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The human leukocyte antigen (HLA) proteins are an indispensable component of

adaptive immunity because of their role in presenting self and foreign peptides to

T cells. Further, many complex diseases are associated with genetic variation in

the HLA region, implying an important role for specific HLA-presented peptides

in the etiology of these diseases. Identifying the specific set of peptides

presented by an individual’s HLA proteins in vivo, as a whole being referred to

as the immunopeptidome, has therefore gathered increasing attention for

different reasons. For example, identifying neoepitopes for cancer

immunotherapy, vaccine development against infectious pathogens, or

elucidating the role of HLA in autoimmunity. Despite the tremendous progress

made during the last decade in these areas, several questions remain

unanswered. In this perspective, we highlight five remaining key challenges in

the analysis of peptide presentation and T cell immunogenicity and discuss

potential solutions to these problems. We believe that addressing these

questions would not only improve our understanding of disease etiology but

will also have a direct translational impact in terms of engineering better vaccines

and in developing more potent immunotherapies.

KEYWORDS

HLA-II & autoimmunity, immunogenicitiy, TCR - T cell receptor, mass-spectrometry
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Introduction

The human leukocyte antigen class II (HLA-II) proteins are a class of glycoproteins

that are mainly expressed on the surface of antigen presenting cells (APCs) where they

present peptides to CD4+ T cells. These peptides are derived from within the APCs itself,

e.g. through autophagy (1), or from the cellular microenvironment, e.g. through receptor-

mediated endocytosis (2) and macropinocytosis (3). As a result, APCs are able to present

self-peptides together with foreign peptides, e.g. pathogens-driven peptides, to T cells.

Thus, by identifying and analyzing the set of peptides presented on the surface of APCs, the
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set of potential T cell epitopes can be narrowed down considerably

into a manageable set of peptides and proteins. Nonetheless, HLA-

II genes are extremely polymorphic, with most of the observed

genetic variants located inside the peptide binding pocket,

indicating that different HLA-II alleles encode for proteins that

present different peptides, i.e. different alleles result in different

immunopeptidomes. Moreover, HLA-II proteins present a diverse

set of peptides, hence, the combination of these two factors results

in an astronomically large number of peptide HLA-II complexes.

Consequently, a lot of effort has been directed toward identifying

and characterizing the set of HLA-II presented peptides for a

plethora of aims, ranging from investigating autoimmune diseases

(4) to neoepitope identification and cancer immunotherapy (5–7).

The rise of MS-based immunopeptidomics during the last decade

has revolutionized our ability to identify peptides presented by HLA

proteins in vivo. This has led to a “Cambrian explosion” in the field of

neoepitope identification where continuous efforts are being directed

at improving the experimental (8) and the computational aspects (9–

11) of the technology to enable an accurate identification of

neoepitopes. For example, Feola et al. (12) have recently described

an immunopeptidomics-based pipeline for neoantigen identification

and cancer vaccine development. Meanwhile, Chong and colleagues

have recently developed NewAnce for identifying non-canonical

peptides presented by HLA proteins on tumors (13). Beside

identifying presented peptides and neoepitopes, a lot of efforts has

been directed at improving the quantification of peptides presented

by HLA proteins (14, 15).

MS-immunopeptidomics has been also utilized for vaccine

candidate prioritization. Recently, Bettencourt et al. (16) utilized

this technology for identifying Mycobacterium tuberculosis (Mtb)

presented peptides, subsequently, a proof-of-concept vaccine

against Mtb was developed using a subset of the presented

peptides. Further, an mRNA-based vaccine against Listeria

monocytogenes was recently developed by Mayer and colleagues

(17) using an MS-immunopeptidomics guided approach. MS-

immunopeptidomics was also utilized for mapping the

presentation of SARS-CoV-2 spike glycoprotein proteins by

common HLA-DR proteins (18).

Despite the recent progress, deciphering the principles

governing peptide generation from potential protein candidates

has proven to be an extremely challenging task. A reliable

prediction of immunogenicity and immunodominance is

therefore still lacking. In addition, the impact of the cellular

microenvironment, genetic alterations in the non-HLA

components of the peptide presentation machinery, the ageing of

the host cells and other environmental factors on peptide

presentation by HLA-II proteins is still far from being completely

understood. In this perspective, we thus highlight five open

questions that are likely to improve our understanding of the

biology of HLA-II peptide presentation and its influence on T

cell immunogenicity.
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What is the role of digestive
enzymes in shaping HLA-II
immunopeptidomes?

Arguably, one of the crucial and, nonetheless, not-completely

understood steps in peptide presentation by HLA-II proteins is the

loading of HLA-II molecules. Conceptually, loading can be divided

into two processes that operate asynchronously. Firstly, peptide

generation, and secondly, the actual molecular loading. The former

happens through the sequential cleavage of proteins inside the

lysosome (19–21) which can be derived from, for example, self-

proteins (22, 23), from microbes (16) or from environmental

sources such as pollen allergens (24). Proteins in the lysosomes

are mainly cleaved using a group of proteases referred to as

cathepsins (Cat) (25). Although some cathepsins are ubiquitously

expressed in all tissues, e.g. Cat B (26), Cat D (27), and Cat L (28),

some show a tissue-restricted expression, for example, Cat S (28)

in APCs.

Recent findings have suggested an important role for cathepsins

in shaping peptide presentation and immunogenicity. For example,

Riese et al. (29) identified a critical role for Cat S in antigen

presentation in B cells and dendritic cells. Meanwhile, Dheilly

et al. (30) have shown that the same enzyme also regulates

antigen presentation by non-Hodgkin Lymphoma. Besides Cat S,

Cat L has been shown to be a major regulator of presentation by

epithelium cells (31) and in the production of an IgA antibodies

againstM. pneumonia (32). Cat L has also been shown to impact the

specialization of the generated T cell response where treating

Leishmania major infected mice with Cat L inhibitors worsen the

disease by changing the T cell response from a Th1 to a Th2

response (33). Moreover, inhibiting Cat L in Non-obese diabetic

(NOD) mice protected these mice form developing type I diabetes

supposedly by increasing the fraction of T regulatory cells in these

mice relative to untreated mice (34). These findings illustrate the

need to study the influence of cathepsins on HLA-II peptide

presentation in depth using recent technological advances in MS-

immunopeptidomics and other omics fields. The provided insights

would help in establishing a link between the digestive capacity of

the cell (i.e. which digestive enzyme is expressed and at what level)

and presentation by HLA-II proteins.

Different methods can be used to delineate the role of cathepsins

in shaping HLA-II immunopeptidomes such as the combination of

mass spectrometry (MS)-based immunopeptidomics and gene-

editing methods. This can be accomplished either by knocking

down one of the cathepsins in a cell culture and measure its impact

on the immunopeptidome and/or by using a mixture of knock-ins

and knockouts of different combinations of digestive enzymes and

subsequently investigate the impact on the immunopeptidome.

Machine-learning methods could then be set up to extract

generalizable patterns from these experiments.
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What is the impact of cell type
and cellular micro-environment
on HLA-II presentation?

Although the experiments proposed above would provide

much-needed insights into the role of proteases in shaping HLA-

II immunopeptidomes, it is only one piece of the larger puzzle as it

only delineates the determinants of the digestive process.

Nonetheless, the actual pool of proteins available to these

proteases, i.e. the pool of substrate proteins, is also still poorly

understood. Recently, Wang et al. (4) have described differences in

peptides presented by B cells and monocytes, and argued that

differences in the preprocessing machinery and the available

proteins to each cell-type might explain this difference. Along

these lines, Marcu et al. (35) have revealed qualitative and

quantitative differences in the immunopeptidome of different

tissues. Further, presentation of viral and tumors proteins has

been shown to increase after tagging these proteins for autophagy

(36–39), pointing to an important rule for autophagy and the non-

HLA components of the presentation machinery in modeling the

set of presented peptides. These components can also be influenced

by external and internal signals such as inflammation, stress, and

calorie restriction (40–42). Therefore, future efforts should focus on

deciphering the link among the cellular status, the cellular micro-

environment and HLA-II immunopeptidomes, for example, using

simultaneous deep multi-omics profiling, e.g. proteomics and

transcriptomics, coupled with MS-based immunopeptidomics

across different cellular states and across different tissues

and organs.
What are the temporal aspects of
HLA-II presentation?

An additional challenge is the extent of variation in the duration

of presentation, i.e. the duration a given peptide is presented on the

cell surface by an HLA-II protein. Differences in the lifespan, i.e.

duration of presentation, of different peptide HLA-I complexes

have been proposed to be a major factor shaping the

immunogenicity of different peptides (43, 44). For example,

Micheletti et al. (45) have identified an important rule for the

lifespan of HLA-I peptide complexes and the efficiency of the

generated T cell response. Despite the prominent role of

presentation dynamics in shaping immunogenicity, it is a poorly

understood and characterized process.

Different experimental approaches can be utilized to investigate

this problem, for example, by recording the presentation dynamic

of a knocked-in gene-of-interest, e.g., specific antigenic proteins or

tumor-associated neoantigen with a controllable level of expression.

In such systems the link between expression levels and temporal

presentation behavior can be delineated by varying either the

strength and/or the duration of expression and quantifying the

effect on presentation dynamics using immunopeptidomics.
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How do post-translational
modifications shape HLA-II
immunopeptidome formation and
how is this linked to the cellular state?

As illustrated above, the immunopeptidome is an extremely

complex, dynamic, and only partially understood entity. One of the

factors that require further investigation are post-translational

modifications (PTMs), for example phosphorylation, acylation or

deamination. Such PTM can change the physicochemical

interaction between peptides and HLA-proteins (46) as well as

the interaction between a peptide-HLA complex and TCRs and, as a

result, affect the generated T cell response (47). Indeed, in different

autoimmune diseases such as type I diabetes some of the target

antigens were found to harbor PTMs, for example, insulin/

proinsulin (48) and GRP7 (49).

Multiple challenges render the identification of PTMs in the

immunopeptidome troublesome. For example, peptides with PTMs

have a low abundance or at least a lower abundance relative to the

un-modified peptides (50) (at least this holds true in proteomics).

Moreover, some PTMs might interfere with peptide ionization and

hence decrease the detectability by MS (50). Besides these

experimental challenges, there are computational challenges

associated with identifying PTMs. Mainly, the database search

which becomes computationally impractical when a large number

of PTMs is included (51). Nonetheless, through the development of

PTM-aware search engines such as MSFragger (52), and MODa

(53), or through the developed of tailored pipelines such as

PROMISE (54) progress is being made in addressing this

challenging task.
What are the factors that shape the
T cell response to a particular
peptide-HLA complex?

Conceptually, factors shaping the interaction between an APC

and a T cell can be broken-down into five interwoven layers

(Figure 1): starting with (A) the molecular layer, then (B) the

supramolecular layer, followed by (C) the cellular layer, then (D)

the micro-environmental layer, and finally (E) the temporal layer

(see below).
Molecular layer

The molecular layer refers to the interaction between an HLA-

peptide complex and a TCR. At this level, the sequence-based

physicochemical properties of the three molecular components

would determine which set of TCRs will recognize a particular

peptide-HLA complex. The strength of this interaction also governs

different aspects of the generated T cell response, for example, Tubo

et al. (58) have recently shown that the strength of TCR-peptide-
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FIGURE 1

A hierarchal model of factors influencing or shaping the T cell response. (A) The molecular layer which focuses on HLA-peptide-TCR interaction.
Here, the interaction between HLA- DQ 2.2 loaded with a gluten-derived peptide and a TCR is shown. The panel was created using ChimeraX (55),
the protein 3D structure was obtained from Protein Data Bank (56) under the identifier 6PX6 (57). (B) The supramolecular layer which describes the
impact of co-stimulatory molecules and the count of HLA-P complexes, among others. (C) Describes the impact of the cell types on both sides of
the immunological synapse, i.e. the type of APCs and T cells, on shaping the generated T cell response. (D) The CME layer which describes the
impact of the cellular micro-environment on shaping T cell response where extra cellular signaling can influence both antigen presentation, T cell
priming and subsequently the generated T cell response. (E) The impact of aging on shaping T cell response where the T cell pool becomes
dominated by expanded memory T cells and chronological old naïve T cells.
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MHCII interaction have an important role in shaping the

differentiation of naïve CD4+ T cells.
Supramolecular layer

The supramolecular layer involves the formation of an

immunological synapse (59) between an APC and a T cell where

a collection of co-stimulatory molecules and their receptors, along

with the TCR and its intracellular signaling components, assemble

to form an efficient signaling and communication channel between

the two cells. One of the open questions here is the impact of

presentation density on T cell activation, i.e. the absolute number of

HLA-II proteins presenting the same peptide, and which HLA-II

proteins present the peptide to the T cell. Previous work by Irvine

et al. (60) illustrated the exceptional sensitivity of CD4+ T cells

towards MHC-II molecules where a single MHC-peptide complex

is sufficient for driving the T cell response. Hence, a potential future

direction is to disentangle the impact of affinity, i.e. the affinity of a

particular TCR toward a particular HLA-peptide complex, from the

impact of the count, i.e. the number of HLA-peptide complexes.
Cellular layer

The cellular level refers to the type of APCs and T cells:

although HLA-II molecules are mainly expressed on professional

APCs, their expression can be induced on a variety of other cell

types by inflammatory cytokines, e.g. INF-g (61, 62). Additionally,
different cell types can act as professional APCs such as dendritic

cells and macrophages (63) each of which is also subclassified

further into different cell types. For example, dendritic cells are

classified into conventional dendritic cells (cDCs) and plasmacytoid

dendritic cells, inflammatory dendritic cells and Langerhans cells

(64). cDCs are further subclassified into cDC1 and cDC2 (65), each

with a different phenotype and function. For example, cDC1 are

efficient cross-presenters (65, 66) while cDC2 cells can efficiently

prime naïve CD4+ T cells (65, 67, 68). On the other side of the

immunological synapse, T cells can exist in different states, for

example, naïve, effector, memory, and anergic T cells, each

of which have a different antigenic sensitivity (69, 70), and

even utilize different metabolic pathways (71). Hence,

characterizing the cellular impact on presentation and T cell

activation is of paramount importance for a deeper understanding

of immunogenicity.
Microenvironmental layer

The cellular micro-environment (CME) can play a vital role in

shaping either antigen presentation and/or the resulting T cell

response. In the former, the CME plays a pivotal role in

determining which proteins are available to the presentation

machinery along with finetuning the cellular state, e.g. which

digestive enzymes are expressed and/or which co-stimulatory
Frontiers in Immunology 05
molecules are expressed through cellular signaling (72–74). For

the T cell response, CME signaling can have a crucial role in shaping

the behavior of T cells, e.g. TGF-b and the induction of regulatory T

cells (75).
Temporal layer

Finally, the temporal level which refers to the (immune system)

age of the host along with previous exposure to the same antigen or

to a similar antigen. These two factors will likely shape the resulting

response greatly by changing the pool of available T cells, e.g. in

young individuals the T cell pool is shaped by more dynamic naïve

T cells, while in older individuals it is mainly characterized by

expanded memory T cells and chronologically older naïve T cells

(76). Hence, a deeper characterization of the impact of aging on

antigen-presentation and T cell expansion is vital because it might

provide strategies to design vaccines that would work on the elderly,

which has proven to be a challenging task, too (77, 78).
Concluding remarks

Recent advances in computational (9, 10) and experimental

approaches, e.g. improved sensitivity of MS analysis, are enabling

much deeper and more accurate characterization of the

immunopeptidome. Nonetheless, we are still far from a complete

understanding of all the factors shaping the formation of the

immunopeptidome and its dynamics. Furthermore, despite the

recent improvement in predicting peptide-presentation in vivo,

this improvement has not translated into a reliable in silico

prediction of immunogenicity. Indeed, factors governing

immunogenicity and immunodominance are still poorly

understood. In this perspective we aimed at highlighting gaps in

our understanding of peptide presentation and T cell activation, and

discussed approaches for further investigation. Coordinated,

systematic and large-scale efforts are urgently needed to provide

deeper insights into antigen presentation and T cell activation.

These insights would help developing more efficient vaccines, better

immunotherapies, and also improve our understanding of

immunity and host-pathogen interactions more generally.
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