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immunity interactions for
metastatic nasopharyngeal
carcinoma
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Background: The prognosis of nasopharyngeal carcinoma (NPC) has been

recognized to improve immensely owing to radiotherapy combined with

chemotherapy. However, patients with metastatic NPC have a poor prognosis.

Immunotherapy has dramatically prolonged the survival of patients with NPC.

Hence, further research on immune-related biomarkers is imperative to establish

the prognosis of metastatic NPC.

Methods: 10 NPC RNA expression profiles were generated from patients with or

without distant metastasis after chemoradiotherapy from the Fujian Cancer

Hospital. The differential immune-related genes were identified and validated

by immunohistochemistry analysis. The method of least absolute shrinkage and

selection operator (LASSO)was used to further establish the immune-related

prognostic model in an external GEO database (GSE102349, n=88). The immune

microenvironment and signal pathways were evaluated in multiple dimensions at

the transcriptome and single-cell levels.

Results: 1328 differential genes were identified, out of which 520 were

upregulated and 808 were downregulated. Notably, most of the immune

genes and pathways were down-regulated in the metastasis group. A

prognostic immune model involving nine hub genes. Patients in low-risk group

were characterized by survival advantage, hot immune phenotype and benefit

from immunotherapy. Compared with immune cells, malignant cell exhibited the

most active levels of risk score by ssGSEA. Accordingly, intercellular

communications including LT, CD70, CD40 and SPP1, and the like, between

high-risk and low-risk were explored by the R package “Cellchat”.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1109503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1109503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1109503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1109503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1109503/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1109503&domain=pdf&date_stamp=2023-03-31
mailto:sufangqiu@fjmu.edu.cn
mailto:wangds@fjmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1109503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1109503
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2023.1109503

Frontiers in Immunology
Conclusion: We have constructed a model based on immunity of metastatic

NPC and determined its prognostic value. The model identified the level of

immune cell infiltration, cell-cell communication, along with potential

immunotherapy for metastatic NPC.
KEYWORDS

immunotherapy, bioinformatics, metastatic nasopharyngeal carcinoma, immune
microenvironment, mRNA transcriptome sequencing and single cell sequencing
Introduction

Nasopharyngeal carcinoma (NPC), an Epstein-Barr virus

(EBV)-associated cancer that is prevalent in Southern China (1),

has been recognized to have a favorable prognosis owing to

radiotherapy combined with chemotherapy during the past

decades. Apart from EBV infection, human papillomavirus

(HPV) infection, alcohol and tobacco consumption, smoking, and

the consumption of salt-preserved foods have recently been

identified as high-risk factors (2). Although most patients reach

complete clinical remission, it has been suggested that patients with

recurrence or metastasis have a poor prognosis. The application of

intensity-modulated radiotherapy has improved the treatment

outcome of NPC, especially the local control rate, but the impact

on distant metastasis is minimal. The 5-year survival rate of patients

with early-stage NPC can reach more than 90% with a relatively low

rate of 60% for patients with advanced stage (3). Hence, currently,

the focus should be on the cure of metastatic NPC. Exploring new

therapeutic targets and developing new molecularly targeted drugs

are definitely the direction of future research. In addition, exploring

the molecular mechanism of distant metastasis of NPC and

screening high-risk groups will also facilitate individualized

response in the initial treatment.

Immune checkpoint blockade (ICB)-based immunotherapy,

such as programmed cell death ligand 1 (PD-L1) and interferon

(IFN)-g, has dramatically changed the treatments of cancer to

prolong the patients’ survival (4). Particularly, the clinical

research of immunotherapy has contributed majorly to the

individual treatments of malignant tumors (5). However, the

most well-known research recommends Pembrolizumab as

the first-line treatment for PD-L1-positive recurrent or metastatic

head and neck squamous cell carcinomas (6). The response to

immunotherapy for the treatment of metastatic NPC

is inconclusive.

In recent years, the assessment of immunotherapy efficacy has

become a major challenge for clinicians to individualize treatment.

Although no accepted immune-related risk model for predicting

prognosis exists, the reported models have shown decent predictive

validity in certain cancers (7–12). The focus of immune-related

prediction models is not only restricted to the genomic level but also

extended to the transcriptome level, single-cell level, and so on (13–

18). However, there are not many studies on immune-related
02
prognosis models integrating single-cell RNA and mRNA levels

in metastatic NPC. Therefore, it is of great significance to explore

novel immune-related diagnostics and therapeutics for patients

with metastatic NPC.

This study aimed to (i) identify the immune-related genes, (ii)

reveal the underlying pathway associated with metastatic NPC, (iii)

establish the prognostic immune model and evaluate its prognostic

value, and (iv) validate the predictive validity of the model from

various aspects.
Materials and methods

Patients’ samples

10 NPC tumor tissue samples were obtained from the patients

who were diagnosed and treated at the Fujian Cancer Hospital

between May 9, 2013, and August 2, 2016. All 10 patients met the

following eligibility criteria: newly diagnosed NPC, received

standardized radiotherapy and chemotherapy, ≥18 years old,

adequate hematological, renal and hepatic functions, and no other

malignant diseases. All the patients provided written informed

consent. The study was approved by the Ethics Committee of

Fujian Cancer Hospital and Fujian Medical University Cancer

Hospital (approval number SQ2019-035-01). The tissue samples

were stored in liquid nitrogen for subsequent RNA extraction.

During the 5 years of follow-up, 5 samples were from patients

with disease progression after radiotherapy and chemotherapy,

containing 3 liver metastases, 1 bone metastasis, and 1 lung

metastasis. While the other 5 samples were evaluated as having a

complete or partial response after the treatment.

As an external validation cohort, RNA-seq data of NPC from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/,

GSE102349) were selected to verify the reliability and applicability

of the data of this study (19, 20). The single-cell dataset GSE150430

was designed to validate the accuracy of the model at the individual

cell level and to probe the communication of cells and ligand

receptors in the immune microenvironment of NPC. Also, the

tumor tissue biopsies of 74 NPC patients treated in our hospital in

2021 and 2022 were used for the immunohistochemistry to validate

CD8 T cell infiltration and immune checkpoints expression,

including 11 cases in the metastatic group and 63 cases in the
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non-metastatic group (Supplementary Table 1). The 8th edition of

the American Joint Committee on Cancer (AJCC) Staging Manual

was used to restage all the patients.
Immunohistochemistry analysis

NPC biopsies were fixed with 10% formalin overnight and

processed into 5-mm-thick paraffin sections. The slides were then

analyzed by immunohistochemistry with anti-human CD8 (Cat #

ab237709; Abcam), anti-human PD1 (Cat # ab52587; Abcam), and

anti-human PD-L1 (Cat # ab213524; Abcam) followed by HRP

secondary antibody (Cat #ab205718; Abcam) and DAB staining.

Images were obtained using a microscope (BX43; Olympus, Japan).

Histochemistry score (H-score) was used to evaluate the expression.

H-score = (percentage of cells of weak intensity × 1) + (percentage

of cells of moderate intensity × 2) + (percentage of cells of strong

intensity × 3).
Construction and validation of immune-
related prognostic model

The R package “ggplot2” was employed to visualize DEGs from

sequencing data of NPC samples in Fujian Cancer Hospital (21).

The cut-off values met the following two conditions: fold-change of

>2 and the p-value of<0.05. Gene ontology (GO) (22, 23) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

(24) were applied to further explore the pathways of DEGs

enrichment. A false-discovery rate of<0.05 was set as the cut-off

value. The immune gene data was downloaded through the

ImmPort data portal (www.immport.org/immport-open/public/

home/home), and 2,498 immune-related genes were obtained.

Then the intersection of the DEGs and the immune-related genes

was selected as differentially expressed immune-related genes.

Progression-free survival (PFS) was subjected to minimum

absolute shrinkage and selection operator (LASSO) Cox

regression with 10-fold cross-validation to screen for DEGs with

prognostic value on the basis of the univariate Cox analysis. The R

package “glmnet” was employed to determine the gene signatures

containing the biomarkers most helpful for prognosis (25). The

prognosis risk score was established by linearly combining the

following formula:

risk score =on
1(exp� coef )

where exp denotes the gene expression value, while coef refers to the

coefficient of a gene in LASSO analysis.

To assess the predictive power of our prognostic risk model,

receiver operating characteristic (ROC) for 1- and 3-year survival

were performed in the validation cohort GSE102349 using the R

package “timeROC”. Next, the samples were divided into high-risk

and low-risk groups according to the best cut-off value of the risk

score from the R package “survival” for survival analysis. The

survival curves were compared using the Kaplan-Meier method
Frontiers in Immunology 03
and the log-rank test. The univariate and multivariate Cox

regression models were applied to determine whether the risk

score was an independent prognostic factor.
Immune- and carcinogenesis-related
estimation in multiple dimensions

To evaluate the infiltration of immune cells from several

aspects, we adopted multiple immune scoring approaches, like

TIMER and ssGSEA algorithms (26, 27). The immune scores and

tumor purity were estimated by the R package “ESTIMATE” (28).

From an earlier study, we retrieved a group of six inhibitory

immune checkpoints that displayed immune therapeutic efficacy

(29). Gene sets that displayed T cell-inflamed gene expression

profile (GEP) and tertiary lymphatic structure (TLS) were

acquired (30, 31). Furthermore, we assessed the enrichment of 10

oncogenic pathways using the ssGSEA method (32). The score of

activation minus the score of repression represented the final score

of each pathway. We used a validated set of 31 genes related to cell

cycle progression (CCP) to estimate the rate of cell proliferation

(33). The cluster score was calculated as the average expression level

of CCP-related pathways by subtracting the mean level.
Prediction of the immunotherapy response

To assess the predictive efficacy of the model for

immunotherapy efficacy, we collected several immunotherapy

cohorts from the GEO database and the TIGER website (http://

tiger.canceromics.org/#/), including nasopharyngeal carcinoma-

GSE102349, melanoma-GSE91061, melanoma-PRJEB23709,

NSCLC-GSE126044. We visually compared the proportion of

patients with and without response to immunotherapy in high-

and low-risk groups.
Single-cell RNA-seq analysis

This study performed quality control, downscaling, and

clustering of scRNA-seq data as well using Seurat (v.4.0.4) (34).

To ensure data quality, genes detected in less than 3 cells and cells

with less than 250 genes detected were excluded, and the percentage

of mitochondria was limited to less than 35% (35). Data were

processed by the logNormalize method for normalization. The

nonlinear dimensionality reduction method Uniform Manifold

Approximation and Projection for Dimension Reduction

(UMAP) was utilized for unsupervised classification and unbiased

visualization of cell populations on two-dimensional maps (36).

TISCH (http://tisch.comp-genomics.org/) provides detailed cell

type annotations at the single-cell level (35). After that, the

“FindAllMarkers” function was configured to identify marker

genes in each cluster using a filter value of absolute log2 fold

change (FC) ≥ 0.3 and a minimum cell cluster fraction of 0.25.
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Risk score calculation in
single-cell samples

A risk score of each single cell sample from GSE150430 was

calculated by single sample Gene Set Enrichment Analysis

(ssGSEA) method and was completed using the “GSVA” and

“GSEABase” packages in R. We used single-cell data as a

reference, apply a newly developed deconvolution algorithms

(CIBERSORTx) to the bulk transcriptome data to quantitatively

estimate cell-type proportions for each tumor in GEO

database (37).
Cell–cell chat analysis

CellChat v1.1.3 software inferred cell-cell communication based

on ligand-receptor interactions (38). Cell groups with less than 10

cells were filtered out of cell-cell communication. Pairwise tests

were performed on communication probability values to assess

their statistical significance.
Statistical analysis

Statistical analysis was done using R software (V.3.6.1) and

SPSS software (ver. 25.0). Wilcoxon rank sum test and chi-square

test were conducted for continuous and categorical variables,

respectively. For all analysis, two-by-two pairs indicate statistically

significant differences. *, **, *** and **** indicate, respectively <0.05,

<0.01, <0.001, and <0.0001.
Results

Identification of differential immune-
related expressions in NPC

The schematic diagram presents the workflow of our study

(Figure S1). The RNA-seq profiles were generated for the NPC

samples of 10 patients treated at the Fujian Cancer Hospital, 5 of

whom were assigned to the non-metastasis group, while the other 5

were in the metastasis group owing to distant metastasis after

chemoradiotherapy. The baseline characteristics of patients in the

metastatic and non-metastatic groups could be seen in Table 1

(n=10). In general, PCA indicated distinct transcriptional profiles

between the metastatic group and the non-metastatic group (Figure

S2A). Then, 1328 DEGs were conspicuously illustrated in the

volcano plot, with 520 upregulated genes and 808 downregulated

genes (Figure 1A). The KEGG and GO analyses are the universally

applicable statistical methods of enrichment analysis. The DEGs

were enriched in the immune-related pathways of the bubble chart

containing signal transduction, adaptive immune system, innate

immune system, and hemostasis (Figure 1B). Simultaneously, they

were also centralized in the cell periphery, plasma membrane, and

immune system processes (Figure 1C). The expression levels of the
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top 154 immune-related genes selected from the DEGs can be

significantly distinguished between the two groups in the heat-map

(Figure 1D). Overall, immune gene expression and immune

signaling pathway were down-regulated in the metastasis group,

indicating a potential “immune-cold” tumor phenotype in the

metastasis group. For the validation, Therefore, we performed

immunohistochemistry staining of CD8 T cell, PD1, and PD-L1.

Our immunohistochemistry analysis showed that PD1 and PD-L1

expressions were down-regulated, and the infiltration of CD8 T cells

was decreased in the metastasis NPC group (n=11) compared to the

non-metastasis group (n=63, Figures 1E, F).
Establishment and validation of the
risk model

The LASSO logistic regression model was applied to establish

the prognostic immune biomarkers, which involved 9 hub genes

(A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B,

KIR3DL2, and SEMA4F; Figure 2A). The standard for high and

low risk scores was evaluated based on cut points associated with

the median risk score. Cut-off value of 1.31 for the risk model was

identified, which served to divide the patients into high-risk group

(with levels of risk score ≥ 1.31) and a low-risk group (with levels of

risk score< 1.31). The risk scores were significantly distinguished

between the clinical stages I–III and stage IV in GSE102349 (Figure

S2B), which indicated that the clinical stage of the tumor could be

one of the critical factors in assessing the effect of the treatment. The

risk scores were also apparently different between the metastasis

and non-metastasis groups in our hospital cohort (Figure S2C).

Patients in the high-risk group had worse tumor metastatic

presentation, which is indicative of a worse prognosis (Figure 2B).

This finding was further validated in a cohort of patients from

Fujian Cancer Hospital (Figure 2C).

It was found that APLNR, KIR3DL2, CD8B, and A2M were

upregulated in the low-risk group, while PRDX2, ULBP1,

TMSB15B, SEMA4F and RAC3 were upregulated in the high-risk

group (Figure 2D). The assumption could be proposed that the

former 4 genes were protective biomarkers, while the latter 5 genes

were risk biomarkers. The area under the ROC curve (AUC) was

0.79 at 1-year, and 0.81 at 3-years, respectively, indicating a high

predictive value (Figure 2E). Combining the results of univariate

(Figure 2F) and multivariate (Figure 2G) Cox analysis, it appeared

that risk scores could be an independent prognostic factor

compared to other clinical traits.
Expression profiles and prognostic potency
of nine hub genes

In the mRNA sequencing data of NPC from Fujian Cancer

Hospital, the expressions of the nine immune-related hub genes

were apparently different in the metastasis and non-metastasis groups

(Figure 3A). Of the 9 genes, CD8B, APLNR, A2M and KIR3DL2 were

upregulated in the non-metastasis group where the patients would
frontiersin.org
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have lower risk and gain better outcomes. In contrast, SEMA4F,

PRDX2, RAC3, ULBP1 and TMSB15B were upregulated in the

metastasis group where the patients would have higher risk and

suffer worse outcomes (Figure 3A). To verify the predictive validity of

nine hub genes for prognostic outcome, survival analysis

demonstrated promising prognostic differentiation (Figures 3B–J).
Enrichment pathways of hub genes and
correlation with oncogenic pathways,
proliferative activity

The pathway in which the gene is enriched tends to indicate that

the gene plays a role in that physiological process. Using the GSEA

method, the high-risk group was mainly distributed into the E2F,
Frontiers in Immunology 05
G2M checkpoint, and MYC targets, which were closely related to

interactions on angiogenesis, extracellular matrix remodeling, and

tumor cel l -endothel ial ce l l interact ions (Figure 4A).

Correspondingly, the low-risk group was mainly distributed in

the INF-g, INF-a, and inflammatory responses, which were

closely related to antitumor effect in anti-tumor immune

response (Figure 4B).

Moreover, patient samples from high- and low-risk groups

showed significant differences in scores across the ten

carcinogenic pathways (Figure 4C). Patients in the high-risk

group had higher oncogenic pathogenic activity, predicting that a

higher risk of cancer progression was involved. And the CCP scores

corroborated this finding, with patients in the high-risk group

having high CCP scores, which suggested that the tumors had

stronger proliferative activity (Figure 4D).
TABLE 1 The baseline characteristics of patients in the metastatic and non-metastatic groups (n=10).

Variables metastatic group (n=5) non-metastatic group (n=5) P valuea

Gender 1.000

Male 4 4

Female 1 1

Age 0.167

≤50 2 5

>50 3 0

T stage 0.524

T1-2 1 3

T3-4 4 2

N stage 1.000

N0-1 1 2

N2-3 4 3

M stage 0.008

M0 0 5

M1 5 0

Clinical stage 0.008

II-III 0 5

IV 5 0

Survival 0.048

Alive 1 5

Dead 4 0

Pathological typeb 1.000

WHO I 0 1

WHO II 1 1

WHO III 4 3
fro
aP values were two-sided using Fisher’s exact test, bPathological type includes WHO type I: keratinizing squamous cell carcinoma, WHO type II: non-keratinizing differentiated carcinoma and
WHO type III: non-keratinizing undifferentiated carcinoma.
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Assessment of the tumor immune
microenvironment and immune
checkpoints

Here, we estimated how the immune microenvironment differed

between patients in high- and low-risk groups in terms of immune

scores and levels of immune cell infiltration. The patients from the

low-risk group had higher immune scores but lower tumor purity

(Figures 5A, B). Additionally, the compositions of the 29 immune-cell

types were significantly different in the high- and low-risk groups

(Figure 5C). In the low-risk group, almost all levels of immune cell
Frontiers in Immunology 06
infiltration were higher than in the high one, including B cells, CD8 T

cells, dendritic cells (DC), macrophages (Figure 5D). Moreover, there

were significant statistical differences in the immune checkpoint

inhibitors (CTLA-4, HAVCR2, SIGLEC15, TIGIT, PD1 and LAG3)

between the high- and low-risk groups (Figure 5E).
Predictive power for immunotherapy
efficacy

We were the first to evaluate GEP and TLS score, and showed

that there were higher levels of immune cell receptors in low-risk
A B

D

E

F

C

FIGURE 1

The differentially expressed immune-related genomic biomarkers in nasopharyngeal carcinoma (NPC). (A) All 1328 differential genes assessed from
the tumor tissues are shown in the volcano plot; red dots for upregulated genes (520 genes), while blue dots represent downregulated genes (808
genes); (B, C) Statistics of enrichment analysis using KEGG and GO were concentrated on the immune-related cellular components, biological
processes and pathways in the bubble charts; (D) The top 154 immune-related genes were significantly differentiated between the metastasis and
non-metastasis group in the heatmap; (E, F) Immunohistochemical staining results of CD8, PD1, and PD-L1 in metastatic and non-metastatic NPC
samples from Fujian Cancer Hospital. **P < 0.01, ***P < 0.001.
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patients (Figures 6A, B). Subsequently, the same results were

observed in numerous immune-related indicators (Figure 6C).

These results suggested that tumors stimulate more immune cell

activation and strong ligand-receptor activation in patients in the

low-risk group, laying the biological foundation for a positive

response to this immunotherapy. As Figure 6D–G showed,
Frontiers in Immunology 07
patients in the low-risk group had a higher immune response in a

cohort of patients with whether nasopharyngeal carcinoma or

melanoma, or non-small cell lung cancer. It was evident that the

patients of the high-risk group had less chance of benefiting from

immunotherapy, which represented a worse prognosis when

compared with the patients of the low-risk group (Figure 6H).
B C

D E

F G

A

FIGURE 2

Establishment and validation of the immune-related risk model. (A) The LASSO logistic regression model was applied to establish prognostic immune
biomarkers which involved 9 signatures (A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B, KIR3DL2 and SEMA4F) identified by the GEO dataset
(GSE102349); (B, C) The Kaplan-Meier plot of the immune-related genes in GSE102349 (B) and Fujian Cancer Hospital corhort (C) revealed the
statistical significance between the high- and low-risk groups; (D) Patient survival status and expression of 9 hub genes in high and low risk groups;
(E) Receiver operating characteristic (ROC) curves of 1-year and 3-year survival in GSE102349; (F, G) Univariate (F) and multivariate (G) Cox
regression analyses for the immune-related risk score model as an independent prognostic factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1109503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1109503
Immune landscapes and cellular
communication at the single-cell level

A cluster of 29 distinct cell types in GSE150430 cohort was

defined by two-dimensional spatial visualization of UMAP analysis

(Figure 7A). Cell lineages were distributed to each cluster by gene

expression with reference to the human primary cell atlas data in

TISCH. As a result, cells were annotated (Figure 7B). We targeted
Frontiers in Immunology 08
the most significantly differentially expressed genes in each cluster

to better understand the species of cell fascicles (Figure S3A). In the

identified cell subsets, the GSVA and ssGSEA algorithm was

employed to calculate the performance of the nine hub genes at

the single-cell level. Significantly higher risk scores were observed in

malignant cells than in B cells and CD8 T cells (Figures 7C, S3B).

The same conclusion can be drawn in the cellular localization map

(Figures S3C, D). Moreover, the percentage of B cells and CD8 T
A B

D E

F G

I

H

J

C

FIGURE 3

Expression profiles and prognostic potency of nine hub genes. (A) The 9 immune-related signatures were significantly different between the non-
metastasis group and metastasis group of this hospital cohort. (B–J) A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B, KIR3DL2 and SEMA4F had
extraordinary differences of survival probability between the high-risk and the low-risk groups in GSE102349. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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cells in the low-risk samples was notablely higher than that of the

high ones; however, the percentage of malignant cells in the high-

risk samples was significantly higher than that of the low ones

(Figures 7D, E). This was consistent with previous findings

indicat ing that the high-risk scores predicted worse

biological behavior.

Next, we carried out functional exploration. The major

pathways enriched for differential genes between high- and low-

risk groups were those related to intercellular adhesion and immune

cell activation, suggesting that the response to distant metastasis

and immune resistance differed between high and low-risk groups

(Figure 7F). Also, active pathways were observed to vary in the

high- and low-risk groups, like LT, TGFb, SEMA3, KIT, FGF and

CD70 pathways being active in the high group while CALCR,

CD40, and SPP1 pathways being vibrant in the low group

(Figures 7G, S3E). In Figures 7H, I, the distinction of CD70 and
Frontiers in Immunology 09
SPP1 signaling pathways in high- and low-risk groups was more

intuitive. Finally, the intracellular expression of nine hub genes is

exhibited (Figure 7J). It can be seen that the expression of PRDX2,

TMSB15B, ULBP1, and RAC3 was specifically increased in

malignant cells, and the high expression of these genes coincides

with a worse survival prognosis (Figures 3E–H).
Discussion

In this study, we screened nine hub genes to construct an

immune-related risk model from differently expressed genes of

metastatic and non-metastatic NPC patients in Fujian Cancer

Hospital. The model accurately predicted overall survival and was

strongly associated with immune infiltration at both the

transcriptome level and the single-cell level.
B

C D

A

FIGURE 4

Enrichment pathways of hub genes and correlation with oncogenic pathways, proliferative activity. (A, B) The high-risk group (A) was mainly
distributed in the E2F target, G2M checkpoint and MYC target using the GSEA method and the low-risk group (B) was mainly distributed in the INF-g,
INF-a and inflammatory responses using the GSEA method; (C) Patient samples from high- and low-risk groups showed significant differences in
scores across the ten carcinogenic pathways; (D) Patients in the high-risk group having high CCP scores. ***P < 0.001, **** P < 0.0001, nsP > 0.05.
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In NPC, polygenic models for predicting prognosis based on

gene expression levels have been rarely reported. More attention

has focused on predicting prognosis at the miRNA level, single gene

level. Prediction models are constructed by integrating various

different factors, such as clinicopathological features, imaging

features, genomic features, etc. A study identified a prognostic

predictive risk model for patients with nasopharyngeal carcinoma

based on three miRNA signatures (ebv-miR-BART19-3p, hsa-miR-

135b, hsa-miR-141), which can be used to predict the overall

survival of patients with nasopharyngeal carcinoma. (3-year ROC

= 0.76) (39). In a CT-based and PET-based signatures for

individual induction chemotherapy (IC) in advanced NPC, the

researchers proposed a radiomics nomogram with a C-index of
Frontiers in Immunology 10
0.754 [95% confidence interval (95% CI), 0.709-0.800] in the

training set and 0.722 (95% CI, 0.652-0.792) in the test set (40).

Another study investigated the prognostic significance of tumor-

infiltrating immune cells and microenvironment-relevant genes in

NPC (NPC) and their correlations. A risk score model composed of

DARC, IL33, IGHG1, and SLC6A8 was established with a good

performance for PFS prediction (AUC = 0.738) (41). In our study,

one of the novelties is the construction of a predictive model for

metastatic NPC, and the good predictive accuracy achieved. The

area under the ROC curve (AUC) of our model was 0.79 at 1-year,

and 0.81 at 3-years, respectively, indicating a high predictive value.

We filled the research gap of genetic prognostic prediction model

for metastatic NPC. The results of the study are expected to provide
B

C

D

E

A

FIGURE 5

Assessment of the tumor immune microenvironment and immune checkpoints. (A, B) The immune scores (A) and scores of tumor purity (B)
between the high- and low-risk group had notable statistical differences in the violin plot; (C) The compositions of the 29 immune-cell types were
significantly different in the high- and low-risk groups; (D) B cells, CD8 T cells, dendritic cells (DC), macrophages infiltration were negatively related
to the risk scores; (E) Immune checkpoint inhibitors (CTLA-4, HAVCR2, SIGLEC15, TIGIT, PD1 and LAG3) between the high- and low-risk groups had
notable statistical differences in the box plots. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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a theoretical basis for accurate prognostic assessment of

metastatic NPC.

Although improving the responsiveness of immunotherapy is

very promising for the treatment of metastatic tumors, the

effectiveness of strategies to improve the immune response to

cancer varies from patient to patient, due to the heterogeneity of

cancer cells and immune cells in TME, the crosstalk of biological
Frontiers in Immunology 11
signaling pathways, and the varying composition of specific

immune cells (42). Our study proposes a robust risk prediction

model based on metastatic NPC cases in Fujian Cancer Hospital,

which can accurately predict the prognosis and immunotherapy

efficacy of metastatic NPC patients.

Tumor-infiltrating lymphocytes determine the progression

and aggressiveness of tumors and are a source of important
B

C

D E F

A

G

H

FIGURE 6

Predictive power for immunotherapy efficacy. (A, B) GEP (A) and TLS (B) score were higher in the low-risk group; (C) numerous immune-related
indicators were over-expressed in low-risk patients; (D–G) Patients in the low-risk group had a higher immune response in a cohort of patients with
whether nasopharyngeal carcinoma (D) or melanoma (E-F), or non-small cell lung cancer (G); (H) The high-risk patients had a worse prognosis
when compared with the patients of the low-risk group in melanoma cohorts. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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prognostic information for patients (43, 44). In this study, samples

from the low-risk group had higher immune scores, lower scores

of tumor purity, and higher value of immune checkpoint

inhibitors simultaneously. It can be reasonably speculated that

the patients from the low-risk group will benefit from

immunotherapy as compared with patients from the high-risk
Frontiers in Immunology 12
group. The well-established prognostic model could make an

obvious distinction of the patients with metastatic NPC to

predict the risk of poor prognosis. For the advanced patients

ass igned to the low-r isk group, the combinat ion of

chemoradiotherapy and immunotherapy would be an

appropriate choice to attempt a better outcome.
B C

D E

F G

H

I

J

A

FIGURE 7

Immune landscapes and cellular communication at the single-cell level. (A, B) A cluster of 29 distinct cell types in GSE150430 cohort was defined by
two-dimensional spatial visualization of UMAP analysis; (C) Risk scores for samples in different cell subsets; (D) The proportion of cell composition in
high- and low-risk groups; (E) Immune cell infiltration in high- and low-risk groups using CIBERSORTx; (F) The major pathways enriched for
differential genes between high- and low-risk groups; (G) Active pathways were observed to vary in the high- and low-risk groups; (H, I) CD70 and
SPP1 signaling pathways in high- and low-risk groups; (J) The intracellular expression of nine hub genes. **P < 0.01, ***P < 0.001, ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1109503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1109503
The pro-oncogenic pathways, including E2F, G2M checkpoint

and MYC targets pathway, favor tumor cells to promote growth,

migration, invasion, and angiogenesis. In our analysis, GESA

identified the enrichment of E2F, G2M checkpoint, and MYC

targets pathway in the high-risk group, which may contribute to

the dismal prognosis. On the contrary, inflammatory response

contributes to cancer cell death by inducing an anti-tumor

immune response and therefore accounts for a favor prognosis of

low-risk group.

Recently, the prediction and evaluation of the efficacy and

outcome after immunotherapy for a specific tumor or the patient

with a specific tumor is a hot spot in the development of

contemporary medica l treatment . Tumors and their

microenvironments constantly interact with each other (45).

According to the type and number of infiltrated immune cells, it

can be divided into hot tumors and cold tumors. Hot tumors refer to

tumors that have triggered the body’s immune responses with a

certain number of immune cell infiltration, which tend to respond

well to immune checkpoint inhibitors. While cold tumors are

considered as those with few immune cells where it is difficult to

stimulate the autoimmune responses and where immune checkpoint

inhibitors could not play an effective role when compared with hot

tumors. In this study, the risk model we constructed can predict

immune cell infiltration in patients and even infer specific immune

cell content levels in both transcriptome level and single-cell level. In

addition, patients in the high-risk group had a large proportion of

malignant cells in their cellular composition, whereas immune cells in

the low-risk group had a large proportion. There was also a dramatic

difference in the ligand receptors for cellular communication between

the high- and low-risk patients. The low-risk group or the non-

metastasis group had high immune scores and abundant immune cell

infiltration, which means that they have a hot tumor component and

superior immune response in their bodies, indicating a higher

likelihood of benefiting from immunotherapy and a better

prognosis. Therefore, accurate prediction of our model holds great

value for individualized treatment and efficacy detection in clinical

settings for advanced NPC patients.

Immunotherapy drugs targeting PD-L1 and CTLA-4 are playing

an increasingly critical role in the treatment of malignant tumors (46).

The expression levels of PD-L1 or other immune checkpoints will

directly affect the therapeutic effect of immune checkpoint inhibitors,

by which the application of immune checkpoint inhibitors can be

guided. TLS is an ectopic lymphoid-like structure that is mostly

formed in tissues where inflammation occurs (47). In recent years,

many studies have revealed that tumor-infiltrating B lymphocytes (48)

and tumor-associated TLS have a non-negligible correlation with the

response to immune-checkpoint blockade treatment, which provides a

new biological marker for the clinical decision-making of

immunotherapy. In this study, there are a higher number of B

memory lymphocytes and increased immune checkpoint expression

in the low-risk group, which insinuates more opportunity to benefit

from immunotherapy. The accuracy of the risk model predictions was

likewise validated in multiple immunotherapy cohorts.
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To the best of our knowledge, our study presented the first

immunopredictive risk model for metastatic NPC based on realistic

cases. However, our study had some limitations. A major limitation

was the lack of a prospective NPC cohort to validate the prognostic

role and stratification performance of the model. In addition, the

role of predicting immunotherapy efficacy in real-world settings

needs further investigation.
Conclusions

We have constructed a model based on immunity of metastatic

NPC and determined its prognostic value. In addition, the model

identified cell-cell communication between tumor and immunity,

along with potential therapeutic approaches to target metastatic NPC.
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SUPPLEMENTARY FIGURE 1

The schematic diagram of this study.

SUPPLEMENTARY FIGURE 2

(A) PCA cluster analysis of the metastatic group (group M) and the non-

metastatic group (group N); (B, C) The risk score was significantly
distinguished between (B) clinical stage I–III and stage IV in GSE102349

(n=73) as well as (C) metastatic and the non-metastatic patients in Fujian

Cancer Hospital dataset (n=10).

SUPPLEMENTARY FIGURE 3

(A) The cell annotation and the specially expressed genes in each cluster; (B)
Risk scores for samples in different cell subsets; (C, D) Comparison of cellular

composition of high and low risk groups; (E) The signaling pathway of high

and low risk groups in comparison.
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