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Evaluating the effects of vitamin
D Level on airway obstruction in
two asthma endotypes in humans
and in two mouse models with
different intake of vitamin D
during early-life
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Yingying Zhang1, Xue Tian1, Qiang Fu1, Chengjian Lv1,
Dongning Yin1 and Min Zhang2*

1Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Respiratory and Critical Care Medicine,
Shanghai General Hospital of Nanjing Medical University, Shanghai, China
Introduction: Asthma is primarily divided into two categories: type 2 (T2-high) and

non-type 2 (T2-low). A relationship between asthma severity and vitamin D

deficiency has been identified, but its impact on each asthma endotype remains

unknown.

Methods: We clinically examined the influence of vitamin D on patients with T2-

high (n = 60) or T2-low asthma (n = 36) compared with controls (n = 40). Serum 25

(OH)D levels, inflammatory cytokines and spirometry were measured. Mouse

models were then used to further analyze the effects of vitamin D on both

asthmatic endotypes. BALB/c mice were fed with vitamin D-deficient (LVD),

-sufficient (NVD), or -supplemented diets (HVD) throughout lactation and

offspring followed the same diet after weaning. Offspring were sensitized/

challenged with ovalbumin (OVA) to establish “T2-high” asthma or OVA

combined with ozone exposure (OVA + ozone) to induce “T2-low” asthma.

Spirometry and serum, bronchoalveolar lavage fluid (BALF), and lung tissues

were analyzed.

Results: Serum 25(OH)D levels were decreased in asthmatic patients compared with

controls. Patients with vitaminD deficiency (Lo) had varying degrees of elevation of the

pro-inflammatory cytokines IL-5, IL-6, and IL-17A, decreased expression of the anti-

inflammatory cytokine IL-10, and altered forced expiratory volume in the first second

as a percentage of predicted value (FEV1%pred) in both asthmatic endotypes. Vitamin

D status had a stronger correlation with FEV1%pred in T2-low asthma than T2-high

asthma, and 25(OH)D level was only positively linked to maximal mid-expiratory flow

as a percentage of predicted value (MMEF%pred) in the T2-low group. Inflammation,

hyperresponsiveness, and airway resistance (RL) was increased in both asthmamodels

compared with controls while vitamin D deficiency further increased airway

inflammation and airway obstruction. These findings were particularly prominent in

T2-low asthma.
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Discussion: The potential function and mechanisms of vitamin D and both asthma

endotypes should be studied individually, and further analysis of the potential

signaling pathways involved with vitamin D on T2-low asthma is warranted.
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1 Introduction

Asthma is a heterogeneous chronic airway inflammatory disease

that is characterized by two main inflammatory endotypes: Type 2

(T2)-high and T2-low/non-T2 (1–3). T2-high asthma is characterized

by a lymphocyte T helper 2 (Th2)-and innate lymphoid cell 2 (ILC2)

-driven immune-inflammatory response (4). In contrast, the T2-low

endotype is characterized by neutrophil-dominated inflammation

that is consistent with either a type 1 immune response, type 3

inflammation mediated by Th17 cytokines, systemic inflammation

associated with IL-6 release and obesity, or the lack of an

inflammatory process known as the paucigranulocytic endotype (5–

7). T2-low asthma is a distinct, adult-onset, severe, more steroid-

refractory subtype that is associated with comorbidities such as

obesity and gastroesophageal reflux (8). Common maintenance

treatments for asthma, such as inhaled corticosteroids (ICS) or

antileukotrienes, and new biotherapies against innate immunity-

driven neutrophilic inflammation perform poorly against T2-low

asthma (9–11). Asthma pathogenesis may involve vitamin D

deficiency (12, 13), meriting an evaluation of the effects of vitamin

D on both asthma endotypes, especially T2-low.

The most active vitamin D metabolite, 1,25-dihydroxyvitamin D3

(1,25(OH)2D3) plays an important role in the innate immune response

(14, 15). Groot et al. (16) found that vitamin D supplementation

significantly reduced eosinophilic airway inflammation in asthmatics

but did not affect induced sputum neutrophil count. Other studies

have reported that vitamin D has an immunosuppressive effect on

Th17 cells (17–19). Nanzer et al. (17) recruited eighteen patients with

steroid-resistant (SR) asthma and 10 patients with steroid-sensitive

(SS) asthma were assessed with a mean age of 54 (SR) and 50 (SS)

years. Human Peripheral blood mononuclear cells (PBMCs) were

isolated, and stimulated in culture with or without 10-7mol/L

dexamethasone and 1,25(OH)2D3 in vitro. Nanzer et al. showed that

the expression of IL-17A in the peripheral blood of asthmatics could

not be reduced with glucocorticoids but could be curbed with 1,25

(OH)2D3 supplementation. However, clinical trial results to this end

are conflicting, suggesting that vitamin D supplementation is unlikely

to reduce the risk of atopic disease. Manousaki D et al (20) found that

four single-nucleotide polymorphisms (SNPs) strongly associated with
ficiency; Lo, vitamin D

eroids; according to the

a. Available from:

the first second; FVC,

, asthma control test

02
25-hydroxyvitamin D [25(OH)D] levels in 33,996 individuals, and

conducted Mendelian randomization (MR) studies to estimate the

effect of lowered 25(OH)D on the risk of asthma, atopic dermatitis,

childhood onset asthma, and elevated IgE level and tested MR

assumptions in sensitivity analyses. They found no evidence that

genetically determined reduction in 25(OH)D levels conferred an

increased risk of asthma, atopic dermatitis, or elevated total serum

IgE. Yepes-Nunez JJ et al (21) searched three databases through

January 30, 2016, including nonrandomized studies (NRS) and

randomized (RCT). Among the 1932 articles identified, four NRS

and one RCT were eligible. Their studies suggests that vitamin D

supplementation for pregnant women, breastfeeding women, and

infants may not decrease the risk of developing allergic diseases such

as atopic dermatitis. Possible reasons for this include a poor

understanding of which patients would benefit the most from

supplementation and when vitamin D supplementation would be

most effective. Current stratified approaches that treat asthma based

on phenotype have shortcomings, requiring the definition of unbiased

multidimensional endotypes to account for the complexities of this

disease. Further studies are needed to confirm the effects of vitamin D

on specific asthma endotypes.

Mechanistic studies in human and animal models have shown

that vitamin D is involved in immune cell function and fetal lung

development and maturation (22, 23). Vitamin D deficiency early in

life may increase the risk of asthma as the child grows. We therefore

evaluated the effects of vitamin D status on both asthma endotypes

using infant mouse models.

Our previous work showed that female BALB/c were provided

with vitamin D-deficient, -sufficient or -supplemented diets

throughout lactation and their pups followed the same diet after

weaning. Offspring were then sensitized and challenged with OVA,

vitamin D supplementation can reduce allergic airway inflammation

and hyperresponsiveness (AHR) in OVA-mediated models (24). We

therefore sought to evaluate the effects of vitamin D on the T2-high

and T2-low asthma endotypes in humans and a mouse model.
2 Materials and methods

2.1 Study design and participants

Our trial design was a cross-sectional observational study

conducted between August 2020 to July 2022 from two Shanghai

General Hospital facilities (Shanghai, China). The aim was to

investigate the relationship between different serum 25(OH)D levels

and airway obstruction in patients with asthma. Of the 207 possible
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participants were identified. Demographic characteristics (age, gender,

body mass index and smoking history), symptoms, serum 25-

hydroxyvitamin D (25(OH)D) levels, blood routine examination,

serum inflammatory cytokines, fractional exhaled nitric oxide

(FeNO), pulmonary function, and treatments were extracted from
Frontiers in Immunology 03
the electronic medical record during a follow-up visit. The detailed

history included the most common comorbidities. After checking all

the inclusion and exclusion criteria, 136 patients agreed to participate in

the trial (Figure 1A). 60 patients with T2-high asthma and 36 patients

with T2-low asthma were assessed with a mean age of 52 years, 25
B C

D E

A

FIGURE 1

The effects of serum 25(OH)D level on FEV1%pred and small-airway variables in both asthma groups. (A) The experiment design. (B) The serum levels of
25 (OH)D were significantly lower in both asthma endotypes compared with controls. (C–E) The effects of different serum 25(OH)D levels on FEV1%pred,
MMEF%pred, and FEF50%pred in the T2-low and T2-high groups. * P < 0.05, ** P < 0.01, and *** P < 0.001. ns, non-significant. a Patients selected from
list of patients (hospitalised in department of Respiratory and Critical Care Medicine in 2020–2022). b Not possible to contact patients. PBE, blood
eosinophil count; Lo, vitamin D-deficient group; Hi, vitamin D-sufficient. FEV1%pred, forced expiratory volume in the first second as a percentage of
predicted value; FEF50, forced expiratory flow at 50% of FVC; MMEF, mean mid expiratory flow, average flow from 25–75% FVC.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107031
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1107031
(42%) were male (T2-high), and mean age of 52 years, 14 (39%) were

male (T2-low). Fourty control subjects were assessed for comparison

[mean age of 59 years, and 19 (47%) were male]. Each of the above

groups was divided into vitamin D-deficient (Lo) or vitamin D-

sufficient (Hi) according to the median of serum 25(OH)D level. The

main baseline characteristics of patients are summarised in Table 1.

At least three spirometry tests were performed per subject, with

the highest values used in our correlation analysis. The diagnosis of

asthma was based on the Global Initiative for Asthma (GINA) 2020

guidelines (26). Participants were classified as T2-high (FeNO>20 ppb

or blood eosinophil count (PBE)>150 cells/µL) or T2-low (FeNO ≤ 20

ppb and PBE ≤ 150 cells/µL) at the time of enrollment and at the time

of each exacerbation (27).

This study excluded pregnant women, patients who were actively

breast feeding, patients with a co-morbidity other than asthma that

might affect their serum 25(OH)D levels, and patients receiving

nutritional supplements that could influence their serum 25(OH)D

levels. Human studies were reviewed and approved by the Ethics

Committee of Shanghai General Hospital (No. 2018KY186) and

registered at the Chinese Clinical Trial Registry (chictr.org.cn, no.

ChiCTR2000029065). All participants provided informed consent at
Frontiers in Immunology 04
the time of recruitment and were followed at one of two centers of

Shanghai General Hospital (Shanghai, China).
2.2 25(OH)D measurement

Serum 25(OH)D, a widely used indicator of vitamin D status, was

detected using radioimmunoassay (RIA) kits (DiaSorin, Stillwater,

MN, USA) following the manufacturer’s instructions. The median of

serum 25(OH)D level was used to classify asthmatic patients as either

vitamin D-deficient (Lo) or vitamin D-sufficient (Hi) (28). Mouse

serum 25(OH)D levels were measured using an enzyme linked

immunosorbent assay (ELISA) following the manufacturer’s

instructions (R&D Systems China Co. Ltd., Shanghai, China).
2.3 The mice were provided different
concentration of vitamin D diets

Pregnant BALB/c mice (14 days of pregnancy) were purchased

from SLAC Laboratory Animal Co. Ltd. (Shanghai, China) and
TABLE 1 Baseline asthma patient characteristics.

Characteristic T2-high (n=60)
Hi (30) Lo (30)

T2-low (n=36)
Hi (18) Lo (18)

Control (n=40)
Hi (n=20) Lo (20)

p-value

Age, year 56.03 ± 13.45 53.13 ± 13.63 52.41 ± 15.40 58.18 ± 13.03 61.06 ± 11.67 58.24 ± 11.66 NS

Male, n (%) 14 (46.67) 11 (36.67) 6 (33.33) 8 (44.44) 7 (46.67) 12 (48.0) NS

BMI, kg/m2 24.41 ± 3.77 24.38 ± 3.42 24.00 ± 3.06 23.97 ± 3.71 23.09 ± 4.16 24.40 ± 2.92 NS

Current smokers 2 (6.67%) 1 (3.33%) 1 (5.56%) 1 (5.56%) 1 (6.67%)1 (4.0%) NS

Former smokers 2 (6.67%) 2 (6.67%) 2 (11.11%) 2 (11.11%) 2 (13.33%) 3 (12%) NS

Duration of disease (years) 5.93 ± 1.97 8.17 ± 2.38 7.17 ± 2.32 5.98 ± 1.71 – NS

Exacerbations, n 2.70 ± 0.49 2.72 ± 0.64 2.78 ± 0.56 2.67 ± 0.59 –

ICS dose, n (%) –

Low 6 (20%) 6 (20%) 2 (11.11%) 1 (5.56%) – NS

Medium 10 (33.3%) 9 (30%) 7 (38.89%) 5 (27.78%) – NS

High 14 (46.67%) 15 (50%) 9 (50%) 12 (66.67%) – NS

Oral corticosteroid, n (%) 5 (16.67%) 10 (33.3%) 7 (38.89%) 7 (38.89%) – NS

Oral corticosteroid dose (mg) 5.23 ± 1.73 10.55 ± 3.73# 7.36 ± 2.58 13.51 ± 4.25# – <0.001

25 (OH)D (nmol/L) 56.49 ± 1.92 31.55 ± 1.05# 58.00 ± 3.28 32.27 ± 2.06# 82.53 ± 3.54* 53.26 ± 1.11* <0.001

ACT scores 17.68 ± 2.51 15.43 ± 3.19# 17.16 ± 2.52 14.21 ± 3.66# – <0.001

Calcium (mg/dL) 2.28 ± 0.11 2.24 ± 0.67 2.30 ± 0.79 2.23 ± 0.99 2.22 ± 0.11 2.23 ± 0.99 NS

FVC% 83.55 ± 17.37 75.58 ± 16.61 80.38 ± 15.81 68.75 ± 18.70# 93.31 ± 15.58* 94.09 ± 14.20* <0.001

PEF% 72.37 ± 19.62 67.63 ± 30.35 74.86 ± 20.38 58.86 ± 29.81# 90.20 ± 21.53* 91.06 ± 17.43* <0.001

FEV1/FVC% 76.51 ± 8.56 63.82 ± 17.66 75.77 ± 10.71 69.53 ± 13.14 82.05 ± 7.91* 83.55 ± 6.15* <0.001

Eosinophilic count (cells/mL) 385.9 ± 358.37 647.1 ± 645.33 112.8 ± 93.92Ϯ 108.3 ± 107.94Ϯ 132.8 ± 99.52* 134.5 ± 95.06* <0.001
Data are presented as a mean ± standard deviation (SD), unless otherwise indicated. BMI, body mass index; Hi, vitamin D-sufficiency; Lo, vitamin D deficiency; NS, non-significant; ICS dose: inhaled
corticosteroids; according to the criteria defined by the global initiative for asthma. Available from: www.ginasthma.com FEV1, forced expiratory volume in the first second; FVC, forced vital capacity;
PEF, Peak Expiratory Flow; ACT, asthma control test (ACT) scores. ICS dose: according to the criteria defined by the global initiative for asthma. Available from: www.ginasthma.com.
NS, no significant.
*There were statistical differences between the control group and the asthma group.
#There were significant differences between Hi group and Lo group in athmatic patients.
†There were statistically significant differences between T2-High and T2-Low groups in asthmatic patients.
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individually housed under controlled temperature (23 ± 2°C),

humidity (50 ± 10%), and light/dark cycle (12 h/12 h) conditions in

a pathogen-free room. During this time, all the pregnant mice were

provided standard food containing 1000 IU vitamin D/Kg. Once the

offspring were born, the maternal mice were separately fed with either

vitamin D-deficient (LVD) (0 IU vitamin D/kg) (10), vitamin D-

sufficient (NVD) (1000 IU vitamin D/kg) (25, 29, 30), or vitamin D-

supplemented (HVD) diets (2280 IU vitamin D/kg) (31) (Xietong

Laboratories, Jiangsu, China). As with the NVD and HVD diets, the

LVD diets were supplemented with vitamins A, E, and K and 1.2%

calcium (29, 32). The offspring had the same diet as their mother after

weaning, and food intake was measured every other day and were

main experimental subjects of our following study. The experimental

diet composition (Research Diets, Inc., New Brunswick, NJ, USA) is

provided in Supplementary Table 1 of Supplementary information.

The numbers of female and male offspring studied in this research are

show in Supplementary Table 2 of Supplementary information.
2.4 Allergic airway inflammation induction
and ozone exposure

Mice in the three diet groups were randomly divided into three

additional groups (n=8 per group): controls, OVA and OVA + ozone.

The mice in the OVA and OVA + ozone groups were sensitized

intraperitoneally (IP) with 20 µg OVA (Grade V, Sigma-Aldrich)

diluted in 0.2 mL of Dulbecco’s phosphate buffered saline (PBS) and

2 mg aluminum hydroxide (Sigma-Aldrich) in a total volume of 20 mL

on days 0, 7, and 14, and challenged via aerosol nebulization with 1%

OVA for 30 min each day from day 21 to day 25. Mice in the control

group were treated with PBS at both timepoints in the same manner as

previously described (33). After the OVA challenge, the same number

of mice in the OVA + ozone group were exposed to 2.5 ppm ozone for

2 h daily from day 21 to day 25 as previously described (34, 35). The

control mice were exposed to room air during this period.
2.5 Spirometry using the forced
manoeuvres system

Twenty-four hours after the last OVA challenge, the mice were

anesthetized, fitted with a tracheal cannula, and attached to a

plethysmograph with a pneumotachograph using the eSpira Forced

Manoeuvres System for mice (EMMS, Hants, UK) to mimic classical

clinical spirometry (36). We measured FEF50 and MMEF as

indicators of small-airway function.
2.6 Airway responsiveness

The anesthetized mice were then ventilated (MiniVent, Hugo

Sachs Electronik, Germany) in a whole-body plethysmograph with a

pneumotachograph linked to a differential pressure transducer

(EMMS, Hants, UK) (36). Airway resistance (RL) was recorded for

3 min at each concentration of inhaled acetylcholine chloride (ACh,

Sigma-Aldrich, USA) (4-256 mg/mL, 10 µL each time). RL was

expressed as the percentage change from baseline RL (measured
Frontiers in Immunology 05
following PBS nebulization). The ACh concentration required to

increase RL by 100% from baseline was calculated (PC100), and

-logPC100 was used as an indicator of AHR.
2.7 Bronchoalveolar lavage fluid
measurements

The tracheas of the anesthetized mice were accessed to collect

bronchoalveolar lavage fluid (BALF) via infusion of 0.6 mL PBS three

times through a polyethylene (PE-60) tube (37). The BALF recovery

rate was above 80% (37). The reclaimed BALF was centrifuged at 3000

r/min for 10 min at 4°C. Supernatants were collected to measure the

expression of IL-4, IL-6, IL-10, IL-17A, IL-1b and TNF-a via ELISA

using kits (Invitrogen, CA, USA) following the manufacturer’s

protocol. Cell counts were performed using Wright–Giemsa stained

cytospin slides by two independent, blinded investigators.
2.8 Histologic and morphometric analysis

The left lungs of the mice were fixed in 4% paraformaldehyde for

24 h, embedded in paraffin, sectioned to expose the maximum surface

area of the lung tissue in the plane of the bronchial tree, and stained

with hematoxylin-eosin (HE) (38). Peribronchiolar and perivascular

area were observed in the HE stained lung slices, and each tissue

section was scored on a scale from 0 to 3 (36). Airway inflammatory

cell infiltration density (per 100 mm) was calculated in a double-

blinded manner by two independent investigators.
2.9 Statistical analysis

All statistical analyses were performed using SPSS 25.0.

Continuous variables were expressed as mean ± standard deviation

(SD) or median plus range, and categorical variables were expressed

as number (%). One-way analysis of variance (ANOVA) and the

Student–Newman–Keuls (S-N-K) post hoc test were used to compare

multiple groups. Categorical variables were compared using the Chi-

square (c2) test. A correlation heatmap as shown in Figures 2A, B was

visualized using GraphPad Prism 8.0 (La Jolla, CA, USA). P < 0.05

was considered statistically significant.
3 Results

3.1 Demographic characteristics and
physical performance

A total of 96 patients with asthma (mean age, 55.9 ± 13.74) were

included and categorized into T2-high (n=60), T2-low (n=36), and

control (n=40) groups. There were no significant differences between

the asthmatic patients and control subjects in age, height, body mass

index, ICS dose, numbers of previous exacerbations and smoking

history (Table 1). The Asthma Control Test (ACT) provides a

standardized score for helping healthcare professionals and patients

assess whether asthma symptoms are well managed. The average ACT
frontiersin.org
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scores of patients with vitamin D deficiency (Lo) were significantly

lower than those with vitamin D sufficiency (Hi) in both asthmatic

endotypes. There were significant differences between asthmatics and

control subjects in FVC%, PEF%, and FEV1/FVC%, which were all

lower in asthmatics. FVC% and PEF% were lower in the Lo group

compared with the Hi group in T2-low patients, but not in T2-high

patients. FEV1/FVC% were lower in both asthma groups compared

with controls, but equivalent between T2-high and T2-low.

Eosinophil levels were significantly elevated in the T2-high group

compared with the T2-low and control groups, and higher in Lo vs. Hi

patients in the T2-high group (Table 1).
3.2 FEV1%pred and small-airway variables
were decreased in patients with vitamin D
deficiency regardless of asthma endotype

Serum 25 (OH)D levels were significantly lower in the T2-high

and T2-low groups compared with controls (Figure 1B). Patients with

Lo had decreased FEV1%pred and small-airway variables (MMEF%
Frontiers in Immunology 06
pred and FEF50%pred) compared with Hi in both asthmatic groups

(Figures 1C–E). The FEV1%pred, MMEF%pred, and FEF50%pred of

patients with vitamin D deficiency in the T2-low group were lower

those with vitamin D deficiency in the T2-high group, but these

relationships were not significant (Figures 1C–E).
3.3 Serum inflammatory cytokines were
elevated in patients with vitamin
D deficiency

Serum IL-5 levels in Lo patients were significantly higher than

those with Hi in the T2-high group (Figure 2B), and IL-17A

expression had a similar effect in the T2-low group (Figure 2E). IL-

6 expression was higher in Lo patients compared with Hi patients in

both asthmatic groups (Figure 2C). Serum IL-10 expression in Lo

patients was less than Hi patients in the T2-low group, but not in the

T2-high group (Figure 2D). IL-4, IL-1b, and TNF-a expression in the

Lo group were higher than Hi patients in both asthmatic groups, but

these relationships were not significant (Figures 2A, F, G).
A B

D E F

G

C

FIGURE 2

The expression of (A) IL-4, (B) IL-5, (C) IL-6, (D) IL-10, (E) IL-17A, (F) IL-1b, and (G) TNF-a at different serum 25(OH)D levels in asthmatic patients. * P <
0.05, ns, non-significant; IL, interleukin; TNF, Tumor Necrosis Factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107031
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1107031
3.4 Serum 25(OH)D levels correlated
with FEV1%pred and serum
inflammatory cytokines

Correlation was evaluated using Spearman’s rank analysis. Serum 25

(OH)D levels were negatively correlated with eosinophil count (r=-0.301,

P=0.021) and IL-5 (r=-0.354, P=0.016) and TNF-a expression (r=-0.503,

P=0.001) in the T2-high group, and negatively correlated with neutrophil

count (r=-0.058, P=0.001) and Th17 related cytokine IL-17A expression

(r=-0.397, P=0.040) in the T2-low group. However, the serum 25(OH)D

levels were positively correlated with IL-10 expression (r=0.366, P=0.017

in T2-high and r=0.474, P=0.008 in T2-low) and FEV1%pred (r=0.432,

P=0.001 in T2-high and r=0.377, P=0.033 in T2-low) in the two groups.

(Figure 3A). However, the serum 25(OH)D status only were positively

associated with MMEF%pred (r=0.415, P=0.022) in T2-low group

(Figure 3B). Further regression analysis revealed that 25(OH)D might

contribute to elevated FEV1%pred (R2 = 0.1399, regression coefficient =

0.4776, Figure 3C and R2 = 0.1468, regression coefficient = 0.4274;
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Figure 3D) in two groups. Meanwhile, regression analysis revealed that

25(OH)D decreased eosinophil count (R2 = 0.0455, regression

coefficient=0.00975, Figure 3E) in the T2-high group and neutrophil

count (R2 = 0.2432, regression coefficient = 0.05608; Figure 3F) in the T2-

low group. Although the regression coefficients were low, they were

statistically significant.
3.5 Vitamin D deficiency diets decreased
mouse serum 25(OH)D concentration

The serum 25(OH)D levels were 40.63 ± 5.18 ng/mL, 11.60 ± 1.89

ng/mL, 48.14 ± 6.48 ng/mL in offspring fed NVD, LVD and HVD

diets, respectively. The serum 25(OH)D concentration was lower in

the LVD group than the NVD or HVD groups in 8-week-old and 12-

week-old mice. The three groups with different diets did not have

significant differences on the serum 25(OH)D concentrations in 8-

week-old and 12-week-old mice (Figure 4A). Serum levels of 25(OH)
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FIGURE 3

Heatmap of Spearman’s correlation between serum 25(OH)D level and inflammatory cytokines and lung function. (A) Serum 25(OH)D level was
negatively correlated with eosinophils, IL-5 and TNF-a, and positively correlated with IL-10 and FEV1%pred in the T2-high group. (B) Serum 25(OH)D
level was negatively correlated with neutrophils and IL-17A, and positively correlated with IL-10 and FEV1%pred in the T2-low group. (C, D) Regression
analysis revealed that 25(OH)D may contributed to increased FEV1%pred in both asthma groups. (E, F) Regression analysis revealed that 25(OH)D may
contribute to reduced eosinophils in the T2-high group and decreased neutrophils in the T2-low group. A cross represents no statistical significance.
p-Values are shown in Supplementary Tables 3, 4 of Supplementary information. IL, interleukin; TNF, Tumor Necrosis Factor; FEV1%pred, forced
expiratory volume in the first second as a percentage of predicted value.
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D were decreased compared with controls after OVA alone or OVA +

ozone co-exposure, and further reduced in the LVD groups than the

NVD and HVD groups (Figure 4B).
3.6 The effects of vitamin D diets on airway
resistance, small-airway variables and airway
hyperresponsiveness

There were no obvious differences in baseline RL following

buffered PBS nebulization between the nine groups (Figure 5A).

Mice in the LVD control group had a leftward shift in their RL

concentration responsiveness curves compared with the NVD and

HVD control groups, while there were no significant differences in the

percentage change from baseline RL at different concentrations

(Figure 5A). After OVA or OVA + ozone exposure, animals in the

three different diet groups all had a leftward shift in their RL

concentration responsiveness curves, representing increased airway

responsiveness compared with control mice on the same diets. The

mouse models given LVD diets had stronger airway responsiveness

and increased RL at 8 mg/mL, 16 mg/mL, 64 mg/mL, 128 mg/mL, and

256 mg/mL ACh concentrations compared with those fed NVD and

HVD diets (Figure 5A). declined dramatically after OVA or OVA +

ozone exposure in the LVD and NVD groups, indicating AHR in the

LVD and NVD groups (Figure 5B). The –logPC100 decreased

significantly after OVA + ozone exposure in the LVD group

compared with NVD and HVD group.

The mice fed LVD diets had lower MMEF and FEF50 compared

with those fed NVD and HVD diets. (Figures 5C, D). Except for HVD

diets after OVA sensitization/challenge, the MMEF further declined

in the LVD and NVD groups after OVA or OVA + ozone exposure.

The MMEF was lower in the HVD + OVA + ozone group than the

HVD + OVA group, but no significant differences were observed

between HVD and HVD + OVA groups (Figure 5C). The FEF50

further declined in the NVD groups after OVA or OVA + ozone

exposure, and the LVD + OVA + ozone group had a lower FEF50

than the LVD control group, but there were no obvious differences
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between LVD and LVD + OVA groups (Figure 5D). These data

suggest that vitamin D may have exerted a stronger influence on

small-airway function in our OVA + ozone mouse model.
3.7 The effects of vitamin D on airway
inflammation in mouse lung tissue

The LVD control group exhibited more airway inflammation than

the other two control groups (Figure 6A). The mice fed LVD diets

exhibited greater airway inflammation, as represented by increased

infiltration of inflammatory cells (e.g., eosinophils and neutrophils) in

the lung tissue, than those with NVD and HVD diets in the OVA and

OVA + ozone groups (Figures 6A-D). However, the lymphocyte

infiltration measured in the LVD + OVA group and NVD + OVA

group was equivalent (Figure 6E). The LVD + OVA group had greater

eosinophil infiltration than other groups (Figure 6C), but more

neutrophils only in the LVD + OVA + ozone group (Figure 6D).
3.8 The effects of vitamin D on airway
inflammation in mouse BALF

There were no significant differences in eosinophils and

neutrophils in the BALF among LVD, NVD and HVD control

groups. BALF total cell count, eosinophil count and macrophage

count were significantly increased after an OVA sensitization/

challenge with or without ozone exposure (Figures 6F, G, I), but

except the number of neutrophils in the NVD + OVA group

(Figure 6H). However, the BALF total cell count were no obvious

differences between OVA group and OVA + ozone group in the LVD

and HVD groups. In both asthmatic models, mice fed LVD diets had

higher total cell counts, eosinophil counts, neutrophils counts and

macrophage counts than mice in the HVD groups (Figures 6F–I), but

eosinophil counts were equivalent in the LVD and NVD groups

(Figure 6G). Neutrophil counts were significantly higher in the LVD +

OVA + ozone group compared with all other groups (Figure 6H), and
A B

FIGURE 4

(A) Serum 25(OH)D concentration in 8-week and 12-week-old offspring mice with NVD, LVD, or HVD at birth. (B) At 12 weeks of age, serum 25(OH)D
levels in the OVA groups, OVA + ozone groups and corresponding control groups were measured. Values are mean ± SD (n = 8 per group). *P< 0.05,
**P < 0.01, and ***P < 0.001. NVD, vitamin D sufficiency; LVD, vitamin D deficiency; HVD, vitamin D-supplementation.
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the eosinophil counts were higher in the LVD + OVA group

(Figure 6G). Thus, the effects of Vitamin D on airway inflammation

measured using BALF were basically the same as its impact on

lung tissue.
3.9 The effects of vitamin D on inflammatory
cytokines levels in mouse BALF

The expression of the Th2-related cytokine IL-4 in the BALF were

no significant differences among LVD, NVD and HVD control

groups. However, the expression of IL-4 was significantly elevated

in the LVD + OVA group compared with the LVD control group and

the LVD + OVA + ozone group (Figure 7A). The expression of the

Th2-related cytokine IL-6 and the Th17-related cytokine IL-17A were

significantly increased in the LVD control groups compared with the

HVD control groups, and the expression of IL-6 and IL-17A in the

LVD group further increased after OVA or OVA + ozone exposure, in

particular in the OVA + ozone group. However, compared with the

corresponding control group, the expression of IL-6 in NVD and

HVD groups were no significant differences were observed after OVA

sensitization/challenge (Figure 7B). Meanwhile, there were no
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significant differences in the expression of IL-17 A between NVD

and LVD groups, no obvious differences were also observed after

OVA sensitization/challenge (Figure 7D). IL-10 (a cytokine linked

with T regulatory cells) expression in the BALF of the OVA and OVA

+ ozone groups was notably lower than controls, and mice fed LVD

diets had lower levels of IL-10 than those fed NVD or HVD diets in

both asthmatic models, especially the OVA + ozone group. However,

the expression of IL-10 was equivalent between the NVD + OVA

group and the HVD + OVA group (Figure 7C). The expression of the

Th1-related cytokines IL-1b and TNF-a were significantly higher in

the LVD groups compared with the NVD groups in both asthmatic

models, but the expression of TNF-a in the LVD group was

significantly higher than the HVD group only among mice exposed

to OVA + ozone (Figures 7E, F). These data suggest that vitamin D

may have an effect on inflammatory cytokine expression in the BALF

of Mice exposed to OVA + ozone.
4 Discussion

This study is the first to report associations between vitamin D

status and airway inflammation, airway resistance (RL), and small-
A B
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FIGURE 5

The effects of different vitamin D diets on lung function in mouse asthma models. (A) The mean percentage of RL increased with inhaled ACh
concentration. The smaller group are shown in Figure S2 of Supplementary information. (B) -logPC100 (ACh concentration increased RL by 100% from
baseline) of the nine groups is shown in Panel (B) Data are expressed as mean ± SD of eight animals in each group. (C) Vitamin D deficiency decreased
the MMEF of both mouse models. (D) Vitamin D deficiency decreased the FEF50 of both mouse models. * P < 0.05, ** P < 0.01, and
*** P < 0.001 compared to the control group shown in different colors. ns, non-significant. ACh, acetylcholine chloride; NVD, vitamin D-sufficient group;
NVD + OVA, OVA-sensitized/challenged mice in vitamin D-sufficient group; NVD + OVA + ozone, OVA-sensitized/challenged mice with ozone exposure
in vitamin D-sufficient group; LVD, vitamin D-deficient group; LVD + OVA, OVA-sensitized/challenged mice in vitamin D-deficient group; LVD + OVA
+ ozone, OVA-sensitized/challenged mice with ozone exposure in vitamin D-deficient group; HVD, vitamin D supplemented group; HVD + OVA, OVA
sensitized/challenged mice in vitamin D-supplemented group; HVD + OVA + ozone, OVA sensitized/challenged mice with ozone exposure in vitamin
D-supplemented group; MMEF, mean mid expiratory flow, average flow from 25–75% FVC; FEF50, forced expiratory flow at 50% of FVC.
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airway function measured in asthmatic humans and mouse models

with the two common endotypes of asthma. It was observed that

vitamin D deficiency in asthmatic patients may induce airway

inflammation, small-airway dysfunction, and increased RL in both

common asthma endotypes. Further, our animal experiment

suggested that different vitamin D diets initiated during lactation

and early life impacted airway inflammation and RL.

Previous studies (39–41) have shown that low serum vitamin D

was associated with worse lung function and severe asthma

exacerbations. In our study, patients with lower 25(OH)D levels (Lo)
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had lower FEV1%pred, MMEF%pred, and FEF50%pred compared

with those with higher 25(OH)D levels (Hi) in both asthmatic

endotypes. However, our results are inconsistent with the discoveries

of Castro et al’s (42) that treatment with vitamin D had no significant

effect on lung function or airway hyperreactivity, and neither asthma

quality of life nor asthma control was improved with vitamin D. IL-

17A has been established as an independent risk factor for severe

asthma, and has been associated with a T2-low endotype and

neutrophilic phenotype (43, 44). In our study, the expression of IL-

17A was higher in the T2-low group with Lo compared with Hi, and
A
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FIGURE 6

Effects of different levels of vitamin D in the diets on inflammatory cell infiltration in the lung tissue and BALF in T2-high and T2-low asthma models.
Airway inflammation in the lung tissue was measured through H&E staining and compared between groups. Airway inflammatory cell infiltration in the
BALF was evaluated by Wright–Giemsa staining and compared between groups. (A) Representative photomicrographs of HE-stained inflammatory cell
infiltration into lung tissue. (B) Airway inflammation scores in lung tissue. (C) Infiltration density of eosinophils in lung tissue. (D) Infiltration density of
neutrophils in lung tissue. (E) Infiltration density of lymphocytes in lung tissue. (F) The number of total cells in BALF. (G) Eosinophils in BALF. (H)
Neutrophils in BALF. (I) Macrophages in BALF. Airway inflammatory scores in (B) were written as medians as they did not fit a Gaussian distribution; other
data are written as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. Scale bar = 100 µm. ns, non-significant. BALF, bronchoalveolar lavage fluid; HE,
hematoxylin and eosin.
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inversely correlated with serum 25(OH)D level. IL-10 plays a critical

role in immunosuppression, and has been shown to regulate cellular

sensitivity to glucocorticoids in lymphocytes and monocytes (45). Our

study showed that the expression of IL-10 was lower in the T2-low

group with Lo than with Hi, a relationship not seen in the T2-high

group. This is consistent with Creed TJ et, al (45) suggested that

vitamin D might help to alleviate airway inflammation and revert

steroid-resistance through elevating the level of IL-10. Therefore,

vitamin D may have an important role in T2-low asthma. However,

Th2-related cytokine IL-5 were significantly increased in vitamin D-

deficient patients in T2-high group, but the effect no significant

difference in Th2-related cytokine IL-4, its mechanism needed to

further study. Our clinical study found that vitamin D status had a

stronger correlation with FEV1%pred in the T2-low group.

Furthermore, the small-airway functional variable MMEF%pred was
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positively linked with 25(OH)D status only in the T2-low group.

Our results also demonstrated that FEV1%pred was negatively

correlated with eosinophil count and positively associated with IL-10

in the T2-high group. However, small-airway variables such as

MMEF%pred and FEF50%pred did not correlate with airway

inflammation severity in this group. In contrast, MMEF%pred

was negatively correlated with neutrophil count and IL-17A in the

T2-low group. Although FEV1%pred was associated with airway

inflammation in both asthmatic groups, small-airway dysfunction

may permit the evaluation of illness severity or contribute to the

progression of airway inflammation only in T2-low asthma. Our

studies suggest that vitamin D may have a positive impact on

FEV1%pred and small-airway dysfunction via its inhibitory effect

on airway inflammation, especially in patients with the T2-low

asthma endotype.
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FIGURE 7

Effects of different levels of vitamin D in the diets on inflammatory cytokine levels in BALF in T2-high and T2-low asthma models. The inflammatory
cytokine levels in BALF were analyzed by ELISAs and compared between groups. (A) Expression of IL-4 in BALF; (B) Expression of IL-6 in BALF; (C)
Expression of IL-10 in BALF; (D) Expression of IL-17A in BALF; (E) Expression of IL-1b in BALF; and (F) Expression of TNF-a in BALF. Data were presented
as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. ns, non-significant. BALF, bronchoalveolar lavage fluid; ELISA, Enzyme-linked immunosorbent assay;
IL, interleukin; TNF, Tumor Necrosis Factor.
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As our clinical data on asthmatic patients was sparse and

retrospective, we relied on animal experiments. The mechanisms

behind the relationship between vitamin D and asthma require

further investigation, particularly with respect to different asthma

endotypes. Our pre-clinical model showed that serum 25(OH)D

levels in vitamin D deficient (LVD) group were lower than in the

vitamin D sufficient (NVD) and vitamin D supplemented (HVD)

groups in both asthmatic models. This finding is consistent with those

of Kim et al. (29), who showed that serum 25(OH)D concentrations

were significantly higher in groups supplemented with vitamin D

compared with non-supplemented groups. Further, mice in the LVD

group had significantly increased RL and airway inflammation

compared with those in the NVD and HVD groups. This is

consistent with our clinical findings. Mice fed LVD diets had

increased inflammation, including eosinophil, neutrophil and

lymphocyte infiltration, in their lung tissues compared with those

fed HVD diets. The LVD + OVA + ozone (T2-low) group had a

higher inflammation score than the LVD + OVA (T2-high) group.

Poon et al. (46) showed that vitamin D has its anti-proliferative and

anti-inflammatory effects on airway smooth muscle (ASM) cells in the

setting of inflammation and airway remodeling. This study suggests

that vitamin D deficiency may increase airway inflammation,

especially after OVA + ozone exposure. Meanwhile, the LVD +

OVA + ozone group had an increased total, neutrophil, and

macrophage counts and fewer eosinophils in their BALF than the

LVD + OVA group. This correlates with findings by Brehm et al. (47),

who showed that vitamin D status was negatively related to peripheral

blood neutrophil or eosinophil counts in asthmatic children. These

results suggest that vitamin D deficiency might influence asthma

pathogenesis by modulating crucial processes that influence airway

inflammation. The mice fed LVD diets had also increased RL and

decreased -logPC100 compared with those fed HVD diets after OVA

alone or OVA + ozone, suggesting that the Ach responsiveness

induced by OVA alone or OVA + ozone could be enhanced by

LVD. Our results are in agreement with a previous study that showed

that a continuous vitamin D deficiency increased the development of

AHR in asthma models (19, 48). Mice fed LVD diets also reduced

small-airway function than those fed HVD diets in both asthma

models. The HVD + OVA + ozone group had a lower MMEF than the

HVD + OVA group, and the LVD + OVA + ozone group had a lower

FEF50 than the LVD control group, but this relationship was not seen

in the LVD+OVA group. This study therefore suggests that vitamin D

deficiency affects the small-airway function asthmatics, especially

with the T2-low endotype. The mice fed LVD diets after OVA

alone or OVA + ozone had increased IL-4 expression compared

with those fed HVD diets. Further, IL-10 expression in both asthmatic

models fed LVD diets was lower than those fed HVD diets. This is

consistent with previous studies (49) suggested that vitamin D may

help reduce airway inflammation and reverse steroid-resistance by

increasing IL-10 expression. IL-6 and IL-17A expression were

increased in the LVD + OVA + ozone group compared with the

LVD + OVA group, suggesting that LVD + OVA + ozone seems to

induce a greater inflammatory response than LVD + OVA. In our

animal experiment, vitamin D also affect airway inflammation and RL

on T2-high asthma, however, vitamin D deficiency may therefore play

a more important role in the pathogenesis of T2-low asthma.
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Current guidelines disagree regard the optimal dosage and

concentration of 25(OH)D (50). Vitamin D at 1000 IU/kg appeared

to effectively improve the effects of vitamin D deficiency in our mouse

model. This supports findings that high dose vitamin D

supplementation (administered at a dose of 2280 IU/kg) (31) was

required to prevent the development of asthma in offspring than

vitamin D sufficiency alone. This may support the clinical rationale

for providing effective vitamin D supplementation to prevent infant

asthma. It can also be inferred that higher concentrations of vitamin

D may be necessary to modulate the airway inflammation and

resistance in mouse models, especially those replicating T2-low

asthma. Vitamin D has a well-documented role in the regulation of

the adaptive T-cell response and innate immunity. However, no

specific function has been identified for why vitamin D levels

impact Th2-mediated eosinophilic and Th17-mediated neutrophilic

airway inflammation. Fawaz and colleagues (18) identified a potential

protective role of vitamin D through the modulation of the

pathogenic T cell response. Our results suggest that vitamin D

deficiency is associated with increased RL, the pro-inflammatory

Th2 and Th17 responses, and the regulation of the T-reg

production of IL-10 in clinical and pre-clinical models. Our study

also showed that airway obstruction was related to different airway

inflammation cytokines in both asthmatic endotypes. Vitamin D may

therefore improve airway obstruction via regulation of different

airway inflammatory pathways in both asthmatic endotypes, but it

may exert a greater impact on T2-low asthma, although its

mechanism of action requires further research.

There are several limitations to our study. First, few studies have

evaluated if vitamin D supplementation can improve the airway

inflammation and RL of mouse models with vitamin D deficiency.

Secondly, further studies are required to determine which asthma

endotype would benefit the most from vitamin D supplementation.

Lastly, we only performed an observational study on the association

between vitamin D deficiency and both asthmatics endotypes. The

potential association between vitamin D and T2-low asthma requires

further study.
5 Conclusion

Vitamin D-deficiency induced inflammatory cytokine expression,

and correlated with airway resistance in both asthma endotypes. The

potential effects of vitamin D on airway obstruction may be through

changes in inflammatory cytokines and is more evident in T2-low

asthma. As there are few treatment options remain for T2-low

asthma. The mechanisms behind the interactions between vitamin

D and both asthma endotypes should be studied individually, and

further studies on the potential signaling pathways involved in

vitamin D and T2-low asthma are warranted.
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