are associated with the responses and outcomes following

CAR-T therapy, especially in lymphoma patients. Taking

advantage of these factors, we can predict the responses to CAR-

T immunotherapy and further recognize those who may benefit

most from the therapy. In addition, for patients manifesting the

characteristics of a high risk of resistance or relapse, the

introduction of consolidation or maintenance treatment following

CAR-T therapy could be considered in certain clinical

circumstances. Furthermore, to address the failure of CAR-T

therapy, it is necessary to know the corresponding mechanisms.

In this article, we review the biomarkers related to short/long-term
Frontiers in Immunology 02
efficacy in R/R lymphomas of B-cell origin and discuss the

mechanisms of resistance to CAR-T therapy (Table 1 and Figure 1).
Biomarkers for therapeutic response

Patients’ baseline characteristics

A series of studies indicated some baseline characteristics of

patients, such as age, performance status, disease stage, and levels of

cytokines, as well as some biochemical indicators that may result in

poor response to CAR-T immunotherapy. In a retrospective cohort

evaluating axi-cel in real-life clinical practice at multiple centers,

Loretta and colleagues analyzed the relationship between patients’

baseline characteristics and the response after therapy (53). The

results showed that patients with older age (≥60 years old), better

performance status (ECOG 0~1), nonbulky disease, prior high-dose

therapy/autologous stem-cell transplantation (HDT/ASCT) or

normal lactate dehydrogenase (LDH) had a higher 12-month CR

rate (53), and multivariable analysis revealed that the best response

of a CR at 12 months was associated with older age and normal

LDH at the time of conditioning (53). Other studies confirmed the

negative role of elevated LDH levels in response to CAR-T therapy

(54, 55), which implicated high lymphoma burdens and aggressive

disease courses (56). The disease stage of lymphoma could also

reflect the response, as stage IV was a premonitory factor for 1-year

progressive disease with an odds ratio of 9.335 (57). Since LDH and

disease stage could both predict response after CAR-T therapy, the

age-adjusted International Prognosis Index (aaIPI), including the

above two factors, was reported to correlate significantly with 6-

month complete metabolic response (CMR) after CAR-T therapy

(58). It seemed that among the baseline characteristics, factors

involved with tumor burden, such as LDH, had the most
TABLE 1 Summary of mechanisms responsible for CAR-T resistance/recurrence and possible solutions.

Summary of Mechanisms responsible for CAR-T Resistance/Recurrence Possible Solutions

Antigen Positive
Relapse

CAR-T Cell Costimulatory Domain (5, 8, 9)
CD28 or 4-1BB
Source of single-chain variable fragment (scFv) (10, 11)
mouse-derived or human-derived
Age of Patients (12–17)
T Cell Exhaustion (18–20)

Incorporating 4-1BB costimulatory domain in designing CARs
Incorporating human-derived scFv in designing CARs
Considering universal CAR-T in the elderly
Combining CAR-T therapy with immune checkpoint blockade

Antigen Negative
Relapse

Antigen epitope alteration (11, 12, 21–26)
CD19 gene mutation
Alternative splicing
Defects in CD19 Processing (27, 28)
Loss of CD81
Epitope Concealment (27, 29)
CAR gene unintentionally introduced into tumor cells
Immune Pressure (12, 30, 31)
CD19-negative tumor proliferating
Pedigree Transformation (12, 27, 32–37)
Tumor dedifferentiation
Cytokine induced myeloid differentiation
The Increase of Macrophages Leads to the Loss of Reversible
Antigen (12, 38–40)

Dual/multi-targeted CAR-T; sequential infusion of CAR-T cells targeting
different antigens
Dual/multi-targeted CAR-T; sequential infusion of CAR-T cells targeting
different antigens
Optimize the production process
Dual/multi-targeted CAR-T; sequential infusion of CAR-T cells targeting
different antigens
Dual/multi-targeted CAR-T; sequential infusion of CAR-T cells targeting
different antigens
Positive control of CRS
Dual/multi-targeted CAR-T; sequential infusion of CAR-T cells targeting
different antigens

Other Mechanisms Expression of inhibitory ligands (27, 41–48)
Resistance to the immune system (19, 49–52)

Combining CAR-T therapy with immune checkpoint blockade
Combining CAR-T therapy with proapoptotic agents
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predictive value, and coincidentally, high total metabolic tumor

volume (TMTV, >80 mL) at infusion was definitely predictive of

early resistance within one month following treatment, with a

hazard ratio of 4.35 (59).

Furthermore, tumor-related factors such as TP53 alterations

that were routinely analyzed in DLBCL strongly affected the

effectiveness. Roni et al. (60) conducted an observational study to

determine the predictive role of TP53 abnormities in CD19-directed

CAR-T therapy. They found that several disease-related features

comprising TP53 alterations, primary refractory disease and stable

disease (SD) or progressive disease (PD) prior to CAR-T-cell

administration were connected to a lower likelihood of achieving

a CR (60). Among these features, TP53 alterations remained an

independent predictor of response in a multivariable model, with

CR rates by Day 90 of 65% versus 34% in favor of wild-type TP53

(60). The predictive values of clinical factors were evaluated, and

pretreatment increases in IL-6 showed a significant association with

a lower objective response rate and fewer opportunities to achieve a

durable response (61).
CAR-T-cell functional features

CAR-T-cell functions play a crucial role in achieving and

maintaining disease remission, among which CAR-T-cell

expansion is thought to represent a key parameter of treatment

response. First, the association of active CAR-T-cell expansion with

response was found in the ZUMA-1 trial (4), as the area under the

curve of CAR-T-cell levels in responders was 5.4 times as high as the

value in nonresponders (4). Several other studies confirmed this

kind of association (10, 58, 62, 63). In a representative study,

patients were divided into weak expanders and strong expanders

according to the peak blood concentrations of CAR-T cells (CAR-

T-Cmax) (62). The objective response (CR+PR) rates at 30 days
Frontiers in Immunology 03
were 91% vs. 40% (P = 0.02) in favor of strong expanders, with only

one not responding among eleven strong expanders (62). In

comparison with patients who did not respond, responders (CR

+PR) had significantly higher CAR-T-Cmax levels (median 22.06/

mL vs. 3.02/mL, P=0.006) (62).

Based on the cell surface phenotype after antigen stimulation, T

cells exist as naïve (TN), memory (TM) and effector (TE) subsets

(64), and the TM subset is additionally partible into central memory

(TCM) and effector memory (TEM) subpopulations (64–68).

Memory stem T lymphocytes (TSCMs), a subtype of memory T

cells (67), possess a distinct transcriptional profile and function in

other T-cell subsets (69–71). In contrast to TN cells, TSCMs show

high expression of CD95, CXCR3, CD58, and IL2Rb (69–71).

Preliminary studies aimed to uncover the association of the

subsets of CAR-T cells with the expansion and subsequent

duration of CAR-T cells in vivo (72). The results showed that in

14 B-cell lymphoma patients, a high proportion of a subgroup of T

cells possessed cell-surface CD8, CD45RA and CCR7, which is most

in accordance with the phenotype of TSCMs and promised better in

vivo expansion (72). Fraietta et al. (73) further confirmed that in

advanced, previously heavily treated CLL patients receiving CAR-T

therapy, CAR-T cells from subjects who achieved a complete

response exhibited an upregulation of genes involved in the

memory phenotype, while the counterparts from nonresponders

were enriched in exhaustion- and apoptosis-related genes (10).

Similarly, the frequencies of CD8+ T cells with memory-related

attributes in large B-cell lymphoma (LBCL) patients who achieved a

CR at 3 months were threefold higher than those in patients who

achieved a PR/PD (74). A recent analysis of ZUMA-1 patients also

demonstrated this correlation, indicating that greater proportions

of the T-cell subset expressing CCR7 and CD45RA in the apheresis

product and the final infusion product were consistently negatively

associated with product doubling time (DT) (61). The median DT

in nonresponders (2.1 days) was significantly longer than that in
FIGURE 1

Schematic diagram of CAR-T therapy mechanisms.
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responders (1.6 days) (P =0.0067), and a longer DT exactly

predicted a lower response rate (61). In contrast, Sylvain et al.

(58) showed different results: higher frequencies of CAR-T cells that

showed an EM-like phenotype and decreased percentages with

naïve properties were predictive of enhanced efficacy (58). Thus,

in future studies, the issue of whether the in vitro conditions of T-

cell growth in different studies, including the sorting methods of T

cells, culture protocols and in vitro culture time, may impact the

final product composition should be addressed.

T-cell exhaustion has already become a noticeably negative

prognostic factor for response to genetically modified T-cell

therapy. Exhausted T cells express high levels of inhibitory

molecules such as PD-1, TIM-3 and LAG-3, which are so-called

immune checkpoints (18). Olivia and colleagues elaborated on the

phenomenon that greater proportions of CAR-T cells that possess

the cell-surface inhibitory molecules mentioned above at the initial

stage of tumor eradication led to deficiencies in CAR-T-cell

function attributes such as expansion and persistence and

subsequently a lower likelihood of tumor eradication responses

(18). Increased percentages of CD8+ T cells with expression of PD-1

and concurrent LAG-3 as well as CD4+ T cells with expression of

PD-1 in apheresis products were demonstrated to be associated

with failure to respond (18). The results also illustrated that greater

CD8+ LAG-3+ T-cell numbers and concurrent deficiencies in

producing cytokines such as TNF-a resulted in a high risk of

early therapeutic failure (18). Similarly, another study demonstrated

that significantly decreased frequencies of preinfusion CD8+PD-1+

CAR-T cells were seen in CR subjects in comparison with those who

achieved PR or failed to respond (73).
Other biomarkers

A highly immunosuppressive milieu exhibited a negative

impact on the functional properties of CAR-T cells and showed

an association with limited responses. As described by Gunilla and

colleagues, the best sign of a response was proven to be good

immune attributes before CAR-T-cell infusion with high plasma

levels of myeloid activation markers such as IL-12 and DC-lamp or

lymphocyte effector markers such as Fas ligand and TRAIL (75).

Moreover, responders possessed low levels of IL-6, IL-8, NAP3,

sPD-L1 and sPD-L2 and fewer monocytic myeloid-derived

suppressor cells, which featured the expression of CD14 and

CD33 without the expression of HLA-DR (75).
Biomarkers for long-term efficacy

Poor responses always indicate poor outcomes, and the

previously described patients’ baseline characteristics, including

performance status, aaIPI and LDH, were all predictive factors for

long-term efficacy. However, only increased levels of LDH prior to

CAR-T-cell infusion were prognostic for inferior PFS and OS in

multivariate analysis following tisa-cel therapy in the JULIET trial

(76, 77). The results from a large real-world retrospective study in

which axi-cel was administered as standard treatment to 275 R/R
Frontiers in Immunology 04
LBCL patients showed that poor performance status (ECOG 2-4)

and high LDH levels were related to shorter PFS and OS (53, 77). In

addition, another real-world study recognized elevated LDH and

two or more extranodal sites at the time of decision to receive CAR-

T treatment and elevated CRP, two or more extranodal sites, and

TMTV exceeding 80 mL at the time of treatment as negative

predictive factors for PFS and OS (59). IPI and aaIPI, which

utilize patients’ baseline characteristics to forecast outcomes of

DLBCL, were also found to be prognostic (77). According to the

findings by Garcia-Recio and colleagues, high-risk aaIPI (≥2)

indicated worse OS, while both high-risk IPI (≥3) and aaIPI

predicted shorter PFS (78). Sylvain and colleagues revealed

similar results that high-risk aaIPI indicated inferior PFS and OS

(58). In addition to IPI, Gray and colleagues found that CRP ≥ 11

was a risk factor for survival at 1 year (P=0.019), while absolute

lymphocyte count ≥ 0.50 at collection (P=0.043) and tocilizumab

exposure (P=0.005) were protective factors (57). The findings of

Arushi et al. (79) indicated that the optimal time when CAR-T cells

would be incorporated also counts. To determine whether the

previous intensity of treatment would influence the outcome,

patients who could undergo CAR-T therapy at the earliest

possible indication, which was either after two lines of

chemotherapy or af ter ASCT fol lowing two l ines of

chemotherapy, were identified as CAR-T[early]; otherwise, they

were identified as CAR-T[late] (79). At the 1-year follow-up, the

EFS rates in the CAR-T[early] group and CAR-T[late] group were

48% and 30%, respectively, with marginal significance (P= 0.055),

and similarly, the OS rates were 75% vs. 56% in favor of the CAR-T

[early] group (P = 0.053) (79).

The impacts of tumor intrinsic factors on outcomes after CAR-

T therapy were also determined. Hill and colleagues (80) performed

whole exome and transcriptome sequencing in 121 R/R DLBCL

patients and divided these patients into several subtypes according

to their genetic features. The patients were indicated to be BN2,

A53, EZB, MCD, N1, or ST2 subtypes or unclassifiable (UC) on

basis of the criterion reported byWright et al. (81) and to be C0, C1,

C2, C3, C4 or C5 subtypes as described by Chapuy et al. (82).

Patients with the C5/MCD subtype and C2/A53 subtype were found

to have better outcomes (80). Patients with the C3/EZB subtype had

worse PFS, as well as those whose sequencing results revealed

mutations in specific genes, including BCL-2 and MYC (80). As

described above, TP53 alterations lead to inferior responsiveness,

and DLBCL patients with tumors harboring TP53 alterations

had inferior outcomes following CD19-directed CAR-T

immunotherapy, especially in subjects who received genetically

modified T cells with a second-generation CAR comprising a 4-

1BB costimulation domain (60). Leveraging the high resolution of

whole genome sequencing (WGS), Michael and colleagues revealed

that chromothripsis and APOBEC, which reflect genomic

complexity, as well as certain genomic abnormities involving

RHOA and RB1 may explain the treatment failure in aggressive

B-cell lymphoma patients, with 93.8% of those who relapsed having

at least one of the genomic abnormities mentioned above (83).

In a multicenter retrospective analysis, Andrea et al. (84)

assessed early PET-CT response according to the Deauville five-

point scale in R/R LBCL patients as a predictive factor. They found
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that patients who achieved early responses of Deauville score (DS)

of 1 to 2 exhibited remarkable long-term survival, and in further

multivariable analysis, only DS groups showed significance of

prediction to relapse following axi-cel or tisa-cel (84). The PFS

rates at 12 months were 77.1%, 63.5%, 43.5%, and 0% in the DS 1-2,

DS3, DS4 and DS5 groups, respectively, and the OS rates were

87.1%, 86.2%, 61.7%, and 38.1%, respectively (84). Circulating

tumor DNA (ctDNA) has become a marker for risk stratification

and a predictor of the efficacy of chemotherapy in DLBCL patients

(85–88), and preliminary data indicated that molecular remission

determined based on ctDNA monitoring successfully predicted the

outcomes (74, 88). Further study conducted by Matthew and

colleagues frequently monitored ctDNA in LBCL patients treated

with Axi-cel from the initiation of the lymphodepleting process to 1

year following CAR-T infusion or disease progression (88).

Compared with patients without detectable ctDNA by next-

generation sequencing at 28 days after infusion, in whom neither

PFS or OS were reached, those with detectable ctDNA had

significantly shorter median PFS (3 months) and OS (19 months)

(88). In addition, 70% (23/33) of the patients with durable

remission had undetectable ctDNA at 1 week; in contrast, the

proportion in those with progressed disease was as low as 13%

(4/31) (P<0.0001) (88). In patients who achieved PR or SD at Day

28 after axi-cel infusion, among 17 patients with simultaneous

detectable ctDNA, 15 patients finally relapsed, while among 10 with

simultaneous undetectable ctDNA, only 1 relapsed (P<0.0001) (88),

which validated the predictive value of ctDNA assessment after

CAR-T therapy.

Apart from being associated with the therapeutic response,

transgene copies of CAR-DNA, which indicate that CAR-T cells

continuously grow and exist, are related to the long-term response.

As reported by Francis et al. (62), patients were divided into weak

expanders and strong expanders according to CAR-T-Cmax. Nine

of eleven strong expanders were alive, with 8 achieving durable

remission (62). In contrast, among weak expanders, except for 2

requiring additional treatment, 8 out of 10 had progressed

lymphoma and eventually died (62). At a median follow-up of

121 days, the 1-year PFS rates were 71% and 0%, respectively

(P<0.001), in favor of strong expanders (62). Features of CAR-T-

cell biology also have the potential to predict long-term efficacy,

with sustained remission related to a greater proportion of T cells

with the memory-like phenotype of CD8+CD27+CD45RO- prior

CAR-T-cell production (73). In contrast, Zinaida and colleagues

identified a group of T cells expressing CD4 and Helios, and with

single-cell proteomic profiling, these cells were found to be

nonclonal and to possess the characteristics of T regulatory (TReg)

cells (32). Furthermore, a link between increased CAR-TReg cells at

7 days after infusion and clinical progression was observed (32).

With insight into the factors that may influence CAR-T-cell

function, a novel population quantitative systems pharmacology

(QSP) model was designed to forecast the response to CAR-T

therapy (89). Anna and colleagues screened more than two

thousand factors related to cytokines, CAR-T-cell phenotype

features, and metabolic tumor measurements and subsequently
Frontiers in Immunology 05
proposed a predictive clinical composite score (CCS) (89). They

found a cutoff CCSTN value of 0.00136, and survival was totally

different between subjects with a CCSTN value above and below the

cutoff (89). The median PFS was 11 months and 2 months,

respectively, in favor of the subjects with CCSTN values exceeding

0.00136 (P = 0.014) (89). The median OS in subjects who had CCSTN
values that surpassed the cutoff was not reached and was significantly

longer than the median OS of 2 months in the counterparts that had

CCSTN values lower than the cutoff (P = 0.003) (89).

Interestingly, an association between alterations in the intestinal

microbiome and survival was observed. A higher abundance of

Faecalibacterium and members of the genus Ruminococcus in the

intestinal microbiome was found to be associated with increased

monocytes, neutrophils and lymphocytes (90). The metabolites

produced by many bacteria in the intestinal microbiome, such as

butyrate, can regulate the differentiation of regulatory T (Treg) cells,

induce the expression of the transcription factor T-bet and mediate

IFN-g-producing Treg cells or conventional T cells (91, 92).

Reported findings from a retrospective cohort including 228 R/R

B-cell malignancy patients showed that antibiotic administration

within 4 weeks prior to CAR-T-cell infusion, especially piperacillin/

tazobactam, imipenem/cilastatin and meropenem (PIM), which

may alter the specific intestinal microbiome, was significantly

related to inferior PFS and OS (93).
CAR-T treatment resistance/
recurrence mechanism

Antigen positive relapse

CAR-T-cell costimulatory domain
Costimulatory domains may influence the stability of CAR-T-

cell therapy (5, 8, 12). A preclinical study by Zhao et al. (9) showed

that the 4-1BB costimulatory domain was more persistent than the

CD28 costimulatory domain. In this study, they tested the

persistence and function of different CAR-T cells containing

CD28 or 4-1BB costimulatory domains (9). CAR-T cells with 4-

1BB costimulatory domains could induce the expression of IRF7

and IFNB1 (9), which can improve the antitumor effect of T cells.

The other two studies also found the superior functionality of CD19

CAR-T cells with the 4-1BB costimulatory domain over those with

the CD28 costimulatory domain (94, 95).
Source of single-chain variable fragment
The sources of the single-chain variable fragment (scFv) mainly

include mouse-derived and human-derived fragments. CARs

incorporating human-derived scFv could lessen their antigenicity,

thus raising the durability of CAR-T cells (11). However, most anti-

CD19 CARs used in clinical trials contain murine scFv, most of

which was FMC-63-derived. It was found that binding of CARs

containing mouse-origin scFv may trigger human leukocyte

antigen-restricted T-cell-mediated immunomodulatory responses
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(10). This process can lead to a sustained reduction in CAR-T-cell

persistence, which can lead to early relapse.

Patient age affects the quality of CAR-T cells
Kotani et al. (13) found that CAR-T cells from mice of older age

had a short lifespan and poor capacity for expansion in vivo,

although they had good cytotoxicity in vitro, whereas CAR-T cells

from mice of younger age showed more active cell proliferation and

distinction than those from aged mice. This suggests that the

different results may be related to the age-dependent phenotype

of CAR-T cells. Guha et al. (14) examined CAR-T cells from young

and old donors. They found that the transduction of T cells by

CAR-T cells from old donors was significantly less efficient than

that of CAR-T cells from young donors. Moreover, CAR-T-cell

function was impaired. Thus, older CAR-T cells can induce CD19-

positive relapse, mainly due to poorer persistence and efficacy,

resulting in longer average event-free survival in pediatric patients

and young adults than in adults after CAR-T-cell treatment (12,

15–17).

T-cell exhaustion
As described above, inhibitory receptor phenotype and

expression are associated with clinical response and long-term

efficacy. High expression of immune checkpoint molecules

indicative of T-cell exhaustion, such as PD-1, TIM3, and LAG3,

can destabilize immune synapses and suppress functional immune

responses (19, 20), leading to resistance or relapse after CAR-T-cell

treatment (12, 18).
Antigen negative relapse

To date, antigen loss has been the most frequently studied

mechanism of relapse or resistance in CAR-T cells after treatment

(27, 96–99).

Antigen epitope alteration
Recent studies have shown that the CD19 gene contains exons

1-13, in which exon 4 specifically encodes the FMC63 binding sites

in the CD19 CAR (11, 12). Orlando et al. (21) examined flow

cytometry results in 17 patients and showed that 12 patients were

CD19 negative. All samples from CD19-negative patients

underwent RNA and/or DNA sequencing (22). They found CD19

mutations in all 12 samples from patients who relapsed. These

CD19 mutations occurred in exons 2-5, and each patient had a

unique insertion or deletion in exons 2-5. The study also reported

that 8 patients had a loss of CD19 heterozygosity during relapse. In

addition, mutations in the CD19 gene have also been reported in

refractory DLBCL (23). Alternative splicing is one of the

mechanisms that leads to antigen epitope alteration of CD19,

which leads to tumors escaping CAR-T treatment. Other tumors

also have the same mechanisms, such as trastuzumab resistance due

to the splicing of exon 16 of the HER2 gene in breast cancer tissue

and vemurafenib resistance due to the splicing of BRAF (V600E) in
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samples from the same patient before CAR-T-cell treatment and

CD19-negative samples at relapse. They found that a mutation in

exon 2 of the CD19 gene in the patient’s tumor cell samples led to

the loss of CD19. The inhibition of the SRSF3 gene resulted in an

increase in CD19 exon 2 skipping, and lower levels of SRSF3 were

found in patients who relapsed, suggesting that the deletion of the

SRSF3 gene is associated with CD19 mutations. Although the CD19

mutant retained its function and prevented cell proliferation and B-

cell receptor (BCR) signaling defects (25), it failed to trigger CD19-

targeted CAR-T-cell killing, leading to tumor escape (12). Jacoby

et al. (26) investigated changes in pedigree markers in mice after

CAR-T treatment. Using CD19 exon-specific primers, they detected

a loss of the transcription of splicing exons 1-3 in E2A-PBX cell

lines from CD19-negative mice. This suggests that a loss of exon 2

leads to negative expression of CD19, causing disease relapse (26).

Defects in Ag processing
Defective CD19 processing is a currently reported cause of

resistance to blinatumomab (28, 100), and this mechanism has been

linked to CD81. CD81 is a protein that regulates the maturation and

transport of the CD19 protein from the Golgi apparatus to the cell

surface as a chaperone. Therefore, the deletion of CD81 prevents the

processing and maturation of CD19 in the Golgi matrix (27). In one

patient, transcriptional downregulation led to loss of CD81,

resulting in a negative relapse after blinatumomab treatment. This

reported mechanism of resistance to blinatumomab may also occur

with CAR-T-cell therapy, although this mechanism has not yet been

reported (27).

Epitope concealment
During CAR-T-cell production, the CAR gene can accidentally

enter tumor cells, and its product binds to the CD19 epitope on the

surface of tumor cells, thereby masking its recognition and

resistance to CTL019, an FMC63-derived CAR-T product (29).

Ruella et al. (29) found CAR transplantation-induced disease

relapse in one patient after CTL019 therapy, and they did not

detect CD19 tumor cells in the patient by flow cytometry. After

further analysis, they concluded that CAR19 bound to CD19 on the

surface of leukemia cells, resulting in an epitope that could not be

detected by flow cytometry; therefore, CAR-T cells could not

recognize tumor cells.

Immune pressure
By killing targeted tumor cells, nontarget tumor cells clone in

large numbers and cause relapse (12). Grupp et al. (30) identified a

small number of CD19-negative tumor cells derived from clones

that were present in a patient with CD19-negative relapse after

CAR-T-cell treatment. This suggests that these CD19 antigen-

negative tumor cells proliferate under selective CD19 CAR-T

therapeutic pressure, leading to CD19-negative relapse (12).

Fischer et al. (31) analyzed bone marrow and peripheral blood

specimens from untreated CD19-positive patients and healthy

subjects. They found weak expression of both the full and partial
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deletion isoforms of CD19 exon 2 in samples from CD19-positive

patients, and similar results were obtained in samples from healthy

subjects. These results suggest that some B cells with a loss of CD19

expression may have existed before CAR-T therapy, but after CAR-

T therapy targeted killing of CD19-positive cells, CD19-negative

cell clones proliferated, resulting in CD19-negative recurrence.

Pedigree transformation
Pedigree conversion can lead to antigen disappearance and may

result in a broader phenotypic change (27, 101). Gardner et al. (33)

found that two patients with recurrent disease lost expression of

gonadal lineage B antigens, including CD19, and gained expression

of myeloid antigens. They investigated two mechanisms of gene

switching. The first mechanism was the occurrence of IgH

reprogramming in recurrent myeloid stem cells and the

reprogramming or dedifferentiation of earlier B lymphoblastoid

stem cells. While flow cytometry did not show a spectral transition

early in CAR-T treatment, this transition appeared later, suggesting

that CAR-T-cell therapy provides a selective advantage of spectral

transition (33). Cytokine levels during CRS may also lead to

genealogical transitions. Two patients that underwent genealogical

transition suffered more severe CRS than those without genealogical

transition (33). CRS severity has been shown to be strongly

correlated with IL-6 levels (12, 34, 35), and IL-6 is a key factor in

myeloid differentiation (33, 36, 37). Cohen et al. (36) found that IL-

6 was able to induce the production of the early myeloid marker

CD33 on B1 cells. They also found that IL-6 was able to induce

CD45 antigen production and that the CD45 gene product was able

to regulate growth, including some hematopoietic factors (36).

Moreover, the promotion of myeloid differentiation by IL-6 may

also be associated with the induction of specific chromosomal

translocations. Tocilizumab, an anti-human IL-6R antibody that

was already proven to be effective in alleviating severe CRS, may

also be able to prevent IL-6-induced myeloid differentiation.

The Increase in macrophages leads to the loss of
reversible antigen

Macrophagocytosis is a phenomenon in which lymphocytes can

release surface molecules from antigen-presenting cells, which they

bind via “immune synapses”, which involves the transfer of plasma

membrane fragments from the presenting cells to the lymphocytes

(38). This is an active transfer triggered by antigen receptor signals

(39). Hamieh et al. (40) used a mouse model to simulate the

reuptake of CAR-T cells after infusion. They labeled all cells with

CD19 fluorescence and cultured them with CAR-T (19-BB-z) cells.
They found that CD19 expression was increased in a large

proportion of CAR-T cells, while it was decreased in tumor cells.

The transfer of CD19 protein from tumor cells to T lymphocytes—

so called trogocytosis, could decrease target density on tumor cells

and abate T cell activity by promoting fratricide T cell killing and T

cell exhaustion (35). They also found that mice with the CD19 gene

knocked out had a weaker response to low doses of CAR-T cells

(40). This suggests that a reduction in target antigen density may

lead to CAR-T-cell resistance, resulting in disease relapse.
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Expression of inhibitory ligands
The programmed death-1 (PD-1)/programmed death ligand-1

(PD-L1) axis is a pathway that inhibits immune checkpoints. PD-L1

is known to be expressed in lymphomas (102). The binding of these

ligands to their receptors inhibits the functions of T cells and limits

tumor cell killing, thereby allowing immune escape (27, 41–43). It is

now possible to combine PD-L1 inhibitors with CAR-T cells to

enhance the effectiveness of CAR-T therapy. Song et al. (44)

considered the combined use of CAR-T-cell therapy and PD-L1

antagonists. They found that there is indeed a synergistic effect

between CAR-T cells and PD-1 antagonists in the treatment of

malignant diseases (45). They also concluded that the disruption of

the PD-1 pathway can restore efficient functioning of CAR-T cells,

suggesting that PD-1 blockade may be an effective strategy to

improve the efficacy of CAR-T-cell therapy (44). Rafiq and

colleagues developed CAR-T cells capable of secreting anti-PD-L1

antibodies (46, 47). These cells may be effective in enhancing the

efficacy of CAR-T therapy in a mouse model (46, 47). The above

data suggest that PD-L1 is a factor influencing CAR-T therapy.

Nanobody-based CAR-T cells have been shown to have higher

affinity and are easier to produce than single-chain antibody-based

CAR-T cells (48). Xie et al. (103, 104) found that nanobodies

targeting PD-L1 together with CAR-T cells slowed tumor growth

and improved CAR-T-cell function. This suggests that nanobody-

based PD-L1 inhibitors could play an important role in the

treatment of blood diseases in the future.

Resistance to the immune system
Recently, increasing data have shown that the mechanism of

tumor cell apoptosis is impaired, which may cause tumor cells to

resist immune killing by CAR-T cells (27). A study by Singh et al.

(49) found that defects in death receptor signaling pathways in

lymphomas lead to resistance to CART19 and consequently

reduced CAR T-cell function. Their studies showed that the

deletion of genes related to the proapoptotic death receptor

signaling pathway causes the resistance of CAR-T cells to killing

(49), leading to disease relapse. Their study also found that CR

patients had higher death receptor signals than PR patients. Dufva

et al. (50) found that death receptor signaling is an important

mediator of CAR T-cell toxicity and reactivity. These receptors can

enhance cancer immunotherapy. In addition, genes involved in the

death receptor pathway can promote the efficacy of CAR-T-cell

therapy and exert more extensive tumor killing (51). Although the

extent of this mechanism in hematological malignancies is still

unclear (27), it could be used as a tool to improve the efficacy of

CAR-T therapy (52).
Conclusion

To conclude, great efforts have been invested in the

identification of biomarkers to predict efficacy and outcomes, and
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as a consequence, we could recognize patients who have greater

opportunities to respond and further achieve long-term survival

from CAR-T therapy. On the other hand, for patients who respond

to CAR-T therapy, these biomarkers facilitate the identification of

those who have a high risk of relapse, which warrants the

development of preemptive strategies to prolong the response. As

outlined in this review, various factors, including resistant tumor

cells , dysfunctional CAR-T cells and a hostile tumor

microenvironment, could lead to CAR-T therapy failure. Dealing

with resistance and relapse after CAR-T therapy is still difficult.

Based on different mechanisms responsible for resistance, many

novel therapeutics, such as CAR-T therapy directed at new targets,

immune checkpoint inhibitors, immunomodulatory agents,

bispecific antibodies, and drug-conjugated antibodies, are under

investigation and provide new hope to patients in the post-CAR-

T era.
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