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the prognostic and
immunotherapeutic roles of
coagulation-associated gene
signature in clear cell renal
cell carcinoma
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Zhenpeng Zhu3*, Yifan Li1* and Cuijian Zhang3*

1Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China, 2Department of
Urology, Peking University First Hospital, Beijing, China, 3Department of Urology, The Third Affiliated
Hospital of Hebei Medical University, Shijiazhuang, China
The coagulation system is closely related to the physiological status and immune

response of the body. Recent years, studies focusing on the association between

coagulation system abnormalities and tumor progression have been widely

reported. In clear cell renal cell carcinoma (ccRCC), poor prognosis often

occurs in patients with venous tumor thrombosis and coagulation system

abnormalities, and there is a lack of research in related fields. Significant

differences in coagulation function were also demonstrated in our clinical

sample of patients with high ccRCC stage or grade. Therefore, in this study,

we analyzed the biological functions of coagulation-related genes (CRGs) in

ccRCC patients using single-cell sequencing and TCGA data to establish the 5-

CRGs based diagnostic signature and predictive signature for ccRCC. Univariate

and multivariate Cox analyses suggested that prognostic signature could be an

independent risk factor. Meanwhile, we applied CRGs for consistent clustering of

ccRCC patients, and the two classes showed significant survival and genotype

differences. The differences in individualized treatment between the two

different subtypes were revealed by pathway enrichment analysis and immune

cell infiltration analysis. In summary, we present the first systematic analysis of

the significance of CRGs in the diagnosis, prognosis, and individualized treatment

of ccRCC patients.

KEYWORDS

coagulation-related gene, clear cell renal cell carcinoma, diagnostic signature,
prognostic signature, individualized treatment
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Introduction

The ccRCC is the major pathologic subtype of kidney cancer

(1). Untimely first diagnosis and postoperative recurrence often

lead to a poor prognosis (2, 3). As a vigorously immunogenic tumor

with the properties of insensitivity to radiotherapy and

chemotherapy, there is growing evidence of the therapeutic value

of immune checkpoint inhibitors (ICIs) in ccRCC (4, 5). However,

due to the heterogeneity of ccRCC and different tumor

microenvironments (TME), the application of ICIs is still limited

(6). Therefore, it is particularly important to explore the relevant

factors impacting the TME and thus ICIs in ccRCC.

The coagulation system is critical for innate defense

mechanisms and is strongly associated with the TME of ccRCC.

Numerous experimental data suggest that patients with

malignancies have chronic hypercoagulation and hyper fibrillation

(7). Interestingly, the process of cancer development theoretically

necessitates a large blood supply, however, the patient with a tumor

is 9-fold more likely to develop cancer-related thrombosis than the

healthy (8–10). In recent years, studies on coagulation and tumor

ICI seem to present different outcomes (11, 12). Nevertheless, the

coagulation system is sophisticated and complex and needs to be

analyzed in a systematic manner. In ccRCC, there seemed to be

some synergistic link between coagulation and inflammation (13,

14). Therefore, focusing on the role of coagulation-related genes

(CRGs) in ccRCC might support prognostic evaluation and

ICIs treatment.

In addition, with the development of genome sequencing

technology, increasingly patients could benefit from the

individualized genomic treatments (15). Clinicians have shifted to

the use of bioinformatics to discover biomarkers and molecular

processes in different diseases. Currently, several prognostic

signatures have been established in ccRCC to predict the

prognosis of patients (16, 17). However, there is still a lack of an

effective signature to evaluate the therapeutic effect, which needs to

be explored.

Therefore, in this study, we first systematically analyzed the

expression and prognostic value of CRGs in ccRCC. Then, we

classified the patients into different coagulation statuses based on

consistent clustering and examined the differences of immune

infiltration, biological difference, and therapeutic choice between

clusters. Then we constructed 5-CRG based diagnostic signature

and 8-CRG based prognostic signature. The AUC value of ROC

curve shows good diagnostic and predictive efficiency. Afterward,

combined with independent clinical risk factors, we constructed a
Abbreviations: RCC, renal cell carcinoma; ccRCC, clear cell renal cell carcinoma;

ICIs, immune checkpoint inhibitors; TME, tumor microenvironments; CRGs,

coagulation-related genes; AUC, area under roc curve; ROC, receiver operating

characteristic curve; TCGA, the cancer genome atlas; KIRC, kidney renal clear

cell carcinoma; FPKM, the fragments per kilobase million; TPM, transcripts per

million; GEO, gene expression omnibus; ssGSEA, single sample gene set

enrichment analysis; TCIA, the Cancer Immune Atlas; DECRGs, differentially

expressed coagulation-related genes; LASSO, least absolute shrinkage and

selection operator; OS, overall survival.
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predictive nomogram. Finally, we validated FDX1 in clinical

samples and cell lines.
Materials and methods

Data processing

The transcriptome profile and corresponding clinical information

for ccRCC samples were downloaded from The Cancer Genome Atlas

(TCGA-KIRC, http://protal.gdc.cancer.gov/). Furthermore, we

obtained the validation cohort with follow-up information from the

ArrayExpress database (E-MTAB-1980, https://www.ebi.ac.uk/

arrayexpress/). For the data format, the fragments per kilobase

million (FPKM) were transformed into transcripts per million

(TPM). Further, the ccRCC and normal kidney single cell

sequencing data were downloaded from the GEO database

(GSE159115). We used Seurat v4 to process single cell data and

merge them. Afterward, we annotated the different clusters according

to themarker genes reported in the previous studies. Also, we collected

preoperative coagulation data from the case system for ccRCC patients

from the First Affiliated Hospital of Yangzhou University, and all

protocols met the requirements of the ethics committee of

Yangzhou University.
Molecular subtyping and therapeutic
prediction

In order to classify ccRCC patients for personalized treatment,

we performed molecular subtyping based the CRGs using the

ConsensusClusterPlus R package with the follow setings (maxK=7,

reps=100, pItem=0.8, pFeature=1, distance=“manhattan”,

clusterAlg=“pam”) (18). Meanwhile, unsupervised clustering and

the corresponding representative data were generated using the

ggplot2 R package. To explore the immune cell infiltrations between

two clusters, the single sample gene set enrichment analysis

(ssGSEA) was performed and each type of immune cell was

calculated according to the score. After that, the effect of

immunotherapy between different clusters were evaluated using

the Cancer Immune Atlas (TCIA) database. The potential

molecular enrichment between the clusters was annotated with

the ClueGO plugin from the Cytoscape software. We then used the

pRRophetic R package to assess of the sensitivity between different

clusters to clinical drugs in advanced ccRCC (19).
Identification of DECRGs and prognostic
CRGs

First, we retrieved the CRGs from the MsigDB database

(HALLMARK_COAGULAT ION and MALLMARK_

COMPLEMENT, http://software.broadinstitute.org/gsea/msigdb),

and the detailed information on the 281 CRGs were shown in the

Supplementary Table S1 (20). Then, in the R environment, the

limma R package was condemned to screen out the differentially
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expressed CRGs (DECRGs) between ccRCC and normal samples,

based on the set cutoff criteria of P<0.05 in TCGA and single-cell

sequencing cohorts (21). Univariate Cox regression was used to

identify the prognostic CRGs. Genes with the P value less than.05 in

Cox regression were identified as prognostic genes for further

LASSO regression analysis.
Sample collection and quantitative PCR

The human RCC (786-O, 769-P, A498, ACHN, Caki-1, OS-RC-

2, RCC4) and normal kidney cell lines (293) were cultured in

Dulbecco’s modified eagle’s medium or RPMI 1640 with 10% fetal

bovine serum and 1% Penicillin/Streptomycin. The cell lines were

placed in a 37°C aseptic incubator with 5% CO2,and the fluid was

changed every 2-3 days. The cell precipitation was collected, and the

total RNA was extracted by TRIzol Reagent (Invitrogen). The

patient samples were collected from the First Affiliated Hospital

of Yangzhou University, and all the procedures were approved by

the Ethics Committee. Then, cDNA synthesis was reverse

transcribed using the Takara reagent kit. Then we performed

quantitative PCR through SYBR green SuperMix and calculated

the results using 2-DDCT method (22). The primers used in this

study can be found in Supplementary Table S2.
Construction and validation of
coagulation-related gene signature

To explore the prognostic value of the CRGs in ccRCC patients,

we performed the LASSO regression of overall survival (OS) with a

maxit=1000, using the glmnet R package. We divided the ccRCC

samples in TCGA into training and validation cohorts according to

the ratio of 3:2 and used the samples of E-MTAB-1980 as the

external validation cohort. Then we calculated the risk score of each

patient using the following formula: risk score = coffiCRG1 × CRG1

expression + coffiCRG2 × CRG2 expression + · ···· + coffiCRGn ×

CRGn expression. Afterwards, we used the timeROC R package to

draw the patient’s 1-, 3-, and 5-year ROC curve to evaluate the

prognostic value of the signature. At the same time, we used the

survival R package and Kaplan-Meier ‘s method to compare the

prognostic differences between high- and low-risk patients. Finally,

through the univariate and multivariate regression analyses, we

established a prognostic nomogram integrating the risk score and

independent clinical parameters.
Statistical analysis

All statistical analyses were conducted using R 4.1.3 and Prism

GraphPad 9.3. Continuous variables were compared by using

Student’s t test, the Mann–Whitney test, or the Wilcoxon rank-

sum test. Meanwhile, cumulative survival analyses were performed

using the Kaplan–Meier method, and the survival differences were

analyzed using the log-rank test by survival R package. The

predictive value of signature was evaluated using ROC cures. An
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AUC value greater than 0.75 is considered well, and a value greater

than 0.60 is considered acceptable. The univariate and multivariate

Cox regression were used to assess the correlation of the signature

and clinical parameters with overall survival. Among all the results,

P < 0.05 was considered to be statistically significant.
Results

Identification of DECRGs in ccRCC patients

First, the workflow for the whole study is shown in Figure 1. In

our clinical work, we have found that patients with high stage or

grade tend to be accompanied by more pronounced coagulation

system dysfunction, which seems to be an interesting direction

(Supplementary Figure S1). Based on the clinical founding and gene

set of HALLMARKS, we obtained a total of 279 expression matrix

of CRGs in the TCGA database. These CRGs were analyzed by

KEGG Tree, and the functions of these CRGs were divided into a

total of five broad categories, including apoptosis, coagulation, and

important pathways such as complement and cytokines

(Figure 2A). Subsequently, we performed a cluster analysis of the

ccRCC single cell data (GSE159115) and annotated the different

Clusters (Figure 2B), and the Dot plot of the relevant features is also

shown in Figure 2C. Subsequently, we identified copy number

variants in epithelial cells by the SCEVAN method and classified

normal epithelial cells and malignant epithelial cells. By performing

differential expression analysis between the two types of epithelial

cells, we obtained a total of 527 differentially expressed genes with p

<0.05. Meanwhile, the CRGs in TCGA data were analyzed by

Limma package, and a total of 223 DECRGs were obtained with

p <0.05 (Figure 2D). The DEGs from the single cell sequencing data

were subsequently intersected with the DECRGs from TCGA to

obtain a total of 16 hub genes (Figure 2E). We then performed

correlation and regulatory pathway analysis by GeneMANIA on 16

hub genes, which are mainly involved in transcriptional regulatory

functions in response to stress as well as coagulation-related

mechanisms (Figure 2F).
Molecular subtyping of ccRCC and
therapeutic difference screening

To further investigate whether CRGs-based treatment can be

individualized for ccRCC patients. We performed consistent

clustering of ccRCC patients in TCGA based on 279 CRGs and

initially classified patients into 4 clusters based on the decay of CDF

values (Figure 3A, B). By performing survival analysis, the four

Clusters showed obvious two survival states, so we merged Cluster

A and Cluster C into Cluster 1 and Cluster B and Cluster D into

Cluster 2. The two Clusters showed obvious survival differences

between them (Figure 3C). It could also be seen by principal

component analysis that when the TCGA samples are divided

into 2 Clusters, the samples can be clearly separated, while with 4

Clusters, the boundaries of sample separation are not obvious

(Figure 3D). The subsequent construction of a heatmap also
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FIGURE 2

Identification and functional enrichment of differentially expressed CRGs. (A) The KEGG Tree enrichment plot of the 279 CRGs. (B) Reduced dimensional
plots of tSNE for different cell types for single cell data. (C) Feature dot plots of different cell types for single cell data. (D) The Volcano map on
differentially expressed CRGs in TCGA cohort. The five most significant up- and down-regulated genes were labeled separately. (E) VENN plots of the
same differential genes in the Single Cell sequencing and TCGA cohorts. (F) PPI network created by GeneMANIA showing the interactions of the CRG.
FIGURE 1

The graphical outline diagram of the whole process of this study. GP style: *: p< 0.05; **: p < 0.01; ***:p<0.001; **** p<0.0001.
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demonstrated the existence of significant changes in gene

expression profiles between these two Clusters (Figure 3E).

To explore potential biological functions and features between

two clusters, we identified DECRGs between clusters by limma R

package and performed functional enrichment using ClueGO
Frontiers in Immunology 05
plugin. We found that patients in Cluster 1 was significantly

associated with Platelet Activation, Blood Coagulation, and

Smooth muscle cell migration, while patients in Cluster 2 were

significantly correlated with Complement and coagulation cascade

and Negative regulation of low-density lipoprotein (Figure 4A).
D

A

B

C

FIGURE 4

Phenotypic differences between clusters and potential individualized treatment. (A) The biological functional enrichment of differentially expression gene
between two clusters in ClueGO plugin. (B) Drug sensitivity of commonly clinical used drugs for advanced ccRCC between clusters. (C) Differential analysis
of immune cell infiltration between two clusters using ssGSEA method. (D) Relationship between differences in PD-1 and CTLA-4 responsiveness between
the two groups, based on the TCIA database. GP style: *: p< 0.05; **: p < 0.01; ***:p<0.001; **** p<0.0001. n.s. = no significance.
D

A B E

C

FIGURE 3

Molecular subtyping of ccRCC patients based on the CRGs in TCGA cohort. (A) The ccRCC patients were identified into 4 clusters according to the
consensus clustering matrix (k = 4). (B) Relative changes in the area under the CDF curve by group number (MaxK = 7). (C) Kaplan–Meier survival
curves for the 2 clusters and 4 clusters. (D) Principal component analysis for the 2 clusters and 4 clusters. (E) The heatmap and the clinical
parameters of the 2 clusters established based on the CRGs.
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Subsequently, we explored the sensitivity of two clusters to drugs

commonly used in clinically advanced ccRCC by pRRophetic.

Compared to Cluster 2, patients in Cluster 1 were more sensitive

to axitinib, pazopanib, Voninostat and sorafenib, which may be

closely related to their enriched pathways (Figure 4B). Since ccRCC

is a strongly immunogenic tumor, we then compared the immune

cell infiltration of the two types of Clusters. Eosinophil and plasma

cell infiltration was more pronounced in Cluster 1 patients, whereas

T-cell infiltration was more pronounced in Cluster 2 patients,

suggesting that there may be different sensitivities to

immunotherapy between the two Clusters (Figure 4C). Also, we

explored the responsiveness to immunotherapy in the TCIA

database. Cluster 2 patients were more sensitive to CTLA4 or PD-

1 and the combination of both (Figure 4D).
Construction and validation of the
diagnostic signature based on the DECRGs

Based on the 16 hub DECRGs, we wanted to know if these genes

could be used as markers for the diagnosis of ccRCC. We screened 9

and 7 CRGs using LASSO and SVM-REF regression analyses,
Frontiers in Immunology 06
respectively (Figure 5A, B). We then selected the intersecting

genes of the two methods as diagnostic signature, including

PSMB9, SPARC, PLG, APOC1, and FDX1 (Figure 5C). In the

HPA database, we observed the protein expression of these five

genes by immunohistochemical data. Compared to normal kidney

tissues, PSMB9, SPARC and APOC1 expression levels were

upregulated in ccRCC, while FDX1 and PLG expression levels

were downregulated in ccRCC (Figure 5D). Afterwards, we

evaluated the predictive diagnostic value of the diagnostic

signature in the TCGA cohort, and the results showed a good

predictive value in ccRCC (Figure 5E).
Construction and validation of the
prognostic signature based on the
prognostic CRGs

To further investigate the prognostic value of CRGs, we

conducted a univariate Cox regression of 279 CRGs in relation

to OS. A total of 99 prognostic CRGs with P < 0.01 were

identified. We then build the prognostic signature by LASSO

regression (Figure 6A, B). We then calculated the riskScore by
DA

B

E

C

FIGURE 5

Establishment and validation of the diagnostic signature based on CRGs in TCGA cohort. (A) LASSO regression to identify signature genes in ccRCC
and normal samples. (B) SVM-REF regression to identify significant CRGs in ccRCC and normal samples. (C) Venn diagram based on the intersection
of the two algorithms with 5 genes. (D) The IHC-P images of 5 CRGs in HPA database. (E) ROC curves of 5 signature genes for predicting diagnostic
value in TCGA cohort.
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using the formula in the material part of the method. Based on

the calculated median riskScore cut-off, patients in training and

validation cohort were divided into the high- and low-risk

groups. Furthermore, the Kaplan–Meier log-rank test and the

time-dependent ROC curve were used to evaluate the predictive

ability and accuracy of the prognostic signature. The outcome of

the Kaplan–Meier log-rank test showed that the high-risk group

had a significantly worse OS compared with the low-risk group

in the TCGA training set (Figure 6C), TCGA validation set

(Figure S2A), and E-MTAB validation set (Figure S2C).

Meanwhile, the time-dependent ROC curve proved the 1-year,

3-year, and 5-year predictive accuracy of the signature for OS

(Figures 6D, S2B, S2D). In addition, the risk score distribution,

survival status, and expression of CRGs from the signatures are

shown in the TCGA training cohort, TCGA validation cohort,

and E-MTAB validation cohort (Figures 6E, S2E, S2F). Also, as

shown in Figure S3, we compared our signature with previously

published signatures in the TCGA dataset, and the results
Frontiers in Immunology 07
showed that our signature had better predictive performance,

especially for 5-year survival (23, 24).
Establishment and evaluation of the
nomogram

To predict the prognosis of ccRCC patients more accurately, we

identified independent risk factors affecting OS by univariate and

multivariate regression analysis (Table 1). The outcomes showed that

the Stage, Grade, Age, and Riskscore could be the independent factors

for OS of ccRCC patients (Table 1). Combining the calculated riskScore

and independent clinical parameters, we established the nomogram

with a C-index 0.773 (Figure 7A). Then, we performed the calibration

curves to verify the predictive efficacy of Nomogram for 1-year, 3-year

and 5-year OS (Figure 7B). We then confirmed the prognostic value of

this Nomogram over the TNM Staging system or the Grade system for

ccRCC patients by using multiple ROC curves (Figure 7C).
TABLE 1 Univariate and multivariate Cox analyses of clinical parameters and risk signature.

Univariate analysis Multivariate analysis

Parameters HR (95%CI) r value HR (95%CI) r value

Gender 0.930(0.672, 1.287) 0.663 0.865(0.624, 1.200) 0.387

Stage 1.899(1.656, 2.178) <0.001 1.566(1.333, 1.838) <0.001

Grade 2.434(1.959, 3.024) <0.001 1.354(1.052, 1.742) 0.019

Age 1.774(1.285, 2.448) <0.001 1.813(1.303, 2.520) <0.001

CRGSig 6.800(4.322, 10.698) <0.001 3.534(2.043, 6.111) <0.001

NAC 1.868(0.952, 3.665) 0.069 0.993(0.623, 1.201) 0.985
fron
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FIGURE 6

Construction and validation of the prognostic signature based on the CRGs. (A) Cross-validation of the parameter selection in the LASSO regression.
(B) LASSO regression of the 8 CRGs related to the OS. (C) Kaplan–Meier survival curves between high- and low-risk groups. (D) The AUC value of
ROC curves of prognostic signature for predicting 1-year, 3-year, and 5-year OS in the TCGA cohort. (E) Signature gene expression patterns and the
distribution of survival status and risk score in the TCGA training cohort.
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Further exploration of the significant CRGs
FDX1

Since the FDX1 was shown to be important in both diagnostic

and prognostic signature, we further explored the potential value

of FDX1 in ccRCC plus GTEx normal kidney mRNA expression

data (Figure 8A). We then compared the expression levels of

FDX1 in ccRCC and normal kdiney tissues in 8 GEO cohorts and

found that the FDX1 were significantly upregulated in normal

tissues (Figure 8B). Subsequently, based on the Timer database,

we found that FDX1 copy number alterations significantly

affected the level of infiltration of several major immune cells

(Figure 8C). We verified FDX1 expression levels in our own

clinical samples and cell lines, and consistently with the results

in the online database, FDX1 was significantly downregulated in

ccRCC (Figure 8D).
Discussion

Malignant tumors affect the hemostatic system, while abnormal

coagulation states have been observed frequently in patients with

malignant tumors (25). For ccRCC patients, venous tumor

thrombosis often implies poor prognosis (26). Currently, ccRCC

patients with venous system involvement have a high risk of tumor

recurrence even after the tumor thrombus has been successfully

eliminated (27). This suggests that coagulation abnormalities might

serve as a critical factor for the prognosis of patients with ccRCC.

Indeed, we found a more extensive hypercoagulable state in

advanced ccRCC patients in our clinical data. In addition to that,

former studies have shown that coagulation status significantly

affects the immune function (28, 29). This suggested that

coagulation was likely to be associated with immunotherapy

effects. As a strong immunogenic tumor, immunotherapy for

ccRCC patients holds great promise. The function of coagulation
Frontiers in Immunology 08
in predicting the prognosis of ccRCC as well as the effect of

immunotherapy remains to be explored.

First, we found in our clinical data that patients with high stage

and grade were more likely to occur coagulation system

dysfunction. The phenomenon is widespread in a variety of

advanced tumors (30, 31). In ccRCC, presence of inferior vena

cava tumor thrombosis often indicates poor prognosis.

Furthermore, previous studies reported that extensive infiltration

of exhausted CD8 T cells were gathered in the tumor thrombosis,

which might influence the effect of ICIs (32). Meanwhile, drugs

commonly used in advanced kidney cancer, such as sunitinib, can

affect the coagulation system and platelet formation (33). These

findings suggested that exploring the CRGs could benefit the

diagnostic detection, prognostic evaluation, and personalized

treatment of ccRCC patients. Based on these conjectures, we first

performed molecular subtyping of ccRCC patients based on the

CRGs. Indeed, Patients from different clusters showed markedly

diverse therapeutic effects to CTLA4, sunitinib, and so on. This

suggests that molecular subtyping of ccRCC using CRGs could

contribute to more precise personalized treatment.

Next, we constructed the diagnostic and prognostic signature

using the SVM-REF and LASSOmethods. Diagnosis-related signature

genes included APOC1, PSMB9, SPARC, PLG and FDX1. CD59,

FDX1, PPP2CB, TIMP3, COMP, BMP1, C1S, and CASP4 were

identified as prognostic signatures. Some genes in signature have

been extensively reported in previous studies. APOC1 was mainly

expressed in macrophages and closely associated with immune cell

infiltration in RCC. Macrophages with high APOC1 expression

promote RCC metastasis by secreting CCL5 (34). Recent study

suggested that APOC1 was correlated with ferroptosis, which may

be influenced by lipid metabolism through its apolipoprotein function.

Expression levels of PSMB9 were significantly up regulated in patients

who continued to benefit from ICIs, suggesting that it could be a target

for the assessment of therapeutic efficacy of ICIs, in agreement with

our analysis (35). The expression of SPARC was increased in all
A B C

FIGURE 7

Construction and validation of the prognostic nomogram integrating prognostic signature and clinical parameters. (A) The nomogram based on the
significant clinical parameters and risk signature. (B) Calibration curves of the nomogram for 1-, 3-, and 5-year survival prediction. (C) The AUC value
of ROC cruves of the nomogram, risk signature, and clinical parameters. GP style: *: p< 0.05; ***:p<0.001.
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subtypes of RCC and positively correlated with RCC staging and

grading (36). Knockdown SPARC significantly inhibit RCC cell

invasion and metastasis in vitro and in vivo. In addition, the

expression of SPARC was negatively correlated with the overall

survival and disease-free survival of RCC patients, indicating that

SPARC is a valid prognostic marker for the survival of RCC patients

(37). Plasminogen (PLG) encode the plasminogen, which circulates in

blood plasma as an inactive zymogen and is converted to the active

protease, plasmin by several plasminogen activators (38). PLG was

over-expressed in HBV positive hepatocellular carcinoma tissues and

cells. PLG silencing promoted HBV-HCC cell apoptosis in vitro and

suppressed the growth of HBV-induced HCC xenografts in vivo both

through inhibiting HBV replication (39). PLG, as a prognosis-related

gene, has been applied to construct prognosis-related signature in a

variety of tumors (40–42). PPP2CB is the catalytic subunit b isoform

of phosphatase 2A (PP2A). PP2A regulates T cell activation, which

plays an important role in immune homeostasis (43). CD59 has been

identified as a glycosylphosphatidylinositol-anchored membrane

protein that acts as an inhibitor of the formation of the membrane

attack complex to regulate complement activation (44). Recent studies

have shown that CD59 is highly expressed in several cancer cell lines

and tumor tissues. CD59 also regulates the function, infiltration and

phenotypes of a variety of immune cells in the tumor
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microenvironment (45). CD59 is up-regulated on activated CD4(+)

T cells and serves to down-modulate their activity in response to

polyclonal and Ag-specific stimulation (46). CD59 is expressed in

renal tumor cells and proximal tubular epithelial cells, which plays a

role in preventing complement-mediated lysis of these cells (47).

TIMP3 is considered to be an anti-angiogenic factor. In ccRCC, the

expression of TIMP3 is associated with the patient’s prognosis.

Furthermore, in high-grade renal cell carcinoma tumors, TIMP3

mRNA levels were significantly lower (48). COMP has a protective

effect on cyclosporine-induced kidney injury (49) and can improve

renal fibrosis (50). The role of COMP in ccRCC needs further

investigation. Bone morphogenetic proteins (BMP) family is a group

of proteins found in recent years that are related to the pathogenesis of

a variety of cancers (51). The high expression of BMP1 is a poor

prognostic factor in patients with renal clear cell carcinoma, and

knocking down BMP1 inhibits the proliferation and invasion of renal

clear cell carcinoma in vitro and in vivo (52). C1S has a dual role in

promoting ccRCC, and renal tumors expressing high levels of C1S

show high infiltration of macrophages and T cells (53). Studies have

shown that abnormal activation of C1S contributes to the

development of autoimmune and infectious diseases. In addition,

the overexpression of C1S may be a new escape mechanism to

promote tumor progress (54). CASP4, as a gene related to cell
D

A B

C

FIGURE 8

Further exploration of the FDX1. (A) The bar plot of the FDX1 mRNA expression between ccRCC and normal tissues in TCGA and GTEx database.
(B) Analysis of 8 GEO datasets regarding FDX1 mRNA expression in ccRCC and normal samples. (C) The association of FDX1 CNV status with
immune infiltration abundance in ccRCC was evaluated using TIMER database. (D) The validation of FDX1 mRNA expression level in our clinical
specimens and cell lines. GP style: **: p < 0.01; ***:p<0.001; **** p<0.0001.
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apoptosis, is differentially expressed in a variety of tumors, and can be

used to predict the prognosis of tumor patients (55, 56). CASP4 is

highly expressed in ccRCC, which is correlated with high pathological

scores, poor prognosis and expression level of infiltrating immune

cells (57). FDX1, which is more prominent in both diagnostic and

prognostic signatures, has not been previously reported, but there has

been a significant increase in studies about FDX1 this year, and the

mechanism remains to be explored (58, 59).

The present study has some shortcomings. Firstly, our study is

based on various published databases, and it was difficult to

completely batch effect and remove the background differences

between databases and sequencing platforms. Second, the small

sample size and lack of multi-omics data limited the accuracy of

molecular subtyping of ccRCC patients, which also inevitably led to

the accuracy of diagnostic and prognostic signature. Finally, an

important gene FDX1 identified in this study, was only validated for

its expression in clinical specimens and cell lines, subsequent

validation of its function in vitro and in vivo assays was needed.
Conclusion

In conclusion, using single cell and RNAseq data, we

preliminarily demonstrated the prognosis and individualized

treatment value of CRGs in ccRCC. Different immune states and

drug responses were revealed by typing TCGA patients with CRGs,

which is very important for individualized treatment of ccRCC

patients. On this basis, we build the diagnostic signature, prognostic

signature and nomogram based on CRGs, which can accurately

screen patients with ccRCC and predict the prognosis of patients

with ccRCC. Finally, we verified the vital FDX1 in our clinical

samples and cell lines, and further experiments need to be carried

out in the future.
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