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CD4+ T cells play a central role in the adaptive immune response through their

capacity to activate, support and control other immune cells. Although these

cells have become the focus of intense research, a comprehensive

understanding of the underlying regulatory networks that orchestrate CD4+ T

cell function and activation is still incomplete. Here, we analyzed a large

transcriptomic dataset consisting of 48 different human CD4+ T cell

conditions. By performing reverse network engineering, we identified six

common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1,

NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes

which led us to the identification of the transcription factor MEOX1 in Treg
cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be

upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic

landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells

revealed a profound impact on downstream gene expression programs and Treg
cell suppressive capacity. These findings in the context of CD4+ T cells

contribute to a better understanding of the transcriptional networks and

biological mechanisms controlling CD4+ T cell functionality, which opens new

avenues for future therapeutic strategies.
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1 Introduction

CD4+ helper T cells (TH cells) are critically involved in most

adaptive immune responses as they are responsible for activation of

B cells, enhancing the response of cytotoxic T cells, promoting

macrophage function and enabling them to mount an immune

response against invading microorganisms (1). TH cells can be

divided into different subgroups depending on their function and

cytokine production. For example, TH1 cells secrete mainly IFN-g
and are important for the defense against intracellular pathogens,

while TH2 cells produce a variety of cytokines, including IL-4, IL-5,

and IL-13, and are involved in mounting an immune response

against extracellular parasites (2). TH17 cells, on the other hand,

produce primarily IL-17 and defend the organism against

extracellular bacteria and fungi (3).

However, TH cells are not only involved in the induction of the

immune response but also play a vital role in regulation,

modulation, and fine-tuning of immune responses through

interactions with regulatory T cells (Treg cells). Treg cells exert

their regulatory function through a variety of different

mechanisms such as expression of inhibitory cytokines or surface

markers, direct cytotoxicity or disruption of the metabolism of

target cells (4, 5). Treg cells, like all helper T cell subtypes, are

dependent on complex interactions of signaling pathways

converging in the activity of different transcription factors (6).

The major transcription factor responsible for the induction of

Treg cell programing is Forkhead box protein 3 (FOXP3), which is

involved in the generation, maintenance and function of Treg cells

(4, 5). However, even though our understanding of Treg cell biology

has greatly improved since their existence was first hypothesized in

the 1970s, we still do not completely understand the underlying

regulatory networks which mediate Treg cell functionality (7).

Modern Omics-technologies in combination with innovative

bioinformatic analysis approaches have made it possible to

analyze immune cells in more detail and to better understand the

underlying mechanisms of the activation, functionality and

polarization of different immune populations (8). For myeloid

cells, transcriptome analysis of differently stimulated macrophages

revolutionized our understanding of different macrophage

polarization states (9). We hypothesized that utilizing a similar

strategy by combining different complementary bioinformatic

analysis approaches would enable us to better understand the

orchestration of transcriptional and epigenetic events governing

Treg cell programing and provide new insights into Treg cell biology.

The usefulness of such approaches has also been documented for T

cell biology as bioinformatic analyses have successfully been applied

to advance our understanding of T cell differentiation. For instance,

we and others identified novel genes which are important for the

differentiation and functionality of Treg cells (10–12), TH17 cells (13,

14), and TH1 cells and TH2 cells (15).

The advent of single-cell transcriptomics over the last years has

even further increased our appreciation that these transcriptional

changes can be governed through the interaction of transcription

factors, posttranscriptional changes induced by miRNAs and

lncRNAs but also through epigenetic mechanisms including DNA

methylation, chromatin accessibility and histone modifications.
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Previous epigenetic analyses have shown that a better

understanding of the underlying cell type specific epigenetic

events is important to better understand T cell biology. E.g.

nucleosomes around loci of the different lineage-defining TH-cell

cytokines are differentially methylated between the different TH-cell

subgroups, while the histone methylation of lineage defining

transcription factors is more plastic (16, 17). In addition, DNA

methylation has been described as a key element for T cell

differentiation with the FOXP3 locus serving as the prime

example for DNA methylation being important for Treg cell

generation and stability (18).

In light of this, it is obvious that a multi-layered approach

analyzing pre-existing or novel datasets has the potential to yield

new insights into the mechanisms governing T cell proliferation,

differentiation and function and thus may also shed light on

different disease progresses. However, validating these findings

experimentally can be challenging (11, 19).

In this study, we combined different bioinformatic analysis

methods using a systems immunology approach to analyze

previously published datasets from human CD4+ TH cells

including differently stimulated CD4+ TH cells and Treg cells to

establish common traits for all CD4+ TH cells but also to identify

new Treg cell signature genes.

Using this approach, we identified the transcription factor

MEOX1 (Mesenchyme Homeobox 1) to be highly expressed

particularly in activated Treg cells with a similar expression pattern

to FOXP3. MEOX1 has been primarily implicated in early

development, where MEOX1 is necessary in all somatic

compartments to ensure proper development (20), with expression

levels dropping with gestational age. Frameshift mutations resulting

in an unstable MEOX1 transcript or nonsense mutations of MEOX1

have been described to cause Klippel-Feil-Syndrome, a segmentation

defect in the cervical spine (20, 21). Furthermore, MEOX1 has been

implicated in the development and progression of breast and non-

small cell lung cancer (22, 23). As such, MEOX1 expression has been

correlated with breast cancer stage and poor survival (22). However,

despite the importance of MEOX1 in both development and cancer,

only recently a first report has indicated MEOX1 to be important for

Treg cells in the context of the tumor environment in intrahepatic

cholangiocarcinoma and the acquisition of a tumor-infiltrating Treg

cell phenotype (24).

In an effort to better understand the role of MEOX1 in Treg cells,

we analyzed the MEOX1 locus and demonstrated that it is

epigenetically more accessible in Treg cells than in all other CD4+

T cell subsets and that it contains a FOXP3 binding site.

Furthermore, we validated these data in human Treg cells at both

the mRNA and protein level, and by siRNA knockdown

experiments established that transcriptional control through

MEOX1 is downstream of FOXP3. Using transcription factor

binding prediction, we identified target genes of MEOX1 which

we experimentally verified to be MEOX1 target genes at the mRNA

level. Furthermore, we could link expression of MEOX1 to Treg cell

suppressive function. Thus, by applying a systems immunology

approach we discovered a new transcription factor in human Treg

cells operating downstream of FOXP3 important for human Treg

cell activity.
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2 Materials and methods

Key resources table

REAGENT or
RESOURCE SOURCE IDENTIFIER

Antibodies

Unconjugated
anti-human CD3
Antibody, Clone
OKT3

Ortho Biotech Cat# OKT3, RRID :
AB_2619696

Unconjugated
anti-human
CD28, Clone 9.3

Kind gift from J.L. Riley RRID : AB_2687729

Unconjugated
anti-human MHC
I Antibody, Clone
W6/32

Thermo Fisher Scientific Cat# MA1-22572, RRID :
AB_560084

PerCP/Cy5.5 anti-
human CD127
(IL-7R) Antibody,
Clone A019D5

Biolegend Cat# 351321, RRID :
AB_10900253

APC anti-human
CD127 (IL-7R)
Antibody, Clone
A019D5

Biolegend Cat# 351342, RRID :
AB_2564137

Brilliant Violet
510 anti-human
CD25 Antibody,
Clone BC96

Biolegend Cat# 302640, RRID :
AB_2629672

PE anti-human
CD25 Antibody,
Clone BC96

Biolegend Cat# 302606, RRID :
AB_314276

Brilliant Violet
421 anti-human
CD3 Antibody,
Clone UCHT1

Biolegend Cat# 300434, RRID :
AB_10962690

FITC anti-human
CD3 Antibody,
Clone UCHT1

Biolegend Cat# 300452, RRID :
AB_2564148

PE/Cyanine7 anti-
human CD4
Antibody, Clone
RPA-T4

Biolegend Cat# 300512, RRID :
AB_314080

PE/Dazzle 594
anti-human CD4
Antibody, Clone
RPA-T4

Biolegend Cat# 300548, RRID :
AB_2563566

PE anti-human
FOXP3 Antibody,
Clone PCH101

eBioscience Cat# 12-4776-42, RRID :
AB_1518782

PE anti-human
FOXP3 Antibody,
Clone 206D

Biolegend Cat# 320108, RRID : AB_
492986

FITC anti-human
CD45RA

BD Biosciences Cat# 555488, RRID :
AB_395879

(Continued)
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Continued

REAGENT or
RESOURCE SOURCE IDENTIFIER

Antibody, Clone
HI100

Unconjugated
anti-mouse/
human Actin
Antibody, clone
C4 antibody

Millipore Cat# MAB1501, RRID :
AB_2223041

Unconjugated
anti-human
MEOX1
Antibody, rabbit
polyclonal
antibody

Abcam Cat# ab23279, RRID :
AB_447360

IRDye 800CW
goat anti-mouse
IgG Antibody,
polyclonal goat
anti-mouse IgG

LI-COR Biosciences Cat# 926-32210, RRID :
AB_621842

IRDye 680RD
goat anti-rabbit
IgG antibody,
polyclonal goat
anti-rabbit IgG

LI-COR Biosciences Cat# 925-68071, RRID :
AB_2721181

Alexa Fluor 647
goat anti-rabbit
IgG (H+L),
polyclonal
recombinant goat
anti-rabbit IgG

Thermo Fisher Scientific Cat# A27040, RRID :
AB_2536101

Biological Samples

Buffy-coat
samples

Universityhospital,
Bonn

Reg. No. 288/13

Chemicals, Peptides, and Recombinant Proteins

Superscript II
Reverse
Transcriptase

Thermo Fisher Scientic Cat# 18064014

KAPA HiFi
HotStart
ReadyMix

Kapa Biosystems Cat# KR0370

High Sensitivity
D5000
ScreenTape

Agilent Technologies Cat# 5067-5592

High Sensitivity
D5000 Reagents
& Ladder

Agilent Technologies Cat# 5067-5593

Recombinant
human TGF-b1
(HEK293 derived)

PeproTech Cat# 100-21

IL-2 (Proleukin) Chiron/Novartis PZN# 2238131

cOmplete
Protease Inhibitor
Cocktail

Roche Cat# 04693116001

PhosSTOP™ Roche Cat# PHOSS-RO

(Continued)
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Continued

REAGENT or
RESOURCE SOURCE IDENTIFIER

SuperScript III
One-Step RT-PCR
System with
Platinum Taq
High Fidelity
DNA Polymerase

Thermo Fisher Scientific Cat# 12574030

MyTaq HS DNA
Polymerase

Boline Cat# BIO-21111

CFSE eBioscience Cat# 65-0850-84

Cell Proliferation
Dye eFluor 670

eBioscience Cat# 65-0840-85

Critical Commercial Assays

Foxp3/
Transcription
Factor Staining
Buffer Set

eBioscience Cat# 00-5523-00

CD4 M-pluriBead
anti-human M-kit

Pluriselect Cat# 19-00400-20 and 70-
50010-21

RosetteSep
Human CD4+ T
Cell Enrichment
Cocktail

Stem Cell Cat# 15022

CD25 MicroBeads
II, human

Miltenyi Biotec Cat# 130-092-983

CD45RA
MicroBeads,
human

Miltenyi Biotec Cat# 130-045-901

Universal
ProbeLibrary Set,
Human

Roche Cat# 4683633001

Transcriptor First
Strand cDNA
synthesis kit

Roche Cat# 4897030001

Maxima SYBR
Green Master

Thermo Fisher Scientific Cat# K0221

LightCycler 480
Probes Master

Roche Cat# 4887301001

miRNeasy Mini
Kit

Qiagen Cat# 217004

QIAquick Gel
Extraction Kit

Qiagen Cat# 28704

QIAquick PCR
Purification Kit

Qiagen Cat# 28104

Human T Cell
Nucleofector Kit

Lonza Cat# VPA-1002

LIVE/DEAD
Fixable Near-IR
Dead Cell Stain
Kit

Thermo Fisher Scientific Cat# L10119

Deposited Data

Tiling array Data (25) GSE20995

(Continued)
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Continued

REAGENT or
RESOURCE SOURCE IDENTIFIER

Microarray Data (10, 26) GSE15390 and GSE17241

MeDIP-seq Data http://
trace.ddbj.nig.ac.jp

DRP000902

Histone
Modification
Dataset

GEO NIH Roadmap
Epigenomics

http://
www.roadmapepigenomics.org

FOXP3 ChIP-seq
data

(27) SRA : SRP006674

Human Immune
Cell Dataset

www.nextbio.com n/a

Microarray
dataset

(11) GSE11292

scRNA-seq data (28) GSE99254

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-3216, RRID :
CVCL_0063

Oligonucleotides

For
Oligonucleotide
Sequences, see
Supplemental
Table S7

This paper n/a

Software and Algorithms

FlowJo BD Biosciences RRID : SCR_008520

LightCycler
Software

Roche RRID : SCR_012155

GenomeStudio Illumina RRID : SCR_010973

BioLayout Express
3D

http://
www.biolayout.org

RRID : SCR_007179

Partek Genomics
Suite (PGS)

Partek RRID : SCR_011860

R 3.4.1 http://www.r-
project.org/

RRID : SCR_001905

genomics
Workbench 2.6.0

http://
www.geworkbench.org

RRID : SCR_013599

Cytoscape http://cytoscape.org RRID : SCR_003032

LegumeGRN http://
legumegrn.noble.org

n.a.

ToppGene Suite http://
toppgene.cchmc.org/

RRID : SCR_005726

Integrative
Genomics Viewer

http://
www.broadinstitute.org/
igv/

RRID : SCR_011793

BD FACSDiva
Software

http://
www.bdbiosciences.com/
instruments/software/
facsdiva/index.jsp

RRID : SCR_001456

Graph Pad Prism GraphPad Software RRID : SCR_002798

Fiji ImageJ http://fiji.sc RRID : SCR_002285
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2.1 Experimental model and subject details

2.1.1 Human subjects
Human T cells were purified from Buffy coats of healthy human

donors obtained in compliance with institutional review board

protocols (Ethics committee, University of Bonn, Reg. No. 288/

13) after written consent. Due to privacy regulations, gender and

age of these donors could not be ascertained.

2.1.2 Cell lines
Human embryonic kidney (HEK) 293T (ATCC CRL-11268;

female) cells were maintained in DMEM containing 10% heat-

inactivated fetal calf serum. Cells were cultivated at 37°C, 5%CO2.
2.2 Method details

2.2.1 Dataset compilation and primary
data handling

All microarray gene expression data (GSE15390 and GSE17241)

were downloaded from the GEO database and compiled using

GenomeStudio (Illumina). A total of 217 samples were imported

into Partek Genomics Suite 5.0 (PGS) for further analysis including

quantile normalization. Batch effects caused by separate array

experiments were removed from normalized log2-transformed data.

Background signal was calculated within R based on the coefficient of

variation (the computed background for the entire dataset was 7.183).

Genes were defined as expressed and kept for further analyses if their

mean expression values were higher than background in at least one of

the 217 samples. Afterwards, multi-probes were filtered to retain only a

single probe with the highest mean expression as representative for the

corresponding gene. To this end, principal component analysis (PCA)

was performed and validated using networks based on Pearson’s

correlations which were visualized in BioLayout Express3D. Only

samples, which clearly deviated from other samples in both methods,

were assumed to be outliers and hence removed from the dataset.

Finally, 217 samples containing 14,632 expressed genes (also referred to

as present genes) were kept for further analyses in R 3.4.1. Validation of

MEOX1 expression in human Treg cells was performed by reanalyzing

a publicly available dataset downloaded from GEO (GSE11292) (11).
2.2.2 Principal component analysis and
t-distributed stochastic neighbor embedding

PCA was applied on all present genes using the function

prcomp of the R package stats by leaving the default setting

unaltered. Moreover, nonlinear dimensionality reduction was

performed to identify similarities between the CD4+ T cell

samples by utilizing t-distributed stochastic neighbor embedding

(t-SNE) (29). Therefore, the R package Rtsne was applied to all

present genes by leaving the standard parameters unaltered despite

of theta which was set to 0.0.
Frontiers in Immunology 05
2.2.3 Correlation coefficient matrices combined
with hierarchical clustering

The computation of the Pearson’s correlation coefficients (PCC)

was done in a pairwise fashion between all CD4+ T cell conditions

using PGS, which resulted in correlation coefficient matrices

(CCMs). PCCs were computed using Pearson’s (Linear)

correlation based on all present genes. The hierarchical clustering

is based on Euclidean distance of the cells and was plotted as the

standardized correlation coefficients (mean of zero and standard

deviation of one) for the CD4+ T cell conditions. This resulted in 11

larger clusters representing all 48 conditions.

2.2.4 ANOVA calculation for differential
gene identification

Data were analyzed in PGS by 2-way ANOVA for more than

two CD4+ T cell conditions and student’s t-test for two conditions

only. DE genes were defined by the 2-way ANOVAmodel (|FC| > 2,

FDR adjusted p-value < 0.05) (30). The identified DE-genes were

visualized in an UpSet plot using the R package ‘UpSetR’ (31).

2.2.5 K-means clustering combined with
hierarchical clustering

In accordance to k-means clustering performed by Smeekens

et al. (32) we used as input to the algorithm the most variable genes

out of the 2-way ANOVA (p < 0.05; 9,925 genes) and calculated the

fold-change (FC) between any sample and freshly isolated naïve

CD4+ T cells (also referred to as cluster 11 or “Tconv cell resting”).

To determine the optimal number of k clusters, the Davies-Bouldin

index of absolute expression values was determined using PGS

which resulted in 25 clusters. Similar to CCMs, the hierarchical

clustering was calculated followed by ranking of the rows according

to k-means cluster-affiliation and plotting of the standardized fold-

changes (mean of zero and standard deviation of one) for the CD4+

T cell conditions. This resulted in 10 larger clusters representing all

48 conditions.

2.2.6 Self-organizing map clustering
Using the SOM-clustering implementation of PGS, the CCM-

defined clusters were compared based on topological patterns and

enabled the investigation of cluster-specific genes. First, the mean

expression of the most variable genes based on a 2-way ANOVA

was calculated for each cluster separately and standardized to a

mean of zero and standard deviation of one. Next, 20,000 training

iterations were used to cluster similar genes close to each other on

the map. In our settings, the 9,925 genes were divided into 10 x 10

SOM-clusters (approximately 90 genes in each SOM-cluster), and

the mean expression values of each SOM-cluster genes were used to

calculate an eigenvalue, which represented the general expression

value of this SOM-cluster. The resulting data were then visualized as

a heatmap representing increased values in red, decreased values in

blue and intermediate values in green.
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2.2.7 Weighted gene co-expression
network analysis

We utilized the WGCNA R package (33) to identify co-

expressed genes associated with the 11 CCM-defined clusters. As

input to this algorithm served the union of all DE-genes (|FC| > 2,

FDR adjusted p-value < 0.05) between a certain cluster and the

‘Tconv cell resting’-cluster. The standard parameter of WGCNA was

altered to a power of 15 and a minModuleSize of 10 resulting in 32

modules. For each module, the eigengene corresponding to the first

principal component was calculated and subsequently correlated to

the respective clusters. The correlation values were visualized in

a heatmap.

2.2.8 Gene set enrichment analysis
To validate WGCNA, GSEA on the 32 modules in 10,000

permutations using PGS was performed (34). For each

comparison (samples within a CCM-defined cluster versus all

other samples of the dataset), normalized enrichment score

(NES), allowing comparisons of overrepresentation between

different gene sets, together with p-value of GSEA were plotted by

Volcano plots. The two WGCNA modules, which exhibited both

the highest eigengene-to-cluster correlation and a significant p-

value (< 0.05), based on GSEA were selected. Genes within these

modules were visualized in another Volcano plot by plotting

expression ratios (reference: ‘Tconv cell resting’) versus p-values

obtained by t-test statistics.

2.2.9 Prediction of potential FOXP3 targets
The Cytoscape plug-in iRegulon (35) was used to investigate the

potential upstream transcription factors (TFs) controlling the

expression of genes found within the two WGCNA modules with

the highest correlation to ‘Treg cell CD3/IL2’. Therefore, TF

prediction was performed in a genomic region 500 bp upstream

of the TSS. Subsequently, all genes which exhibited binding motifs

for FOXP3 were visualized in a circular layout in Cytoscape.

2.2.10 Prediction of potential MEOX1 targets
To identify potential MEOX1 target genes, we utilized the

database provided by the R package tftargets (https://github.com/

slowkow/tftargets ) and queried genes that carry a binding site for

MEOX1 in their promoter regions. The results were then filtered for

genes found within the two WGCNA modules with the highest

correlation to ‘Treg cell CD3/IL2’ and that exhibited an expression

fold change > |1.0|.
2.2.11 Algorithm for the Reconstruction of
Accurate Cellular Networks (ARACNe)

The expression data was loaded into an integrated genomic

analysis platform genomics Workbench 2.6.0 (36) to implement the

ARACNe algorithm for network analysis (37). All present genes

were taken into calculation of mutual information (MI) with p-

values less than 0.05 without Bonferroni correction. The threshold

of data processing inequality (DPI) theorem from information

theory was set to 0.01. The resulting network consisted of 14,494

nodes with 179,876 edges
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2.2.12 Tool for inferring network of
genes (TINGe)

Similar to ARACNe, all present genes were used as input to

TINGe (38). However, we used neither a p-value cutoff nor a DPI-

value. The resulting network consisted of 14,494 nodes with

235,933 edges.

2.2.13 Context likelihood of relatedness (CLR)
We took advantage of the web server LegumeGRN that provides

a CLR-implementation (39). We used the CLR-method (“plos”)

which was used in the original publication (40) and left the default

setting unaltered with the exception that the number of edges in the

output file was limited to 250,000. The resulting network consisted

of 12,641 nodes.

2.2.14 Gene network inference with ensemble of
trees (GENIE3)

In the present study, we applied the R package genie3 (41) for

the prediction of the regulatory network of all present genes by

setting the number of trees to 1000 and limit report.max to 250,000.

The resulting network consisted of 12,302 nodes with

227,449 edges.

2.2.15 Basic correlation
Pearson’s correlation was employed to compute the

relationships between all gene pairs within the gene expression

data. As input to this calculation, we used genes which were found

in the output-networks of all of the abovementioned algorithms

(10,721 genes). Pearson’s correlation was calculated using

BioLayout Express3D. Setting the correlation cutoff to 0.7 resulted

in a network consisted of 7,216 nodes with 700,136 edges.

2.2.16 Consensus network
All gene-gene interactions derived from each individual

network prediction were ranked by its ranking function. By

computing average rank for each gene pair using the GP-DREAM

module AverageRank (42), 10,000 top ranking interactions was

obtained. The resulting consensus network consisted of 3,845 nodes

(R2 = 0.938) and was visualized in a force-directed layout

in Cytoscape.

2.2.17 Candidate gene prioritization
To link identified hub genes with transcriptional regulation of T

cells, we supplemented the consensus network obtained by

AverageRank with prior knowledge by applying the following

strategy. The top 20% highly connected hub genes were

prioritized by association with transcriptional regulation of T cells

using the well-known T cell biology regulators TCF7, SATB1, EZH2

and GATA3 as test genes for the prioritization tools ToppGene (43)

and Endeavour (44). As training parameters of ToppGene we used

following features: “GO: Molecular Function”, “GO: Biological

Process”, “GO: Cellular Component”, “Pathway”, “Pubmed”,

“Coexpression” and “Coexpression Atlas”. For Endeavour

following features were used: “EnsemblEst”, “GeneOntology”,

“Kegg”, “Swissprot”, “Expression – SonEtAl” and “Expression –
frontiersin.org

https://github.com/slowkow/tftargets
https://github.com/slowkow/tftargets
https://doi.org/10.3389/fimmu.2023.1107397
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Baßler et al. 10.3389/fimmu.2023.1107397
SuEtAl”. The results of the two approaches were combined by the

Borda ranking method.

2.2.18 Identification of target genes of prioritized
TFs using iRegulon

The 20% hub genes were used as input to iRegulon and

potential upstream TFs were predicted in a genomic region of

500 bp of their respective TSS. Subsequently, the predicted TFs

CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3 and their

putative target genes were visualized in a network using the

circular layout tool of Cytoscape. Moreover, the prioritized TFs

and their target genes were used to perform GOEA.

2.2.19 Clustering of the consensus network using
Markov clustering algorithm (MCL)

To identify sub-structures within the consensus network, we

applied MCL which is implemented in the Cytoscape plug-in

clusterMaker (45). In the present study we applied MCL using

the default settings.

2.2.20 Single-cell RNA-seq analysis
We downloaded a recently published T cell single-cell RNA-seq

dataset from the GEO database (GSE99254) that comprises CD4+ T

cell- and CD8+ T cell-populations from non-small-cell lung cancer

patients (28). The published t-SNE map of the single-cell study was

reconstructed by utilizing the normalized and centered data

provided on the GEO database and following the recommended

pipeline of the authors. Briefly, we took advantage of the sscClust

analysis pipeline (https://github.com/Japrin/sscClust) with which

we determined the 1,500 most variable genes using the “sd”

parameter followed by the calculation of the top 30 principal

components, which were then used as input into the t-SNE

construction. The cluster-annotation was extracted from

published analysis results provided on the webpage http://

lung.cancer-pku.cn. Identification of MEOX1 co-expressed genes

in the single-cell RNA-seq dataset was performed using the TPM

normalized expression data as input and calculating the Pearson’s

correlation of MEOX1 with all other genes.

2.2.21 Analysis of histone modifications of the
genomic MEOX1 locus

ChIP-seq data, which were provided by the NIH Roadmap

Epigenomics Mapping Consortium, (46), was downloaded as WIG

(wiggle) file and visualized using the integrative genomics viewer

(IGV). For the analysis we used the available information about

histone modifications for CD4+CD25-CD45RA+ T cells and

CD4+CD25+CD127- T cells (both cell-types obtained from donor 63).

2.2.22 Isolation of human Treg and Tconv cells
from buffy coats

Human T cells were purified from Buffy coats of healthy human

donors. CD4+ T cells were isolated by positive selection using

pluribeads (Pluriselect) according to manufacturer’s instructions.

To isolate Treg and Tconv cells, cells were either isolated using CD25
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MACS beads (Miltenyi Biotech) or sorted on a BD Aria III cell

sorter (BD Biosciences) after staining with antibodies against CD3,

CD4, CD25 and CD127. Gating strategy is shown in Figures S2A, B.

As MEOX1 is an intracellular protein, during sorting for living cells

it was not possible to stain for the expression of MEOX1. In

addition, dead cells were excluded using the LIVE/DEAD fixable

near-IR dead cell stain kit (Thermo Fisher Scientific).

2.2.23 Transfection of MEOX1
MEOX1 vector was transfected into HEK cells using the

Turbofect transfection reagent (Thermo Fisher) according to

manufacturer’s instructions. Transfection efficacy was tested by

flow cytometry and only cells with a transfection efficacy of ≥85%

were used for subsequent experiments.

2.2.24 Flow cytometric analysis
Antibodies for flow cytometric analyses were purchased from

Biolegend or Thermo Fisher Scientific. Extracellular staining was

performed at 4°C in the dark for 30 minutes. Intracellular staining

of FOXP3 was performed using the Foxp3 Staining Buffer kit

(Thermo Fisher Scientific) according to manufacturer’s

instructions using the PCH101 clone for unstimulated Treg cells,

while staining of FOXP3 in stimulated Treg cells was performed with

the 206D clone. MEOX1 staining for flow cytometry was performed

by first staining for MEOX1 for 1 hour at 4°C followed by staining

with a fluorochrome conjugated anti-rabbit secondary antibody for

30 minutes at 4°C in the dark. Samples were acquired on a BD LSR

II or Symphony A5 flow cytometer (BD Biosciences). Data were

analyzed using FlowJo.

2.2.25 IL-2 stimulation
For IL-2 stimulation, MACS-isolated Treg cells were cultured in

96 well plates at a concentration of 1x105 cells/well in X-Vivo 15

medium in the presence of 0, 10, 100 or 1000 U/ml IL-2 for 0, 12, 24,

48 or 72 hours. Cells were subsequently harvested in Trizol

(Thermo Fisher Scientific) prior to RNA isolation. RNA from

higher cell numbers was isolated by isopropanol precipitation as

previously described (47). For flow cytometry staining of MEOX1,

PBMCs were isolated and seeded in 6 well plates at a concentration

of 4x106 cells/well in 3 ml RPMI stimulated with 100 U/ml IL-

2 overnight.

2.2.26 RNA isolation, cDNA synthesis
and qRT-PCR

Cells were resuspended in Trizol (Thermo Fisher Scientific) and

RNA was i so la ted accord ing to the manufac turer ’ s

recommendations. If fewer than 50.000 cells were used for RNA

isolation, the miRNeasy Mini Kit (Qiagen) was used instead

according to the manufacturer’s instructions. cDNA was

generated using the Transcriptor First Strand cDNA synthesis kit

(Roche Diagnostics) according to manufacturer’s specifications.

qRT-PCR was performed using LightCycler Taqman master kit

and the Universal Probe Library assay (Roche Diagnostics). Primer

Sequences are listed in Table S7.
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2.2.27 siRNA-mediated knockdown
siRNAs were purchased from Biomers and used for transfection

of MACS-isolated Treg cells. Transfection was carried out with the

human T cell nucleofector kit (Lonza) as per manufacturer’s

specifications as previously described (10). Sequences of siRNAs

can be found in Table S7.

2.2.28 DNA methylation analysis
Genomic DNA was isolated from sorted and stimulated Treg

and Tconv cells using the DNeasy Blood & Tissue Kit (Qiagen) and

concentrated using the DNA Clean & Concentrator Kit (Zymo

Research), both following the manufacturer’s instructions. The

sample DNA was converted by bisulfite using the EZ DNA

Methylation-Lightning Kit (Zymo Research) according to the

manufacturers protocol and subjected to pyrosequencing as

described previously (48). Amplification and sequencing of the

regions A (chromosome position17: 43662392-43662439) and B

(chromosome position 17: 43661827-43661888) in the MEOX1

gene locus was performed with the amplification/sequencing

primers listed in Table S7. The indicated chromosome positions

refer to genome assembly GRCh38.p13.

2.2.29 Immunoblotting
Immunoblotting was performed as previously described (12).

Briefly, cells were lysed in RIPA buffer (10 mM Tris-Cl (pH 8.0), 1

mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium

deoxycholate, 0.1% SDS, 140 mM NaCl) Lysates were denatured

and run on a 10% SDS-PAGE gels and blotted onto nitrocellulose

membranes. Primary AB incubation was performed in 5% milk in

PBST or 2.5% BSA in PBST, according to AB manufacturer

recommendations for at least 12 hours at 4°C. Blots were then

incubated with fluorochrome coupled secondary AB. Following the

secondary antibody incubation, protein signals were detected on the

LICOR Odyssey Imaging System. The following antibodies were

used: MEOX1 (abcam) ab23279, Actin (Sigma-Aldrich) MAB1501.
2.3 Quantification and statistical analysis

All statistical analysis except analysis of gene expression data

were performed with Graph Prism software version 8.0 (GraphPad

Software). Unless otherwise specified, data were plotted as mean ±

SEM. To determine significant differences the two-tailed student’s t

test was performed when comparing normally distributed data of

two groups or post-hoc Bonferroni when comparing multiple

groups. P values less than 0.05 were considered significant (n.s.

indicates not significant, * = p < 0.05).
2.4 Data and software availability

GEO: microarray data, GSE15390 and GSE17241; tiling array

data, GSE20995; public datasets: MeDIP-seq data, DRP000902

(http://trace.ddbj.nig.ac.jp); Histone modification dataset, GEO
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NIH Roadmap Epigenomics (http://www.roadmapepigenomics.

org); FOXP3 ChIP-seq data: SRA: SRP006674; Human immune

cell dataset, www.nextbio.com; Validation of MEOX1 expression in

human Treg cells: GSE11292. Single-cell RNA-seq: GSE99254.
3 Results

3.1 Transcriptome analysis of CD4+ Tconv
and Treg cells reveals activation-dependent
clustering of cells

To better understand how activation influences gene expression

in Tconv and Treg cells and to identify key regulatory events

responsible for T cell differentiation, we analyzed the

transcriptome of human resting or activated Tconv and natural

Treg cells together with TH1 and TH2 differentiated cells (Table

S1). To do this, we combined data from our previous work (10) with

an analysis focusing on TH1- and TH2-differentiation of CD4+ T

cells (26) resulting in a dataset comprising 48 different conditions.

To gain insight into the general sample-to-sample relationships,

we first visualized the transcriptional variance of the complete

dataset using principal component analysis (PCA, Figure 1A).

This analysis revealed a bipolar structure in which cells

stimulated by CD3/CD28 antibodies (activated T cells) clustered

away from all other T cells, indicating that the activation stimulus is

causing the highest variance within the dataset. Moreover, this

analysis further indicated that the global transcriptional changes

induced by CD3/CD28 stimulation were so prominent, that co-

incubation with putative inhibitory molecules like IL-10, TGF-b,
and VEGF were not able to revert or modulate this response. The

only exceptions to this observation were activated CD4+ T cells

which were co-incubated with blocking antibodies against immune

checkpoint molecules, such as PD-1 or CTLA-4, as these cells

exhibited a close transcriptional relationship to resting CD4+ T

cells in the PCA. Interestingly, when plotting first and second

principal components, CD3/CD28-activated CD4+ T cells were

separated into two populations. Activated CD4+ T cells

st imulated by plate-bound CD3 and soluble CD28 in

combination with TH1- and TH2-polarizing cytokines formed a

distinct population (26), while CD4+ T cells stimulated with CD3/

CD28-coated beads were clearly separated from this population

(10). Within the population of CD4+ T cells not activated by CD3/

CD28, there was also a separation detectable between cells cultured

in vitro for more than 12 hours and cells harvested directly after or

within 12 hours after isolation. Unexpectedly, Treg cells were

grouped together with either the unstimulated or short-term

cultivated cells, further supporting that the major difference

between samples was driven by activation. In summary, using

multidimensional scaling we were able to identify several distinct

sample clusters within the dataset, with TCR/CD28 activation being

the main driver of biological variance while lineage defining aspects,

e.g. differences between Tconv and Treg cells only contributing a

small portion to the overall variance.
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FIGURE 1

Data dimensionality reduction reveals transcriptional relationships between different CD4+ T cell samples (A) Visualization of the dataset by depicting
the first (PC1) and the second principal components (PC2) of the computed PCA annotated with all 48 conditions. (B) Z-score normalized matrix of
hierarchically clustered Pearson’s correlation coefficients between CD4+ T cell conditions. Conditions were annotated according to Table S1.
Clusters of transcriptional similar CD4+ T cell conditions were annotated according to the predominant stimulation among the conditions. (C) PCA
annotated according to the predominant stimulation among the conditions. (D) Visualization of the dataset using t-SNE. (E) Visualization of k-means
clusters combined with hierarchical clustering. As input to k-means clustering served expression differences (fold changes with resting Tconv cells as
reference), which were calculated for the most variable genes within the dataset. Z-score normalized fold changes are indicated by the coloring
(blue to red). Conditions were annotated according to Table S1.
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3.2 Reduction of data complexity using
correlation coefficient matrices identifies
subclusters of transcriptionally related
CD4+ T cells

Since the PCA indicated that the samples within the dataset

exhibited different degrees of transcriptional relationships and thus

formed distinct clusters, we reasoned that we could reduce the

complexity of the dataset by grouping transcriptionally related

samples together and performing further analyses using these

clusters, instead of analyzing each sample separately. To this end,

we computed Pearson’s correlation coefficients between all conditions

and visualized the results in a correlation coefficient matrix (CCM)

combined with hierarchical clustering (HC) (Figure 1B). This analysis

revealed that the samples clustered in a bipolar fashion, grouping

activated separately from non-activated CD4+ T cells, supporting the

observation that CD3/CD28 activation caused the biggest variance

within the dataset. However, the agglomerative nature of HC enabled

us to refine the bipolar structure of the dataset by identifying several

sub-clusters. More specifically, we found that the complete dataset

was characterized by at least 11 clusters. Next, cluster names were

selected representing the majority of T cell conditions within the

clusters (Table S2) andmapped to the PCA (Figure 1C). For example,

the cluster on the right hand side was mainly composed of untreated

CD4+ T cells and hence was termed ‘Tconv cell resting’. As this cluster

represented the cell state with the lowest degree of activation within

the dataset, we were surprised that these cells were most closely

related to Treg cells.

To substantiate the results obtained by the hierarchical

clustering of the CCM, we visualized the data structure by

utilizing t-Distributed Stochastic Neighbor Embedding (tSNE) as

a non-linear data reduction approach and colored the samples

according to their assignments in the respective CCM clusters

(Figure 1D). We observed that the tSNE clusters nicely

overlapped with the CCM clusters. Moreover, we also

corroborated the validity of the CCM clusters by applying K-

means clustering (Figure 1E). Taken together, the samples within

the dataset were successfully grouped into biologically informative

clusters based on their transcriptional profile.
3.3 Identification of common
denominators of CD4+ T cell functionality
using reverse network engineering

To identify the key genes for general CD4+ T cell functionality,

we took advantage of reverse network engineering (RNE). To obtain

a robust interaction network, we generated a consensus network by

combining the following network inference methods: ARACNe

(Algorithm for the Reconstruction of Accurate Cellular

Networks), CLR (Context Likelihood of Relatedness), GENIE3

(Gene Network Inference with Ensemble of Trees), Pearson’s
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correlation networks, and TINGe (Tool for Inferring Network of

Genes). Next, we combined the generated networks and used the

10,000 top ranking interactions of the resulting consensus network

for further analysis (remaining gene/node number: 3845). As

expected, given the scale-free nature of the network, a small

percentage of genes accounts for most of the connections and

thus are referred to as hub genes. We defined as major hub genes

the largest 20% of hubs in the network which collectively participate

in 7,948 interactions (Figure 2A). As we were interested in

transcriptional key regulators of CD4+ T cell functionality, we

used the TFCat database (49) for filtering the consensus network.

Among the top 20% hub genes, we identified 23 common TFs and

additional 43 zinc finger (ZNF) TFs (e.g. ZNF454, ZNF549, and

ZNF136). Interestingly, we found that the TFs tended to form

clusters within the network, suggesting a complex regulatory TF

network in which TFs were strongly co-regulated (Figure 2A). To

further reduce the list of important TFs for CD4+ T cell

functionality, we applied two gene prioritization tools, ToppGene

and Endeavour, on the top 20% hub-genes. As internal validation

gene set, we decided to use the transcriptional regulators TCF7,

SATB1, GATA3 and EZH2, which were already described to be

important during T cell development, chromatin-organization, T

cell differentiation, and T cell homeostasis, respectively (10, 50–53).

Of note, 11 transcription factors (TFs) were found among the top 15

highest prioritized genes (Figure 2B). Reasoning that of those, the

most highly expressed TFs within the dataset are the most relevant

for CD4+ T cell functionality, we identified six central TFs (CREB1,

E2F3, AHR, STAT1, NFAT5 and NFATC3). For all of them,

important roles in T cell functionality have already been

described (54–59). To investigate genes which were presumed to

be regulated by these TFs, we used the top 20% hub genes as input

to iRegulon. As expected, for all six TFs, a relatively high prediction

score (normalized enrichment scores (NES) > 2.5) was computed

which indicated that a multitude of the top 20% hub genes

contained binding-motifs for these TFs. Next, we generated a

network of the six TFs and their putative targets (Figure 2C).

Remarkably, the network was highly interconnected and showed

binding of the TFs between each other, supporting the idea of a

sophisticated regulatory network built by TFs which control the

central CD4+ T cell functionality. To link the genes within the

network to biological information, we performed Gene Ontology

Enrichment Analysis (GOEA) for each TF together with its direct

neighbors (Figure 2D, Table S3). Most of the enriched GO-terms

were related to regulation of metabolism and transcription, clearly

supporting that metabolic and transcriptional adaptation are key

events upon T cell activation (60, 61). In addition, NFAT5 and

NFATC3 were found to regulate genes associated with immune

response which is in line with previous observations that NFAT

family members are critically involved in the induction of a T cell

mediated adaptive immune response (54, 57, 62). Taken together,

RNE analysis identified six putative central transcriptional

regulators of CD4+ T cell functionality.
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3.4 Identification of genes specifically
associated with distinct CCM clusters

After identifying common denominators of T cell biology, we

wanted to identify the key genes specific for the respective CCM

clusters. Therefore, we compared gene expression of each of the

specific CCM clusters with resting Tconv cells. This resulted in a total

of 2,385 genes which were differentially expressed (DE) (|FC| > 2,

FDR adjusted p-value < 0.05) between ‘Tconv cell resting’ and all of
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the other CCM clusters in at least one condition (Table S4). To

visualize the overlap between conditions we used an UpSet plot and

observed distinct sets of DE genes for each condition but also

overlap between the differentially expressed genes across conditions

(Figure 3A). Therefore, we attempted to reduce the complexity of

this analysis to identify groups of genes specific for each CCM

cluster and applied Self-Organizing-Map (SOM) clustering to

identify specific genes within each CCM cluster of samples

(Figure 3B). Noteworthy, the color-coding of this clustering
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FIGURE 2

Reverse network engineering to infer common CD4+ T cell genes. (A) Visualization of the consensus network obtained by the combination of five
different RNE-methods. TFs found among the top 20% hub genes were highlighted (common/regular TFs in red; ZNF-TFs in blue). Node size reflects
degree of connectivity. (B) Top 23 highest interconnected common TFs were ranked according to Gene Prioritization (GP) among the top 20% hubs.
Mean expression (log2) from each cluster is displayed as a heatmap. Degree refers to degree of connectivity. (C) Subnetworks of the six highest
expressed TFs from the top 11 GP-ranked hubs. Direct targets (predicted by iRegulon) surround corresponding TFs. Node size reflects degree of
connectivity.
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method revealed that every CCM cluster was characterized by a

specific module-correlation structure. In addition, information

about the relationships of certain CCM clusters visible in HC of

CCM clusters was also preserved in SOM clustering. For example,

all CCM clusters containing Treg cells (‘Treg cell resting’ and ‘Treg

cell CD3/IL-2’) exhibited high correlation with modules which were

not associated with any of the other CCM clusters (Figure 3B).

Examination of these modules unveiled Treg cell specific genes such

as FOXP3 but also potentially novel genes (e.g. mesenchyme

homeobox 1 (MEOX1)) which have not yet been described in the

context of Treg cells. We also investigated modules, which were only

correlated with activated CD4+ T cells (‘Tconv cell act. 8h’, ‘Tconv cell

act. 20h’ and ‘TH1/TH2’). As expected, these modules mainly

contained genes associated with T cell activation (e.g. NFKB1,

INFG, TNF and ETS2).

To further investigate CCM-cluster specific gene sets, we

applied weighted gene co-expression network analysis (WGCNA),

which defines transcriptional modules based on the expression-

correlations among genes across all samples. We identified 32

distinct modules containing 14 to 376 genes per module (Table

S5). The expression data from all genes within a certain module

were used to calculate its module eigengene (ME, the first principal

component of a module), which were then correlated to the 11

clusters and visualized in a heatmap (Figure 3C). To identify

modules containing genes which were most characteristic for a

certain CCM cluster, we utilized WGCNA modules to perform

gene-set enrichment analysis (GSEA). Therefore, we calculated

NES, which were plotted against enrichment p-values in a

Volcano plot. As representatives of the complete GSEA results,

we only depicted Volcano plots for ‘Tconv cell act. 20h’, ‘Tconv cell

TGF-b’, ‘Treg cell CD3/IL-2’, and ‘Treg cell resting’ (Figure 3D). As

expected, among the modules with the highest positive NES and

lowest p-value, we found those modules that were also most highly

correlated in the WGCNA analysis to the respective CCM cluster.

Next, we used the genes within the WGCNA modules with the

highest ME-to-cluster correlation for further analysis. Since DE

genes were utilized as input for WGCNA, we visualized the module

genes by plotting the gene expression ratios between the respective

cluster and ‘Tconv cell resting’ against p-values obtained by

performing FDR-adjusted Student t-tests. The resulting Volcano

plot of module genes correlated with ‘Tconv cell act. 20h’ revealed an

enrichment of genes associated with tumor necrosis factor (TNF,

LTA, TNFRSF4, TNFRSF18) and chemokine receptor ligands

(CCL20, CCL4, CCL, 3, CCL3L1), whose expression is known to

be increased upon T cell activation (Figure 3E). In addition, we

found key molecules for Treg cell functionality such as FOXP3, EOS,

IL1R1, CTLA4, and HPGD among the WGCNA module genes

correlated with ‘Treg cell CD3/IL-2’. Interestingly, we also identified

a transcriptional regulator, MEOX1, which was most significantly

expressed in clusters containing stimulated Treg cells (Figure 3E)

and has not been associated with Treg cells to date. Plotting the

expression of MEOX1 across all stimulation conditions

independent of CCM clustering, we identified MEOX1 expression
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to be highly upregulated only in condition 48, which corresponds to

activated Treg cells, while its expression was lower in resting Treg

cells (Figure 3F).

In summary, SOM clustering and WGCNA analysis unveiled

CCM-cluster associated gene sets which were important for the

biological characteristics of the respective CD4+ T cells. Moreover,

in-depth examination of WGCNA modules associated with the

cluster of ‘Treg cell CD3/IL-2’ enabled us to identify MEOX1 as a

novel TF associated with Treg cells.

3.5 Further characterization of MEOX1
expression confirms its Treg cell specificity

To validate Treg cell specific expression of MEOX1, we

examined MEOX1-expression in an additional dataset (11). In

this microarray experiment, the genome-wide expression of genes

was measured by performing a high-resolution time-series analysis

during the activation process of human Treg cells and Tconv cells by

treating the cells for up to 360 min with a combination of CD3/

CD28-coated beads and IL-2. At each of the measured time-points,

we were able to observe a higher expression of MEOX1 in Treg cells

than in Tconv cells (Figure 4A), similar to our own data, supporting

increased MEOX1 expression in Treg cells and demonstrating that

the combination of CD3/CD28-coated beads and IL-2 can maintain

high expression levels of MEOX1 over 6 hours.

To confirm specificity of MEOX1 expression in Treg cells, we

performed qRT-PCR for MEOX1 in other immune cells

(Figure 4B). Expression of MEOX1 was solely detectable in CD4+

T cells, with significantly higher expression in Treg cells and highest

expression detectable in Treg cells cultured in the presence of IL-2.

We observed that the IL-2 dependent upregulation of MEOX1

mRNA is dose-independent and that a concentration of as little as

10 U/ml IL-2 is sufficient to induce a significant upregulation of

MEOX1 (Figure S1A). This IL-2 dependent upregulation reaches its

peak at around 12 hours post stimulation and then continually

declines in a dose-independent manner (Figure S1A). This finding

is in agreement with gene expression data from the public domain

e.g. NextBio (Figure 4C) and VisuTranscript (Figure S1B), clearly

indicating that MEOX1 is highly expressed in Treg cells but not in

other immune cells. Next, we asked how MEOX1 is expressed in

expanded Treg cells and could not observe an increase in MEOX1

expression in comparison to freshly isolated Treg cells (Figure S1C).

Next, we reasoned that the specificity of MEOX1 expression

could also be confirmed using network inference. To this end, we

applied MCL (Markov Clustering Algorithm) to the consensus

network obtained by the RNE and selected the generated sub-

network which contained FOXP3 (Figure 4D). Interestingly, this

network comprises only three genes: FOXP3, HPGD and MEOX1.

As HPGD is also known to be important in Treg cells (12), the

network obtained by MCL further supported the hypothesis of Treg

cell specific MEOX1 expression.

Next, we validated MEOX1 expression at the protein level by

western blotting. To this end, we generated a MEOX1
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FIGURE 3

Identification of genes associated with the identified CCM clusters (A) UpSet plot of calculated DE genes across the CCM clusters. DE genes found in
the same clusters are binned and the size of the bins is represented as a bar chart. At the bottom, dots indicate which CCM clusters contained and
shared these DE genes. Only bins with >2 DEgenes are depicted. (B) SOM-clustering using the most variable genes within the dataset as input.
Correlation of SOM-cluster genes to CCM-defined clusters are indicated by z-scaled color coding; blue indicates low correlation and red indicates
high correlation. SOM clusters specific for either Treg cells or activated CD4+ T cells are marked with a black frame; exemplary genes within these
clusters are displayed. (C) WGCNA heatmap showing the correlation of the module eigengene (first principal component; ME) to the traits (CCM
clusters). Blue means negative correlation and red means positive correlation. (D) Volcano plots of normalized enrichment scores (NES) and
enrichment p-values based on GSEA using WGCNA modules defined in (C). Shown are data for the clusters ‘Tconv cell act. 20h’, ‘Tconv cell TGF-b’,
‘Treg cell CD3/IL-2’ and ‘Treg cell resting’. Red circles show significantly enriched gene sets; blue circles show significantly depleted gene sets. Gene
sets which exhibited the highest correlation to a certain cluster in WGCNA are indicated by red font. (E) Volcano plots genes within the two WGCNA
modules with the highest correlation to the CCM cluster ‘Tconv cell act. 20h’ and ‘Treg cell CD3/IL-2’. Depicted are the logarithmic gene ratios (‘Tconv
cell act. 20h’ or ‘Treg cell CD3/IL-2’ versus ‘Tconv cell resting’) and logarithmic p-values obtained by t-test. Red circles show upregulated genes (FC
>2; p-value <0.05); blue circles show downregulated genes (FC <-2; p-value <0.05). On the right side of each plot, all module genes are shown; on
the left side, transcriptional regulators (TRs) among the respective module genes are shown. Genes of interest are highlighted. (F) Microarray
expression values of FOXP3 and MEOX1 across the CD4+ T cell conditions within the dataset. Conditions are colored according to the identified
CCM clusters and annotated according to Table S1. Dashed lines indicate the computed background value of the microarray dataset.
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overexpressing vector which we transfected into HEK293 cells to

show that the antibody specifically binds MEOX1 (Figure S1D).

While we did not detect MEOX1 expression in steady-state Treg

cells, we observed a significant upregulation of MEOX1 in IL-2-

stimulated Treg cells by immunoblotting (Figures 4E). We

confirmed these data by flow cytometry, where we showed a

significant upregulation of MEOX1 in Treg cells stimulated

overnight with IL-2 compared with Tconv cells (Figures 4F).
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Based on these results we further asked if Tconv cells themselves

can contribute to the higher expression of MEOX1 in Treg cells. To

this end, we incubated Treg cells with supernatants from activated

Tconv cells and could observe increased MEOX1 expression

(Figure 4G). To demonstrate that IL-2 is contributing to the

increased MEOX1 expression, we blocked IL-2 by incubating cells

with anti-IL-2Ra and anti-IL-2 antibodies and could observe a

partial reduction of the increased MEOX1 expression, supporting
A B
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C

FIGURE 4

Assessment of Treg cell specific expression of MEOX1 (A) Expression of MEOX1 in activated Treg cells and Tconv cells over a time period of 360 min
(n=2; dataset: GSE11929). (B) MEOX1 gene expression in different immune cells assessed by qRT-PCR and normalized to B2M (n=3). *p < 0.05
(paired Student’s t-test), ** p < 0.01 (paired Student’s t-test). (C) MEOX1 gene expression in different immune cells according to the NextBio
database. (D) Application of Markov Clustering Algorithm ‘MCL’ to the consensus network generated in Figure 2. Visualized is a subnetwork
consisting of only three genes (FOXP3, HPGD, and MEOX1). (E) Analysis of MEOX1 protein expression in either unstimulated Treg cells or in Treg cells
stimulated with 100 U/ml IL-2 overnight by immunoblotting. (F) MFI (left) and exemplary histogram (right) of MEOX1 expression in human Treg cells
and naïve Tconv cells. PBMCs were isolated from buffy coats and stimulated overnight with 100 U/ml IL-2 (n=3 of different donors). Treg cells (red)
were gated on size, singlets, live, CD4+, CD3+, FOXP3+ (Clone 206D), CD45RA- and Tconv cells (blue) were gated on size, singlets, live, CD4+, CD3+,
FOXP3- (Clone 206D), CD45RA+. Secondary antibody controls are depicted in light (Treg cells) and dark grey (Tconv cells). *p < 0.05 (paired Student’s
t-test). (G) MEOX1 gene expression in Treg cells (red), Treg cells stimulated with IL-2 (light ref), Treg cells incubated with supernatant from stimulated
Tconv cells (rose) and Treg cells incubated with supernatant from stimulated Tconv cells in combination with anti-CD25 and anti-IL-2 antibodies (grey)
assessed by qRT-PCR and normalized to B2M. Data is from one representative experiment of three (mean and s.e.m.) with cells derived from
different donors. *p < 0.05 (two-way ANOVA).
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the idea that IL-2 derived from Tconv cells can contribute to the

increased MEOX1 expression in Treg cells. Taken together, we

demonstrate that MEOX1 is expressed in Treg cells and

upregulated in activated Treg cells through IL-2.
3.6 Single-cell RNA-seq predicts a
close co-regulation of MEOX1 and
FOXP3 expression

To investigate the expression of MEOX1 in more detail, we

reanalyzed a recently published single-cell RNA-seq dataset that

comprised human CD4+ and CD8+ T cell populations from non-

small-cell lung cancer patients (28). After reconstruction of the t-

SNE representation and the clustering of the original publication

(Figure 5A), we visualized the expression of MEOX1. As expected,

we found a trend towards higher expression of MEOX1 in the

clusters “CD4-C8-FOXP3” and “CD4-C9-CTLA4” (Figure S3A).

To validate this observation, we visualized the density of MEOX1-

expressing cells in a contour plot and found the highest cell-density

in the aforementioned clusters (Figure 5B). Interestingly, the

contour plot for MEOX1 was highly reminiscent of the contour

plot for FOXP3-expressing cells (Figure 5B), indicating a close co-

expression of the two genes on single-cell level, which was also

visible when plotting expression for both genes on individual cells

(Figure S3B). Indeed, when assessing the dataset for genes

correlated with MEOX1 expression, the top ranked gene is

FOXP3 followed by typical Treg cell-markers, such as IL2RA,

IL1R1, FANK1, HPGD and CTLA4 (Figure 5C). Moreover, when

module genes associated with the ‘Treg cell CD3/IL-2’ cluster (with a

FC > 2 between ‘Treg cell CD3/IL-2’ and ‘Tconv cell resting’) were
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visualized in the correlation plot, we found a tendency towards

positive correlation values, showing that the results obtained on

bulk-scale can be reproduced on single-cell level (Figure 5C). In

summary, the analysis of single-cell RNA-seq data substantiated the

hypothesis of Treg cell specific MEOX1 expression and indicated a

close correlation with the expression of FOXP3.
3.7 Epigenetic regulation of MEOX1
expression in CD4+ T cells

One important aspect of the specification of Treg cells and their

transcriptional regulation are epigenetic mechanisms (63).

Therefore, we determined whether differential chromatin

accessibility in human Treg and Tconv cells at the genomic

MEOX1 locus contributes to the differential expression of

MEOX1. Analysis of chromatin accessibility using ATAC-seq

(assay for transposase-accessible chromatin using sequencing)

revealed a similarly open chromatin landscape in Treg and Tconv

cells (Figure 6A), supporting that additional mechanisms might

regulate expression of MEOX1 in Treg cells. An additional layer of

epigenetic regulation orchestrating cell type-specific gene

expression are permissive and repressive histone modifications,

particularly in close proximity to promoter regions. For example,

a combination of trimethylation of H3K4 (H3K4me3) and

acetylation of H3K27 (H3K27ac) indicates open chromatin states

with accessible promoters and active transcription. To further

extend on the epigenetic regulation of MEOX1 expression, we

made use of publicly available datasets of ChIP-seq experiments

which were provided by the NIH Roadmap Epigenomics

Consortium (46). We observed that Treg cells have a higher tag-
A B

C

FIGURE 5

MEOX1 expression in single-cell RNA-seq data comprising different T cell populations (A) Visualization of single-cell RNA-seq data (GSE99254) in a
t-SNE plot. Cells are colored according to the cell labels obtained by Guo et al. (28). Accumulation of cells with the same label are highlighted with
colored background. (B) Contour plots showing the areas in the t-SNE plot of T cell clusters from GSE99254 with highest expression of FOXP3 and
MEOX1. Accumulations of cells with the same cell label according to (A) are indicated by gray circles. (C) Pearson’s correlation between MEOX1 and
all other genes across the CD4+ T cells in the single-cell RNA-seq dataset. Genes are grouped according to their respective correlation values.
Genes found in the ‘Treg cell CD3/IL-2’-associated WGCNA modules ‘26’ and ‘32’ (according to Figures 3B–D) are highlighted in light red and their
accumulation in the ordered genes is indicated by the histogram at the bottom. A magnification of the 25 genes with the highest expression
correlation to MEOX1 is additionally shown in the box at the top.
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count for both H3K4me3 and H3K27ac at the MEOX1 promoter

compared with Tconv cells, indicating a more permissive epigenetic

landscape at the promoter site in Treg cells which consequently eases

the transcription of this gene, as evidenced by increased H3K36me3

at the MEOX1 gene body in Treg cells (Figure 6B). Analysis of

repressive histone marks (H34K9me3 and H3K27me3) supports the

notion that the activation of the transcription of MEOX1 in Treg
Frontiers in Immunology 16
cells is an active process mediated mainly by events promoting

permissive modifications of histone proteins and TF activity as we

did not detect significant trimethylation of any of the two repressive

marks over the gene body in Tconv cells (Figure 6B).

As DNA methylation has been reported as an additional

important layer of Treg cell specific gene expression, we

reanalyzed publicly available datasets (64, 65) and identified two
A

B
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C

FIGURE 6

Epigenetic state of the MEOX1 gene locus in CD4+ Tconv and Treg cells (A) Open chromatin assessment of the MEOX1 locus in Treg and Tconv cells
using ATAC-seq data. (B) ChIP-seq data of histone modifications at the human genomic MEOX1 locus in Treg and Tconv cells (data obtained from the
NIH Roadmap Epigenomics Mapping Consortium). Data on epigenetic regulation of the MEOX1 locus were extracted from a publicly available
dataset on genome-wide histone modifications in human Tconv and Treg cells (46). ChIP sequencing analysis of Tconv and Treg cells for the genomic
MEOX1 locus with antibodies specific for the permissive histone modifications H3K4me3 and H3K27Ac, the transcription-associated mark
H3K36me1, the enhancer-associated mark H3K4me1, and the repressive histone modifications H3K27me3 and H3K9me3. (C, D) Methylation of
individual CpG motifs within two CpG-rich regions in upstream region of the genomic MEOX1 coding sequence for freshly isolated Tconv and Treg
cell as well as Tconv and Treg cells stimulated overnight with 100 U/ml IL-2. Each box represents an individual CpG motif after normalization and
quantification of methylation signals from pyrosequencing data by calculating ratios of T and C signals at CpG sites. The methylation status of
individual CpG motifs is color coded according to the degree of methylation at that site. The color code ranges from yellow (0% methylation) to
violet (100% methylation) according to the color scale on the right.
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CpG islands within the promoter region of MEOX1 which were

methylated in Tconv cells but showed significantly lower levels of

methylation in Treg cells (Figure 6C). To confirm this observation,

we isolated Treg and Tconv cells from peripheral blood, stimulated

them for 24 hrs with IL-2 and assessed the methylation state of these

regions by pyrosequencing (Figures 6D, S4). This analysis suggests

that transcription of MEOX1 in Treg cells is promoted through

demethylation of the promoter region. Taken together, the

epigenetic analyses of the promoter region of MEOX1 revealed an

open chromatin structure with an activating histone landscape and

demethylation of promoter-associated CpG islands in Treg cells but

not in Tconv cells.
3.8 Identification of FOXP3 as a putative
upstream regulator of MEOX1 expression

As a next step, we investigated the transcriptional regulation of

MEOX1. We postulated that potential master regulators upstream

of this TF could be identified using TF-binding prediction tools

based on motif-search algorithms such as iRegulon. As the input

into this algorithm, we used WGCNA module-genes correlated

with ‘Treg cell CD3/IL-2’ cluster. This analysis identified 91 TFs with

enriched binding motifs within this gene set including FOXP3 - the

lineage-defining TF for Treg cells (Table S6). We observed that

several of the genes within this cluster, including MEOX1, exhibited

FOXP3-binding motifs in their promoter region (Figure 7A),

suggesting that FOXP3 is a direct regulator of MEOX1

expression. To confirm this hypothesis, we re-analyzed our ChIP-

seq data for genome-wide detection of FOXP3 binding sites (10, 25),

in which we detected an enrichment of FOXP3 in the promoter

region of MEOX1 (Figure 7B).

FOXP3-mediated regulation of MEOX1 expression was further

supported by re-assessing additional datasets combining DNA

methylation and FOXP3 ChIP-seq data of human Treg cells (27,

66) . Recent work has highl ighted the occurrence of

hypomethylation of CpG-rich regions within FOXP3-binding

regions in the genome (64, 66) and we identified MEOX1 as one

of these genes showing FOXP3 binding at a hypomethylated

promoter region (Figure 7C).

To determine whether FOXP3 is directly controlling MEOX1

expression, we performed siRNA-mediated knock-down of FOXP3

in human Treg cells. This resulted in significantly reduced FOXP3

expression levels (Figures 7D, S5A) and reduced suppressive

function (Figure S5B). When we now assessed MEOX1

expression after FOXP3 silencing, we observed significantly lower

levels of MEOX1 mRNA (Figure 7D), supporting that MEOX1

expression is directly induced by FOXP3.

Next, we questioned whether MEOX1 also contributed to the

reciprocal regulation of FOXP3 expression in Treg cells. Therefore,

we also silenced MEOX1 in Treg cells (Figure 7E). While we detected

a clear downregulation of MEOX1, we could not observe a direct

influence of MEOX1 on FOXP3 expression (Figure 7E). To

determine how MEOX1 influences potential downstream target

genes in Treg cells independent of FOXP3, we performed prediction

of potential MEOX1 binding to genes specific for the cluster “Treg
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cell CD3/IL-2”. We identified two potential MEOX1 target genes

(RPL27L, PIM1) (67, 68). When we assessed their expression

following knockdown of MEOX1 or FOXP3 in Treg cells, we

observed a MEOX1-specific upregulation of RPS27L (Figure 7F)

and downregulation of PIM1 (Figure S6) independent of FOXP3,

supporting the notion that MEOX1 can act as a TF supporting the

transcriptional make-up of human Treg cells as e.g. for PIM1 has a

destabilizing function for FOXP3 as recently described (68).

Considering the importance of FOXP3 for Treg cell suppressive

capacity, we investigated whether perturbing MEOX1 expression

would also impact Treg cell function. In line with our previous

findings, knockdown of MEOX1 decreased the capacity of Treg cells

to suppress Tconv cell expansion in vitro demonstrating a functional

role of MEOX1 in Treg cell biology downstream of FOXP3 co-

governing part of the classical Treg cell properties (Figures 7G, H).

In summary, we used several bioinformatic approaches to

identify MEOX1 as a potential novel TF important for Treg cells

and unveiled FOXP3 as one of the upstream regulators of MEOX1,

which further corroborates the observation of a specific expression

of MEOX1 in human Treg cells.
4 Discussion

In the present study we analyzed the transcriptome of human

CD4+ T cells by taking advantage of a highly diverse dataset. Using

data dimensionality reduction methods, we observed that the

highest transcriptional difference within the dataset can be

attributed to the presence or absence of CD3/CD28 activation of

CD4+ Tconv cells. Interestingly, these methods also revealed an

unexpected close relationship between resting Treg cells and

resting Tconv cells. In several recent reports it was shown that

several hundreds of transcripts are differentially expressed

between Treg cells and CD4+ T cells, by which these two cell types

can be clearly defined as distinct populations at the transcriptional

level (10–12, 27). Noteworthy, these reports often focused on one-

to-one comparisons between resting CD4+ T cells and Treg cells (11,

27). This approach has the tendency to overestimate the number of

cell-type specific genes, as it has become evident over the last years

that activation and differentiation of T cells can induce a broad

spectrum of genes initially characterized as Treg cell specific, e.g.

CTLA-4. Hence, to our knowledge, the present study is one of the

first which explicitly shows the close relationship of the

transcriptional profile of human resting Treg cells and resting

Tconv cells, but also describes the distinct transcriptional modules

for each subtype taking the enormous differences in gene expression

into account that can be induced by T cell activation.

Global analysis of the dataset using reverse network engineering

revealed CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3 as

putative master regulators of CD4+ T cell functionality.

Interestingly, we found that most of these genes were located in

dense clusters of highly interconnected TFs within the consensus

network. One limitation to this approach is that the importance of

some of the classic T cell-related transcription factors, such as NF-

kB and AP-1, as multi-protein complexes, cannot be properly

captured, as their components besides FOS were not enriched in
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the analysis. Noteworthy, we observed several of these TF-enriched

clusters which were mainly characterized by an accumulation of

ZNF TFs. In regard to these observations, we postulate that the

regulatory network of CD4+ T cells is defined by a highly

interconnected TF-network consisting of a few master regulators

and a plethora of adjacent ZNF TFs. This is in agreement with the

observation that most of the predicted master regulators exhibit

binding-motifs in their promoter region for one another, indicating

a sophisticated mutual regulation of these TFs (69).

To analyze gene sets which were characteristic for clusters of

transcriptionally related CD4+ T cells, we applied WGCNA and

validated the calculated gene sets using GSEA. Besides the

identification of cluster-specific transcriptional programs which

have already been described to be central for T cell functionality

(e.g. NFKB1 and TNF-related genes found in clusters associated with

CD4+ T cell activation), gene set analysis led to the identification of

MEOX1 in a cluster containing genes mainly expressed in Treg cells

stimulated with CD3 and IL-2. Next, we could show that IL-2
Frontiers in Immunology 18
signaling can upregulate expression of MEOX1 in human Treg cells

while CD3/CD28 stimulation even in the presence of IL-2 is able to

maintain the high expression of MEOX1 compared to Tconv cells.

Our data further indicate that in humans FOXP3 is the direct

transcriptional regulator of MEOX1 expression. Although FOXP3

is crucial for the suppressive function of Treg cells, ectopic expression

of FOXP3 in humanCD4+ Tconv cells can result in induction of hypo-

responsiveness and suppression of IL-2 production but might not

always lead to the acquisition of suppressor activity which is

characteristic for Treg cells. This is in agreement with previous

reports describing CD4+ T cells in humans which upregulate the

expression of FOXP3 without the acquisition of a suppressive

capacity (70, 71). These studies indicated that in humans, factors in

addition to FOXP3 are required for the generation of Treg cell

function. To this end, we introduce MEOX1 as such a new

candidate TF. The complexity of the interplay of FOXP3 with such

additional factors is highlighted by the fact that expression of RPS27L

as downstream target of MEOX1 is upregulated after knockdown of
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FIGURE 7

FOXP3 as upstream regulator of MEOX1 expression. (A) Module genes correlated with ‘Treg cell CD3/IL-2’ which exhibit a FOXP3 binding-motif in
their promoter region. Genes were colored according to their respective fold change (reference: ‘Tconv cell resting’). (B) FOXP3 ChIP tiling array data
from human expanded cord-blood Treg cells. Data were analyzed with MAT and overlayed to the MEOX1 locus to identify binding regions (p < 10-5

and FDR < 0.5%). Data are representative of two independent experiments with cells derived from different donors. (C) Overlay of MeDip-seq (66)
and FOXP3 ChIP-seq data (SRA : SRP006674) for the human genomic MEOX1 locus. FOXP3 binding as well as DNA methylation is depicted for Treg
(red) and Tconv cells (blue). (D) mRNA expression of FOXP3 and MEOX1 in Treg cells treated with scrambled (scrmbld, left) or FOXP3 specific (right)
siRNA (E) mRNA expression of FOXP3 and MEOX1 in Treg cells treated with scrambled (left) or MEOX1 specific (right) siRNA (F) mRNA expression of
RPS27L in Treg cells treated with scrambled, MEOX1 or FOXP3 specific siRNA. (D–F) Data were first normalized to B2M expression and shown in
relation to donor-specific scrambled mRNA expression. (D,E) *p < 0.05 (Student’s t-test). (F) *p < 0.05 (two-way ANOVA). (D–F) Data are
representative of three to five independent experiments (mean ± s.e.m.), each with cells derived from a different donor. (G, H) Suppression of
allogeneic CD4+CD25- Tconv cells labelled with the cytosolic dye CFSE by human Treg cells transfected with siRNA targeting MEOX1 (MEOX1) or non-
targeting siRNA (scrmbld) presented as CFSE dilution in responding Tconv cells cultured with CD3/CD28/anti-MHC-I antibody-coated beads and Treg
cells at a ratio of 1:1 (G), and as relative suppression (H). Data is from one representative experiment of three with cells derived from different
donors. *p < 0.05 (paired Student’s t-test). n.s. = not significant.
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FOXP3 in Treg cells. One further layer required for this fine-tuned

transcriptional response of CD4+ T cells dedicated towards the Treg

cells fate is the respective epigenetic chromatin landscape. Here, we

could show that while accessibility at the promoter region of this TF

in Tconv cells is not different to Treg cells, both histone landscape and

DNA methylation pattern are distinct and might be responsible of

the specific expression of MEOX1 in Treg cells. In addition, this

epigenetic configuration might explain why ectopic FOXP3 is not

able to induce bona fide Treg cells if expression of TFs like MEOX1 is

prevented through epigenetic modifications.

Under the assumption that MEOX1 has an important role in

regulating Treg cell function, we could show that knockdown of

MEOX1 in Treg cells impacts Treg cell suppressive activity.

Furthermore, we could uncover that IL-2, potentially derived from

stimulated CD4+ Tconv cells, but also other IL-2 producing cells, can

upregulate MEOX-1 expression in Treg cells with the contribution of

other factors including costimulation still to be uncovered. With a

recently published report of MEOX1 being important for the

acquisition of a tumor-infiltrating Treg cell phenotype (24) it is

conceivable to speculate, that MEOX1 in humans is a key factor

for the transcriptional acquisition of a Treg cell effector phenotype

downstream of IL-2 signaling. Taken together, by combining

transcriptome analysis of a large dataset of T cell states with

computational analysis including TF prediction, single-cell RNA-

seq data of T cells, assessment of epigenetic regulation as well as in

vitro knockdown experiments, we establish MEOX1 as a novel Treg

cell-specific TF.We propose that such T cell state-associated TFs and

effector molecules can be identified in other modules established in

this publicly available dataset of human T cell states.
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