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Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with

phospholipid metabolizing abilities. It was characterized in late 2000s, and has

since been referred to as ‘tazarotene-induced gene 3’ (TIG3) or ‘retinoic acid

receptor responder 3’ (RARRES3) as a key downstream effector of retinoic acid

signaling. Two decades of research have revealed the complexity of its function

and regulatory roles in suppressing tumorigenesis. However, more recent

findings have also identified PLAAT4 as a key anti-microbial effector enzyme

acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs),

favoring protection from virus and parasite infections. Unveiling the molecular

mechanisms underlying its action may thus open new therapeutic avenues for

the treatment of both cancer and infectious diseases. Herein, we aim to

summarize a brief history of PLAAT4 discovery, its transcriptional regulation,

and the potential mechanisms in tumor prevention and anti-pathogen defense,

and discuss potential future directions of PLAAT4 research toward the

development of therapeutic approaches targeting this enzyme with

pleiotropic functions.
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Introduction

Vitamin A (retinol), an essential fat-soluble nutrient widely present

in the diet, is vital for human health and embryonic development (1, 2).

The metabolism and biological functions of vitamin A have long been

studied, and even its anti-carcinogenic effect in columnar mucous

epithelium of the respiratory tract was reported over half a century ago

(3, 4). This led to an outburst of research enthusiasm in understanding

the anti-cancer activities of retinoic acid (RA, one of the biologically

active metabolites of vitamin A) and its analogs (retinoids) in the 1970s

and 1980s (5). Not surprisingly, numerous RA- and retinoid-inducible

genes were identified and their functions have been characterized ever

since, including tazarotene (a synthetic retinoid)-induced gene 1

(TIG1) and TIG2 (6–8).

TIG3, also referred to as RA receptor responder 3 (RARRES3),

retinoid-inducible gene 1 (RIG1) or H-Ras-like suppressor 4

(HRASLS4), was first identified in 1998 from tazarotene-

stimulated primary human keratinocytes (9). Given the long

history of research aimed at uncovering the biological functions

of vitamin A metabolites, it is not surprising to identify TIG3/

RARRES3 as a class II tumor suppressor that mediates the anti-

proliferative effects of retinoids soon after its discovery. Since then,

numerous studies have reported the connection between reduced

TIG3/RARRES3 expression and tumor progression (10–13).

Notably, despite being identified as a tumor suppressor, later

studies provided proof-of-principle evidence for the

phospholipase A1/A2 and acyltransferase activities of TIG3/

RARRES3 involved in phospholipid metabolism (14, 15). These

findings led to a change in gene nomenclature from TIG3/

RARRES3 to phospholipase A and acyltransferase 4 (PLAAT4)

that reflects the enzymatic activities associated with the TIG3/

RARRES3 protein. Although each of these alternative names

reflects the RA-inducible nature of PLAAT4, they have caused

confusions over its annotation. For instance, RIG1 was widely used

to refer to DExD/H-box helicase 58 (DDX58, also known as RIG-I),

the pattern recognition receptor (PRR) that senses pathogen-

associated molecular patterns (PAMPs) and triggers the rapid

activation of innate immune responses. Hence, we only use the

official term PLAAT4 below for clarity.

Since its discovery, over two decades of research have unveiled

the molecular mechanisms underlying PLAAT4-mediated

restriction of tumor development and progression. More recently,

the anti-pathogen properties of PLAAT4 have come to light,

expanding its focus from cancer biology to anti-pathogen defense

mechanisms (16, 17). In this review, we summarize recent progress

in understanding how PLAAT4 promotes tumor suppression and

pathogen restriction, focusing on its biochemical properties and

transcriptional regulation, and discuss potential mechanisms in

tumor prevention and anti-pathogen defense.
PLAAT4 as a PLAAT family member

In early studies, PLAAT4 was shown to share significant

homology with another class II tumor suppressor − H-REV 107

(most well known as PLA2G16/HRASLS3/PLAAT3 among other
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names) (18, 19). These two members, together with HRASLS1,

HRASLS2 and HRASLS5, which were all noted to be homologous to

H-REV 107, are thus referred to as the H-REV 107 subfamily

proteins or HRAS-like suppressors (14, 20, 21). Interestingly,

frequent changes in nomenclature have similarly occurred to all

these four latter members, leading to an incredibly large number of

aliases in the literature (Figure 1A). This reflects struggles in

understanding the biological nature of the H-REV 107

subfamily proteins.

In 2003, H-REV 107 was demonstrated to have originated from

the lecithin retinol acyltransferase (LRAT) family, the

representative member of vertebrate NlpC/P60 protein

superfamily (22). Given that enzymes in this superfamily were

known to be involved in phospholipid metabolism, the H-REV

107 subfamily proteins were subsequently identified to have in vitro

Ca2+-independent phospholipase A1/2 and acyltransferase

activities, and are thus capable of catalyzing several reactions in

phospholipid metabolism (14, 21, 23, 24). For example, they have

been shown to mediate the transfer of an acyl chain from

glycerophospholipids, primarily phosphatidylcholine, to the

amino group of the phosphatidylethanolamine, producing N-

acylphosphatidylethanolamine (NAPE) that serves as the

precursor for N-acylethanolamines (NAE) (Figure 1B). It should

be noted, however, that this reaction was classically considered to be

catalyzed by a Ca2+-dependent N-acyltransferase (Ca-NAT) (25–

28). These seminal studies from the Ueda laboratory thus laid the

foundation for renaming the H-REV 107 subfamily members as

PLAAT1-5.
Functional domains of PLAAT4

The catalytic activity of PLAAT4 depends on a 134 amino-acid

hydrophilic region at the N-terminus. It shares several common

features with LRAT as well as all other PLAATs, among which a

highly conserved ‘NCEHFV’ motif is particularly prominent, with

the conserved cysteine being identified as the active site catalytic

nucleophile (Figure 1C) (15). According to comparative structural

analysis of the catalytic domains from PLAAT2-4, the cysteine

active site is placed in close proximity to the conserved histidine

from b2 strand, thereby forming a cysteine-histidine-histidine

catalytic triad that requires the histidine from b3 strand (15, 29,

30). Notably, this latter histidine is replaced by an asparagine

residue in PLAAT1 (Figure 1C). Although it might still be

positioned in a similar manner, it is tempting to anticipate that

this subtle change may affect the substrate specificity and/or

balance between the phospholipase A and acyltransferase

activities of PLAAT1. Importantly, similar catalytic triad (i.e.

cysteine-histidine-a polar residue) was also identified in the

NlpC/P60 superfamily, indicating an evolutionary conserved

attribute of these enzymes (22). In addition to the catalytic triad

residues, structural evidence suggested that the highly flexible loop

region between b3 and b4 strands adds fundamental alterations in

the enzymatic activities of different PLAATs (30, 31). This is

consistent with the structural context of the cysteine active site

embedded in the hydrophobic pocket formed by the extended
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loops between strands b1 and b2, b3 and b4, and the N-terminal

a3 helix (15).

PLAAT4 has a 30 amino-acid hydrophobic transmembrane

domain following the N-terminal catalytic domain (Figure 1C). It

encodes a single transmembrane-spanning segment, thereby

directing PLAAT4 to cell membranes including plasma

membrane, endoplasmic reticulum and Golgi apparatus (32, 33).

Despite little sequence homology, this feature is shared by PLAAT1-

3 but not PLAAT5, whose enzymatic activity is detected mainly in

the cytosolic fraction (Figure 1C) (21, 23). Moreover, this

transmembrane domain is not just an anchor tethering PLAAT4

to distinct membrane compartments, but itself is indispensable for

an optimal biological function (34). For instance, it was

demonstrated that the pro-apoptotic and anti-cancer activities of

PLAAT4 are attributed primarily to the Golgi- rather than the

endoplasmic reticulum-associated protein form (33). PLAAT4 at

the plasma membrane, by contrast, was shown to facilitate the

terminal stages in keratinocyte differentiation through interacting

with type I transglutaminase (32, 35, 36).

Apart from the membrane system, PLAAT4 also distributes at

the centrosome in skin cancer cells, leading to pericentrosomal
Frontiers in Immunology 03
organelle accumulation which in turn drives cancer cell apoptosis

(24). A 24-amino acid segment (amino acids 102-125) that spans

the b-sheet and a-helix immediately upstream of the hydrophobic

tail was shown to be critical for the centrosome-targeting of

PLAAT4 (37, 38). While the molecular mechanism underlying

PLAAT4 translocation remains to be elucidated, a recent study

showed that both zebrafish Plaat1 and murine PLAAT3 in the eye

lens translocate from the cytosol to diverse organelles, which

ultimately induces complete degradation of organelle membranes

to achieve an optimal transparency of the lens (39). Likewise,

cytosolic PLAAT3 in Hela cells can also translocate to endo-

lysosomes following picornavirus infection, facilitating genome

delivery into the cytoplasm from the micropores in endo-

lysosomal membranes (40). Intriguingly, the translocation of

Plaat1 and PLAAT3 both requires their C-terminal hydrophobic

domain and is triggered by the membrane damage in organelle

membranes. Therefore, it is highly plausible that both the

hydrophobic tail itself and the upstream short-segment could

serve as the recruitment cues, directing PLAAT4 towards target

organelles where it acts as an acyltransferase and associates with

other proteins for initiating signaling cascades.
A

B

C

FIGURE 1

PLAAT family enzymes. (A) Gene names and aliases for all five PLAAT family proteins. (B) Illustration of an example of phospholipid metabolism
reaction catalyzed by PLAAT family proteins. (C) Alignment of the structural domains of PLAAT family enzymes. The lecithin retinol acyltransferase
(LRAT) homology and transmembrane (TM) domains are shown. The enzymatic activity of PLAAT proteins involves a cysteine-histidine-histidine triad,
with the cysteine from a highly conserved ‘NCEHFV’ motif being the catalytically active site. a1−3, a helices 1-3; b1−5, b sheets 1-5.
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Transcriptional regulation of PLAAT4

The PLAAT4 gene is expressed ubiquitously in human cells,

implying a tissue-wide protective role of its product. In addition,

PLAAT4 transcription is readily induced by retinoic acids and its

natural and synthetic analogues, DNA-damaging stimuli, as well as

interferons (IFNs), the secreted cytokines that orchestrate the

induction of IFN-stimulated genes (ISGs) to establish an anti-

pathogen state (discussed below) (16, 41, 42). Whether basally

expressed or induced in response to different stimuli, the

transcriptional activation of PLAAT4 involves a high degree of

selectivity. It is tightly controlled by transcription factors that

specifically recognize and bind to functional cis-elements in its

promoter, and this is essential for understanding the biological

importance and complexity of PLAAT4 during pathogenesis

(Figure 2). Hence, we summarize how transcription of PLAAT4 is

regulated under di fferent bio logical contexts in the

following subsections.
Basal PLAAT4 expression and its
repression during tumorigenesis

The PLAAT4 promoter contains the binding sites for

transcription factors that constitutively activate PLAAT4

transcription to exert a protective role at the basal level (16, 43).

For example, a functional p53 response element (p53RE, -5157

to -5134 relative to the translation start site) exists in the PLAAT4

promoter (44). Hence it is not surprising that p53, one of the best-
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characterized tumor suppressors expressed constitutively at low

basal levels in unstressed cells, has the capacity to mediate PLAAT4

promoter activation. Apart from p53, interferon regulatory factor 1

(IRF1) is also present at low basal levels in the nucleus where it

manifests anti-oncogenic and anti-pathogen activities through

maintaining optimal constitutive expression of hundreds of target

genes, including PLAAT4 (16, 45). Indeed, the PLAAT4 promoter

contains several IRF-binding elements (IRF-E), the hexanucleotide

units with a core ‘GAAA’ sequence which are recognized specifically

by the N-terminal DNA-binding domains from all IRF family

members (46–48). However, it remains to be determined which

IRF -E ( s ) a r e c r i t i c a l f o r IRF1 -med i a t e d PLAAT4

transcriptional activation.

It has long been noted that at the heart of tumorigenesis and

progression lies genetic mutations disrupting the harmonious

checks and balances of normal cellular growth and development.

In this context, TP53 (encoding wild-type p53) is among the most

frequently mutated genes in cancer, and the majority of tumor-

derived mutations occurs in the region encoding DNA binding

domain of p53 (49). This results in a diminished or even completely

abolished activity to transactivate p53 target genes, including class II

tumor suppressors like CAV1, ING1b, SERPINB5, etc. (50–54).

Likewise, it was shown that a common abnormality in human

leukemia and myelodysplasia is an interstitial deletion mapped to

chromosome 5q.31, and IRF1 is the only gene deleted consistently at

one or both alleles within this region (55). Consistently, a decrease

in PLAAT4 transcript levels has been widely noted in various types

of tumors (11, 12, 56–58). It is noteworthy that the loss of IRF1

alleles per se does not lead to spontaneous tumor development (59).

Rather, it favors a dramatic exacerbation of pre-existing genetic

predispositions associated with other risk factors (e.g. TP53

nullizygosity). This does not necessarily suggest that p53 plays a

dominant role in driving PLAAT4 transcription. In fact, PLAAT4 is

abundantly expressed in T antigen-transformed cell lines in which

p53 function is inactivated. Hence, while both IRF1 and p53 are key

regulators of PLAAT4 transcription, p53 likely activates a much

broader anti-tumor transcriptional spectrum than IRF1.
RA- and retinoid-induced PLAAT4
expression and its regulation

Expression of PLAAT4 is markedly induced by RA and its

analogues, the biological effects of which are transduced through

RA receptors (RARs) and retinoid X receptors (RXRs) as RAR-RXR

heterodimers (60–63). They belong to the superfamily of nuclear

receptors with ligand-dependent transcriptional activities,

undergoing a shift from the repressive unliganded state towards

its liganded active form that involves the exchange of co-repressors

for co-activators, and could then drive the transcription of target

genes via binding to a series of RA response elements (RAREs) that

typically consist of hexameric direct repeats of (A/G)G(T/G)TCA

with either a two (DR2) or five (DR5) nucleotide spacer (64–67). In

agreement with the observation that PLAAT4 transcription is

enhanced by both RAR- and RXR-selective agonists, a functional

DR5-type RARE was identified in the PLAAT4 promoter (-5259 to
FIGURE 2

Transcriptional regulation of PLAAT4. In the resting state, nuclear
transcription factors p53 and IRF1 mediate constitutive expression of
PLAAT4. In the presence of agonists or acute stress, the
corresponding signal transduction pathways are activated, thus
leading to an enhanced PLAAT4 transcription. Epigenetic
modifications such as histone methylation also contribute to
dynamic regulation of chromatin states, affecting binding of the
RXR-RAR heterodimer and other transcription factors. RXR, retinoid
X receptor; RAR, retinoic acid receptor; RARE, retinoic acid response
element; p53-RE, p53 response element; IRF-E, IRF-binding
element; ISRE, IFN-stimulated response element; GAS, gamma-
activated sequence.
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-5243 relative to the translational start point) (10, 41). Interestingly,

although this RARE is a non-canonical DR5-type element, it

contains several conserved nucleotides which could form

sequence-specific and water-mediated base contacts with residues

Lys156 and Arg161 for RXR, and Lys109 for RAR (64, 68).
PLAAT4 expression in response to
cellular DNA damage

In addition to being induced by RA and its analogs, it was

shown that the expression of PLAAT4 transcript and its protein

product in human hepatoma HepG2 cells is robustly stimulated by

DNA-damaging agents including 5-fluorouracil and UV irradiation

(44). This is not surprising given that p53 and IRF1, besides acting

at low basal levels, have been known as central hubs whose

expression (i.e. transcription-coupled translation) is induced

rapidly by various types of cellular stressors, resulting in either

the repair or elimination of damaged cells by activating the

expression of target genes (69, 70). DNA damage-induced

PLAAT4 response is also consistent with the finding that tumor

suppressor genes are activated prior to apoptosis effector genes as

the levels of these two transcriptional factors increase (71).

Interestingly, however, the PLAAT4 expression in HepG2 cells is

not triggered by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a

persistent and ubiquitous environmental contaminant that induces

oxidative stress and DNA damage (44, 72). This may be due to the

counteraction effect of TCDD on p53 response via enhancing the

expression of many other genes (73, 74). For example, TCDD was

shown to enhance the protein levels of murine double minute-2

(MDM2), a multifunctional E3 ubiquitin ligase which specifically

counteracts p53 function by binding to its transcriptional activation

domain, as well as by targeting p53 for ubiquitination and

subsequent proteasome-dependent degradation (75–78). In fact, a

notable property of p53 and IRF1 is their flexibility to act

coordinately with a variety of other co-factors (p63, RELA, etc.),

allowing for a dynamic fine-tuning of target gene expression (79–

82). Importantly, although p53 and IRF1 tend to act cooperatively

in driving the expression of common downstream targets under

such circumstance (e.g. CDKN1A, a.k.a. P21), it should be noted

that p53 plays an absolutely dominant role in activating PLAAT4

transcription in HepG2 cells treated with DNA damage agents (44,

83, 84).
PLAAT4 expression during host anti-
pathogen responses

Being originally identified as a tumor suppressor, it is somewhat

surprising that PLAAT4 is also one of the common downstream

targets of IRF1 and IFN signals (16, 17, 85). IFN-dependent innate

immunity is critical for host defense against invading pathogens.

Cells engaged in such immune responses undergo sophisticated

signal transduction that originates at the recognition of PAMPs by

PRRs, leading to a rapid transcriptional activation of different types
Frontiers in Immunology 05
of IFNs and inflammatory cytokines. Secreted IFNs then initiate

downstream Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) signaling via their cognate receptors, resulting

in a second wave of transcriptional induction of hundreds of IFN-

stimulated genes (ISGs) that depend mainly on the specific binding

of IFN-stimulated gene factor 3 (ISGF3) heterotrimeric complex

and STAT1 homodimer (known as IFN gamma activating factor;

i.e. GAF) to IFN-stimulated response element (ISRE) and gamma-

activated sequence (GAS), respectively (86–88). In agreement with

the findings that PLAAT4 functions as an ISG, both of these cis-

elements exist in the PLAAT4 promoter (Figure 2) (17). Notably,

IRF1 was initially identified from crude nuclear extracts of

Newcastle disease virus-infected mouse L929 cells, where it

strongly activates transcription of the genes encoding type I IFNs

(89–92). Moreover, IRF1 itself is also highly responsive to IFNs,

especially type II IFN (IFNg) (42). In this regard, IRF1 can induce

much more robust and long-lasting expression of PLAAT4 (IFN-

independent and IFNg-dependent) than any other types of IFN

during host innate immunity. Given that IRF1 can act in concert

with STAT1 to induce ISG expression in IFN-stimulated cells, it is

also reasonable to anticipate an enhancement of IFN-dependent

PLAAT4 expression by additional IRF1 binding (93, 94).

In addition to the classical role in cellular stress response, it is

now widely appreciated that p53 plays essential roles during

pathogen infections, in either an IFN-dependent or independent

manner (95–97). Accordingly, pathogens have evolved

sophisticated strategies to manipulate the p53 checkpoint for their

own advantage. For instance, inhibition of p53 has been widely

observed in the realm of viruses, bacteria as well as parasites (96,

98–101). While many studies are conducted in a p53-deficient

background using the T antigen-immortalized and cancer cell

lines, it is plausible to infer that PLAA4 transcription may also be

affected indirectly via p53 inhibition during pathogen infection.

Mechanisms of PLAAT4 as a
tumor suppressor

As a class II tumor suppressor, PLAAT4 that is found

abundantly in normal tissues has been noted to favor

differentiation and apoptosis but inhibit cell proliferation and

attenuates tumor growth (9, 32, 33, 102–104). As our

understanding of the tumorigenic process has grown significantly,

many mechanistic aspects of the tumor-suppressing activity of

PLAAT4 have become clear during the past two decades

(Figure 3A). In normal keratinocyte, for example, PLAAT4

interacts with type I transglutaminase at the plasma membrane,

resulting in a substantial increase in the proportion of sub-G1 cells

as well as nuclear shrinkage, hence forming unique structures that

resemble the cornified envelope close to the cell surface (32, 35,

107). It then suppresses cell proliferation and induces a shift toward

terminal keratinocyte differentiation, the ultimate outcome of which

is cell death (108). Follow-up studies with epidermal squamous

cancer cells suggested that PLAAT4 is also important for limiting

cancer cell proliferation. Notably, PLAAT4 in these cells is largely

localized near the centrosome, and thus could inhibit centrosome
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separation during mitosis, leading to the induction of cancer cell

apoptosis (37, 109). These observations indicate that the expression

levels of PLAAT4 are the determinant for modulating the balance

between cell proliferation and survival/death. However, it should be

noted that, while PLAAT4 promotes normal keratinocyte death via

enhancing transglutaminase activity, the pericentrosomal

localization of PLAAT4 in cancer cells drives organelle

accumulation which in turn triggers caspase-dependent apoptosis

(32, 109).

Interestingly, PLAAT4 appears to inhibit proliferation and

promote apoptosis via different mechanisms in other types of

cancer cells. For instance, it was suggested that PLAAT4 could

form a protein complex with the ribosomal protein P0 (RPLP0) in

HtTA cervical cancer cells (110). This is associated with a decreased

RPLP0 level, resulting in a reduction in cell-cycle regulatory

proteins but an enhancement in the pro-apoptotic BAX. PLAAT4

in HtTA cervical cancer cells was also shown to interact with the

RAS, a plasma membrane-associated GTPase that regulates

proliferation, differentiation and apoptosis by serving as binary

switches (33, 111–113). The association between PLAAT4 and RAS

not just alters the subcellular distribution of RAS, but also facilitates

its degradation, thus leading to a decreased activation of RAS and

downstream signaling. A recent study performed in a hepatocellular

carcinoma model further supported this notion (58).

Besides being identified as a tumor suppressor, there is growing

evidence suggesting that PLAAT4 also plays crucial roles in

restricting tumor metastasis, the main cause of cancer-related

death (Figure 3B) (13, 114–116). In this regard, PLAAT4 is

among the metastasis-associated gene signatures whose
Frontiers in Immunology 06
expression levels in primary breast tumors inversely correlate

with the frequency of lung metastasis (117). Follow-up studies

not only confirmed this observation, but unveiled the functional

role of the catalytic activity of PLAAT4 in suppressing the lung

metastasis (13, 118). Interestingly, while PLAAT4 dampens initial

steps in the lung colonization through enforcing the retention of a

phospholipase A1/2 activity-dependent differentiation features, it

could also serve as an acyl protein thioesterase that hydrolyzes the

acyl chains of Wnt proteins and a co-receptor in the canonical Wnt

signaling to induce low density lipoprotein receptor protein 6

(LRP6). This contributes to the blockade of Wnt/b-catenin
signaling, whereby suppressing epithelial-mesenchymal transition

(EMT) and stem cell properties of tumor cells (114, 118). It is also

noteworthy that PLAAT4 is expressed at significantly lower levels in

steroid hormone receptors-positive (estrogen receptor-,

progesterone receptor- and estrogen/progesterone receptors-

positive (ER+, PR+ and ER+/PR+)) tissues than in ER-, PR- and

ER/PR-negative tissues, hence providing a biomarker to identify a

subgroup of patients with higher susceptibility to lung metastasis

(103). In addition, a study reported the inhibitory effect of

endogenous PLAAT4 on expression of the immunoproteasome

subunits (PSMB8/9/10) in breast cancer cells (116). Although

immunoproteasomes are most well-known for its role in antigen

presentation, knocking down expression of its core subunit PSMB8

profoundly inhibits the migration and invasion of tumor cells (119–

121). Hence, PLAAT4 could also indirectly suppress the distant

metastasis of breast tumor cells by down-regulating PSMB8/9/10

expression (116).

In addition to the role in inhibiting breast tumor metastasis,

PLAAT4 was shown to be capable of sequestering the oncoprotein

metadherin (MTDH, a.k.a. AEG-1) that is involved in the

development of various types of tumors, preventing MTDH from

activating the cytoplasm-nuclear translocation of b-Catenin,
whereby leading to suppression of the metastasis of colorectal

cancer (115, 122, 123). The role of PLAAT4 in mediating cell

migration and invasion was similarly demonstrated in NT2/D1

testicular cancer cells (124). Mechanistically, PLAAT4 physically

interacts with glycoprotein prostaglandin D2 synthase (PTGDS,

a.k.a. L-PGDS), a member of the lipocalin superfamily that has been

shown to be involved in the tumorigenesis of solid tumors (125). It

then promotes prostaglandin D2 (PGD2) production, resulting in

the activation of PGD2 DP1 receptor/cAMP/SOX9 signaling.

Notably, although an intact hydrophobic domain of PLAAT4 is

critical for its interaction with PTGDS, the exact location for

PLAAT4-PTGDS interaction remains unknown. It is interesting

to note that H-REV107/PLA2G16/PLAAT3, a representative

member of the PLAAT family, also inhibits migration and

invasion of NT2/D1 testicular cancer cells by targeting at

PTGDS (126).

Although a significant number of studies mentioned above have

demonstrated PLAAT4 as a tumor suppressor, it remains to be

determined whether its action generally requires the catalytic

activity of PLAAT4, and how its catalytic products regulate the

cellular events. Moreover, results from a recent study highlighted a

positive correlation between PLAAT4 expression and the glioma

grade, indicating its potential as a prognostic marker for poor
A

B

FIGURE 3

Mechanisms of PLAAT4 action during tumorigenesis and metastasis.
(A) Nuclear p53 and IRF1 drive the basal expression of PLAAT4,
which acts to regulate differentiation, proliferation, apoptosis, etc. to
suppress tumorigenesis. The subcellular locations of PLAAT4 are
shown, with a PLAAT4 structure predicted with alphaFold (105, 106).
(B) PLAAT4 contributes to inhibition of epithelial-mesenchymal
transition (EMT), cancer cell stemness, immunoproteasome, and b-
Catenin expression and translocation, but induces prostaglandin D2
(PGD2)-mediated activation of DP1/cAMP/SOX9 signaling to
suppress metastasis. For protein interactions where the subcellular
location has not been identified, the illustration only depicts a
physical interaction between PLAAT4 and target proteins.
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survival (127). Molecular mechanisms responsible for this paradox

remain unexplained, but such a phenomenon was also observed

within the tumor microenvironment (a major barrier to

immunotherapy) that induces the production of RA (128, 129).

Despite being long considered as an anti-cancer agent, RA in solid

tumors was found to display tumorigenic capability via myeloid-

mediated immune suppression. Mechanistically, it polarizes

i n t r a t umora l monocy t e d i ff e r en t i a t i on away f r om

immunostimulatory dendritic cells but toward tumor-associated

macrophages through suppressing dendritic cell-promoting

transcription factor IRF4 (129).
Mechanisms of PLAAT4 during anti-
pathogen restriction

Despite the fact that IFN and IRF1 pathways have long been

considered to be highly effective at resisting and controlling

pathogen infections, their common target PLAAT4 has not been

recognized as a restriction factor for any pathogen until recently

(Figure 4) (45, 130–133). For example, PLAAT4 was identified as

the most downregulated gene in IRF1-depleted human hepatocytes,

and the most active one in limiting replication of hepatitis A virus

(HAV), a notoriously stealthy picornavirus causing acute hepatitis

in humans (16, 92, 134). Nevertheless, this robust antiviral activity

of PLAAT4 seems virus-specific, as knocking down its expression

only resulted in a modest (2- and 5-fold) enhancement in

replication of dengue and Zika viruses (mosquito-borne

flaviviruses causing dengue fever and Zika virus disease), and had

no impact on replication of human rhinovirus (a picornavirus

causing a variety of respiratory diseases) and hepatitis C virus (a

hepatotropic flavivirus causing chronic hepatitis) (16). Likewise,
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PLAAT4 was also identified as an ISG that induces premature

egress by reducing parasitic vacuole size, and thus actively restricts

infection of the type III but not type I/II strains of Toxoplasma

gondii, a parasite of warm-blooded animals that infects an estimated

one-third of people worldwide (17, 135). Seemingly paradoxically,

PLAAT4 as an effector of IRF1/IFNs does not affect or depend on

the canonical innate immune signaling; rather, it directly restricts

pathogen infections via the acyltransferase activity in both cases (16,

17). Considering the importance of innate immune responses in

fighting against pathogen invasion, this may help to explain, at least

partially, why anti-pathogen activity of PLAAT4 has long been

neglected and why it is evident in a limited number of pathogens,

especially those associated with mild or asymptomatic disease (e.g.

HAV and type III T. gonidii) (134, 136). The anti-pathogen activity

of PLAAT4 might also be related to degradation of specific host

membranes through its phospholipase activity, a function that

resembles PLAAT3 in the eye lens (39). Thus, identifying the

selectivity of PLAAT4 would reveal the type of cellular organelle

membranes specifically targeted by different pathogens for

productive infection.

It is currently unknown the detailed mechanisms underlying

anti-pathogen activity of PLAAT4. Nevertheless, the catalytic

activity of PLAAT4 mediates induction of p70 S6 kinase

phosphorylation at Thr389 and subsequent phosphorylation of

mechanistic/mammalian target of rapamycin (mTOR) at Ser2448

that inactivates mTOR activity to phosphorylate 4E-BP1 in

immortalized human hepatocytes (16). The functional importance

of mTOR inhibition in restricting HAV replication was further

confirmed by the observation that mTOR inhibitors fully

recapitulate the HAV-specific suppression by PLAAT4 (16). Since

pharmacologic mTOR inhibition in various cell types induces

autophagy, a major digestion process that removes damaged (in

this case infected) substrates, it is possible that PLAAT4 suppresses

HAV replication indirectly through autophagy (137–139).

Interestingly, results from a recent study confirmed that

activation of mTOR signaling and in turn a suppressed autophagy

are required for Zika virus replication (140). Therefore, our

observations regarding the role of PLAAT4 in restricting

replication of Zika virus might also be due to its ability to induce

mTOR-dependent autophagy. However, it is important to note that

Zika virus NS4A and NS4B proteins cooperatively suppress the

mTOR pathway (141). It thus is tempting to speculate that Zika

virus might have evolved to overcome mTOR-dependent autophagy

inhibition; and consequently, this might help explain the limited

anti-pathogen activity of PLAAT4 (142). For instance, mTOR as

one of the most important regulators plays a significant role in

orchestrating several cell processes including apoptosis (143).

Notably, pathogen infections could directly stimulate mTOR

activation, regulating expression of apoptosis-related proteins (e.g.

inducing anti-apoptotic Bcl2 but suppressing pro-apoptotic Bax

proteins), and then leading to the survival of infected cells (144,

145). Hence, it is reasonable to anticipate that PLAAT4 is capable of

counteracting such a process by inhibiting mTOR activation. In this

context, further studies are needed to dissect whether PLAAT4,

especially its catalytic activity, can regulate mTOR-dependent

autophagy and/or apoptosis to restrict pathogen infections.
FIGURE 4

PLAAT4-mediated pathogen restriction. IRF1 and IFNs mediate
expression of PLAAT4, which acts through in part by inactivating the
mTOR signaling pathway to restrict hepatitis A virus replication (left),
and induces premature egress to combat Toxoplasma gondii
infection (right). PLAAT4-dependent resistance to viral replication
might involve autophagy, pyroptosis and apoptosis (shown in
dashed boxes).
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Moreover, as we discussed earlier, PLAAT4 expression during

pathogen infections is under the concerted control of p53, IRF1

and IFNs, which all display pleiotropic effects on diverse cellular

pathways other than mTOR signaling. For example, they have been

demonstrated to play an important role in inducing apoptosis and/

or pyroptosis (146–152). While our study has shown that PLAAT4-

mediated suppression of HAV does not involve cell death (16), it

remains to be determined whether mTOR-independent signaling

pathways (e.g. apoptosis and pyroptosis, etc) are involved in the

restriction of other pathogens.

Intriguingly, it should be pointed out that PLAAT4 is not the

only PLAAT family member that has been demonstrated to affect

the virus life cycle. For example, two independent genome-wide

screens have identified H-REV 107/PLA2G16/PLAAT3 as a pivotal

host factor for picornaviruses including poliovirus, rhinovirus,

enterovirus, encephalomyocarditis virus and Saffold virus (40,

153). Mechanistically, the catalytically active PLAAT3 functions

at a post-entry step, competing with galectin-8 and thus facilitating

the delivery of viral genome to the cytoplasm which enables viral

protein synthesis and subsequent RNA replication. Otherwise the

virions will proceed to a pore-activated autophagic degradation

pathway, enabling virus clearance procedure (40, 154). Besides

serving as the switch between viral genome delivery and

clearance, PLAAT3 also confers a selective cytotoxicity effect of

the host cells exposed to rhinovirus infection, and this function

depends on its C-terminal domain that extends into the endosomal

lumen (153). In sharp contrast, PLAAT3 restricts hepatitis A virus

infection instead of preventing viral genome from autophagy

degradation (155). It is currently uncertain how PLAAT3 elicits

opposing roles on different picornaviruses. However, it is important

to note that despite HAV belongs to the Picornaviridae family, it

distinguishes itself from other mammalian picornaviruses in the

capsid structure, genome organization and replication cycle

(156–159).
Can PLAAT4 be an ideal
therapeutic target?

A ubiquitous presence of PLAAT4 and its effector functions in

tumor suppression and pathogen restriction suggest it might

represent a self-protecting mechanism. In particular, PLAAT4

often declines in various types of tumor cells and tissues, but

unlike the upstream transcriptional factors (e.g. p53 and IRF1), it

is rarely mutated or deleted (9, 160). These characteristics of

PLAAT4 make itself an attractive target for pharmacologic

intervention to treat or palliate tumor-related symptoms, as well

as to fight against pathogen infections.

In fact, the practical applications of vitamin A and its

metabolites in anti-cancer therapy have been one of the most

popular subjects (161–163). For example, all-trans retinoic acid

(ATRA), the biologically active form of vitamin A and one of the

first molecularly targeted drugs in oncology, has successfully
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arsenic trioxide by targeting the prolyl isomerase Pin1 for

degradation, and it is currently being evaluated for the feasibility

in treating pancreatic cancer (164, 165). Notably, PLAAT4 exhibits

a time- and concentration-dependent expression pattern in

response to ATRA, similar to IFNs that also play functional roles

in anti-cancer immunity (10, 57, 166–168). Hence, therapies that

target PLAAT4 for increased gene expression (e.g. uptake of

vitamin A and its metabolites) might favor both pathogen

restriction and tumor suppression, particularly for patients with

p53- and/or IRF1-deficient cancers.

Being shared by anti-tumor and anti-pathogen responses,

pathogen-triggered PLAAT4 expression may also offer potential

to suppress tumorigenesis and development. This is reminiscent of

applying microbial agents to treat malignant disease (169, 170).

However, it is noteworthy that pathogenic microbial agents

themselves are complicated, with some of them being well known

to increase cancer incidence (e.g. human T lymphotropic virus type-

1 oncovirus) (171, 172). Furthermore, although pathogen infections

in general are expected to induce specific anti-tumor responses, a

s ignificant hurdle is that vira l ant igens often cause

immunosuppressive effects that promote escape from the host

immunity surveillance, thereby adding another layer of risk to the

pathogen-triggered anti-tumor strategy (81, 92, 159, 171, 173). To

bypass these impediments, live-attenuated or inactivated pathogens

might be a suitable option for pathogen-initiated anti-tumor

therapy (174–176).

It is important to note that PLAAT4 is just one of the hundreds

of target genes induced by biological stimuli, and only a relatively

small proportion of the gene products have been explored for their

biological functions (133, 177–179). Although most of these

effectors might not be potent enough to elicit tumor suppression

and/or pathogen restriction when they act individually, they could

mount an effective defense against a much wider spectrum of

disease when induced as a combination with other effectors. This

is exemplified by our findings that the antiviral effect of PLAAT4 is

effectively amplified by contributions from other IRF1-effector gene

products (e.g. NMI, MX1, ERAP2) with different mechanisms of

action. However, the strategy to enhance the immune response is a

double-edged sword that could potentially pose serious threats to

the host if excessive and uncontrolled activation led to

autoimmune-like disease. Thus, it would be necessary to identify

other molecular targets that could act in synergy with PLAAT4

without adverse events associated with uncontrol led

immune responses.

An alternative option would be to target specific expression of

PLAAT4 or augment its phospholipase activity using small

compounds, even though this sort of approaches may only

partially restore the functions of its upstream agonists or

transcriptional factors (16, 17, 57). Nonetheless, by identifying

agonist-activated effectors that could target specific pathogens and

cancers, host-directed therapeutic approaches that pinpoint such

molecules would provide solid basis for more effective and

safer therapies.
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Closing marks

As a member of the class II tumor suppressor gene family,

PLAAT4 exhibits phospholipase A1/2 and acyltransferase activities

with pleiotropic effects that profoundly affect host immunity against

tumors and pathogens. As summarized in this review, substantial

advances have been made in understanding the regulation of its

expression, functional consequences and the mechanisms

underlying its inhibitory effects on tumorigenesis and pathogens.

It remains to be determined how PLAAT4 responses affect

regulatory circuits with multiple feedback loops to control

upstream signals involving RA metabolism and tumor suppressor

(p53 and IRF1) and anti-pathogen (IFNs and IRF1) functions,

thereby reinforcing both stress response and immunity. Given the

numerous interacting proteins identified with PLAAT4, it could

serve as a potential multiplex switch, fine-tuning key pathways to

ensure an adequate response, or otherwise triggering signaling

processes that favor apoptotic cell death.

Since it has just begun to appreciate the roles for PLAAT4 in the

restriction of tumors and pathogen infections, several important

gaps have remained in terms of mechanistic understanding of its

function. For example, are there any other contexts where a

PLAAT4 transcription program is activated? What signals

stimulate translocation of the membrane-localized PLAAT4 to

other subcellular sites (e.g. centrosome) to transduce functional

signals? What are the specific functions of endoplasmic reticulum-

localized PLAAT4? Whether PLAAT4 regulates mTOR-dependent

and independent autophagy and/or apoptosis in pathogen-infected

cells? Understanding a comprehensive picture of PLAAT4 would

open new avenues of PLAAT4 regulome that could impact

biological events other than protection against cancers and

pathogens. In addition to PLAAT4 itself, it would be important to

clarify how its metabolite NAPE and changes in the host lipidome

regulate the protein-protein interactions. It also remains to be

determined whether PLAAT family proteins with similar

biochemical features play redundant roles in protection from both

invading pathogens and tumorigenesis. This is particularly

important in understanding what cellular mechanisms may

compensate for the lack of PLAAT4 orthologs in rodents.

In summary, PLAAT4 research, while still in its infancy, has just

begun to be emerged as an important field with relevance to host

immunity to infection and disease progression. Although more
Frontiers in Immunology 09
investigations are required to answer above questions, further

understanding of the molecular details of the PLAAT4 action

would contribute to the development of more effective therapeutic

approaches to treat tumors and pathogen infections.
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