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Homeostatic role of B-1 cells
in tissue immunity
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1Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United
Kingdom, 2NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS
Foundation Trust, Cambridge, United Kingdom, 3Wellcome Sanger Institute, Hinxton, United Kingdom
To date, studies of tissue-resident immunity have mainly focused on innate

immune cells and T cells, with limited data on B cells. B-1 B cells are a unique

subset of B cells with innate-like properties, enriched in murine pleural and

peritoneal cavities and distinct from conventional B-2 cells in their ontogeny,

phenotype and function. Here we discuss how B-1 cells represent exemplar

tissue-resident immune cells, summarizing the evidence for their long-term

persistence & self-renewal within tissues, differential transcriptional

programming shaped by organ-specific environmental cues, as well as their

tissue-homeostatic functions. Finally, we review the emerging data supporting

the presence and homeostatic role of B-1 cells across non-lymphoid organs

(NLOs) both in mouse and human.
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1 Introduction

Our understanding of mammalian immunity is largely based on studying immune cells

in blood and lymphoid organs. However, there is a growing appreciation that some subsets

of innate and adaptive immune cells reside permanently in non-lymphoid organs (NLOs)

without recirculation. To date, studies of these tissue sentinels have mainly focused on

innate immune cells and T cells, with limited data on B cells (1–5). Here we discuss B-1

cells, a subset of B cells with “innate-like” properties that have several features ascribed to

tissue-resident lymphocytes. We review the current evidence for their presence and

homeostatic role in NLOs in mouse and human.

B-1 B cells represent a unique subset of B cells that is distinct from conventional B-2

cells in terms of their ontogeny, phenotype and function (6, 7). Murine B-1 cells were first

discovered as Ly-1+ (now CD5+) B cells in early 1980s by Kyoko Hayakawa in Herzenberg’s

lab at Stanford University, fueled by the motivation to find the physiological counterpart to

human CD5-expressing chronic B-cell leukemia (B-CLL) cells (8, 9). The “B-1” label

denotes the fact that their development begins early in ontogeny - preceding B-2 cells.

Although the original search for CD5+ B cells led to the identification of this unique subset,

later studies reported B cells with B-1 characteristics but lacking CD5 expression. Thus, B-1
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cells in mouse, identified as B220lowIgMhiCD23-CD43+IgDlow, have

been further sub-classified as B-1a (CD5+) and B-1b (CD5-). While

B-1a cells are preferentially produced by yolk-sac and foetal liver

precursors, B-1b cells dominate the post-natal generation of B-1

cells in bone marrow (10, 11). Although some studies attempted to

explain the existence of two B-1 subsets by the “division of labour”

model, for example, the generation of natural versus antigen-driven

antibody production in B-1a and B-1b, respectively, others did not

observe such a functional split (12–14). Moreover, Savage et al.

showed that upon toll-like receptor (TLR) stimulation B-1a B cells

down-regulated their CD5 expression, suggesting B-1b cells being

simply an activated form of B-1a cells rather than a distinct

subset (15).

Although most of the evidence to date examining B-1 cells has

utilized murine systems, and their existence in humans has been a

matter of controversy, some recent studies applying single cell

genomics to pre-natal human cells have clarified aspects of cross-

species similarity (16). Here, we will initially focus on the body of

work from mouse models, and then turn to human studies of

innate-like B cells.
2 Tissue-residency of B-1 cells

Tissue-resident immune cells have several canonical features,

exemplified and first demonstrated in macrophages, namely long-

term persistence & self-renewal within tissues, differential

transcriptional programming shaped by organ-specific
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environmental cues and tissue-homeostatic functions. These

characteristics were subsequently described in tissue-resident T-

and NK cells (reviewed by Fan and Rudensky (17)), but here we

posit that B-1 cells also exhibit several of these features (Figure 1A).

Murine B-1 cells predominantly reside in pleural and peritoneal

cavities where they constitute 35-70% of local B cells. A smaller

proportion of these cells can also be found in the spleen, bone

marrow, lymph nodes and some NLOs (1, 6, 18, 19). Ansel et al.

demonstrated that almost 70% of peritoneal B-1 cells remained

sessile after 8-week parabiosis and that their homing into the

peritoneal cavity was mediated, at least in part, by CXCL13 (20)

(Figure 1B). The fact that ~30% of peritoneal B-1 cells exchanged in

their parabiosis experiment, and that B-1 cells are detectable in

peripheral blood, indicate that some B-1 cells undergo homeostatic

re-circulation (6, 14, 20). However, little is known about their

patterns of migration and the molecular mechanisms

underpinning their dynamic behavior. Certainly, innate

stimulation (e.g. via TLR), results in B-1 cell migration from body

cavities into secondary lymphoid organs, a phenomenon that seems

to be CD11b- and CD6-dependent (14, 21–23).

In addition to high CD11b and low CD6 expression, peritoneal

B-1 cells differ from their counterparts in secondary lymphoid

organs in terms of their transcriptional profile, immune repertoire

(for example, they have a higher frequency of Ighv11-encoded

phosphatidyl-choline binders) and inability to secrete natural IgM

antibodies (24–27). Adoptive transfer studies, together with the

evidence for B-1 cell re-circulation, show site-specific differences in

phenotype and function and indicate substantial B-1 cell plasticity
A

B

C

FIGURE 1

Tissue-resident features of B-1 cells and their diverse functions. (A) Table comparing canonical features of tissue residency between macrophages
and B-1 cells. (B) B-1 cell innate-like responsiveness is mediated by TLR signaling and their tissue homing, at least in part, by CXCL13. Peritoneal
macrophages influence nearby B-1 cells via prostaglandin E2 (PGE2), inhibiting their natural IgM production. (C) B-1 cells perform their diverse roles
(including homeostatic functions) via both antibody-dependent and antibody–independent (cytokines secretion, antigen-specific activation or
inhibition of T cells) mechanisms. They promote or regulate immune responses by other immune cells in direct contact-dependent or –
independent (by-stander) mechanisms. Contact-dependent interaction with T cells can be antigen-specific, relying on coupling MHC/TCR coupling.
While antibodies modulate immune response through complement activation and binding activating and inhibitory Fc-receptors (FcRs), they (in
particular, natural antibodies) also play an essential role in maintaining both central and peripheral immune tolerance.
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and an ability to adapt to organ-specific cues, rather than the

existence of several distinct B-1 subsets preferentially seeding

different tissues (26, 27). Chace et al. provided a good example of

such a tissue-specific influence, showing that peritoneal

macrophages inhibit IgM secretion of nearby B-1 cells via

prostaglandin E2 secretion (28) (Figure 1B).
3 Self-renewing capacity and
innate-like responsiveness
of B-1 cells

An important B-1 cell feature is the capacity to self-renew in

situ, as suggested by the ability of adoptively transferred mature

peritoneal B-1 cells to reconstitute all B-1 cell compartments (10,

29–32). Recently, Clark et al. showed that B-1 cell maintenance and

self-renewal in the lipid-rich peritoneal cavity is dependent on

autophagy and a specific metabolic programme characterized by

fatty acid synthesis, oxidative phosphorylation, but also high levels

of glycolysis (33). B-1 cells were able to utilize and store exogenous

lipids available in the surrounding microenvironment, further

demonstrating their metabolic adaptation to their tissue of

residence (33). B-1 cells have unique intracellular signaling

characteristics that distinguish them from B-2 cells and are

essential for their long-term survival. These include a relative

unresponsiveness to BCR crosslinking (evidenced by an inability

to mobilize intracellular calcium and a lack of NF-kB activation and

proliferation) and active basal tonic signaling downstream of the

BCR with constitutive phosphorylation of SYK, ERK and STAT3,

which occurs in B-2 cells only after BCR stimulation (34–36). This

relative inhibition of BCR-induced proliferation is controlled by the

balanced expression of positive (for example, CD19) and negative

(for example, CD5, Siglec-G) BCR regulators, the perturbation of

which also affected B-1 cell survival (32, 37–39). However, the

ligands for these BCR regulators still remain to be found and/or

confirmed. Anergic B-2 cells may share some of these characteristics

(e.g. unresponsiveness of low-level self-reactive BCRs, constitutive

ERK phosphorylation or CD5 expression) (40). However, in

contrast to anergic B-2 cells, B-1 cells live longer (both in vitro

and in vivo), express higher levels of surface IgM and co-stimulatory

molecules, and upon BCR cross-linking phosphorylate AKT and

upregulate MHCII (35, 40–42). Interestingly, unlike B-2 cells, B-1

cell development and survival does not seem to be dependent on the

myeloid-derived cytokine BAFF (B cell activating factor of the TNF

receptor family). Although Lam et al. demonstrated its enhancing

role in B-1 cell activation, leading to increased expression of CD21/

35 and NF-kB activation (43, 44).

One hallmark of tissue-resident lymphocytes is their innate-like

ability to recognize danger and memory/memory-like phenotype,

enabling rapid responses. B-1 cells vigorously respond to innate

stimuli, for example mediated via TLR or interleukin (IL)5 receptor

engagement, leading to their emigration from body cavities into

secondary lymphoid organs and to rapid up-regulation of BLIMP1

and their subsequent differentiation into plasma cells, as also

observed in marginal zone (MZ) B cells (21, 45, 46). The strong

B-1 cell response to innate stimulation and relative BCR
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unresponsiveness might imply that B-1 cell activation is

independent of BCR signaling. However, Savage et al.

demonstrated that TLR stimulation in B-1 cells led to the

reorganization of their BCR signalosome (including association

with CD19 and loss of CD5) which, as a licensing step, released

the initial BCR signaling block present in resting B-1 cells (15).
4 Homeostatic function of B-1 cells

One of the key functions of B-1 cells is their homeostatic

“spontaneous” production of natural antibodies (predominantly

IgM and IgG3), even in the absence of any foreign microbial

stimuli (47). Recently, Zeng et al. reported the role of sex

hormones in natural antibody production. They found that the

female advantage in the clearance of enteropathogenic Escherichia

coli was driven by oestrogen-dependent production of natural

antibodies that bind the bacterium (48). IL-5, an inducer of

BLIMP1 expression, is another factor shown to play a role in

tonic antibody secretion (46). As noted above, natural antibodies

are produced outside body cavities, mostly in the bone marrow and

spleen (26). Savage et al. demonstrated that the population of

natural antibody-secreting cells is heterogeneous, containing a

significant proportion of non-terminally differentiated, BLIMP1neg

cells (49). Recently, Benezech et al. added further complexity to this

model of compartmentalized natural IgM secretion, exploring

antibody production in fat-associated lymphoid clusters (FALCs)

and milky spots located in serous cavities (50). These small

anatomical niches are a source of CXCL13, IL33 (from stromal

cells) and IL5 (from group 2 innate-lymphoid cells (ILC2), and sites

of pleural and peritoneal B-1 cell activation, both during

homeostasis and infection; allowing local production of IgM for

protection of these body cavities (51, 52).

Natural antibodies are polyreactive, able to react with both self-

(PtC, Thy1) and microbial (e.g. pneumococcus or influenza)

antigens (13, 53, 54). They provide an instant defense against

invading pathogens, for example, by direct neutralization or

complement binding, but also promote B-2 antigen-specific

responses, possibly by forming immune complexes that are more

easily trapped by antigen presenting cells or follicular dendritic cells

(13, 55). Natural antibodies also participate in tissue homeostasis by

opsonizing and enhancing the clearance of apoptotic cells or low-

density lipoproteins by mononuclear phagocytes (56, 57). There is a

good body of evidence that B-1 cells also substantially contribute to

the production of mucosal IgA, maintaining the symbiotic

homeostatic relationship between the host and microbiome, as

reviewed by Almut Meyer-Bahlburg (58). However, whether these

antibodies are still “natural”, i.e. produced independently of

microbial antigens, is hotly debated (58). In addition to the

steady-state secretion of natural antibodies, B-1 cells can actively

respond to a variety of pathogens or tumor antigens with increased

(induced) IgM production following activation (59, 60). There is

also some evidence that IgM natural antibodies enforce central

tolerance and promote normal development of both B-1 and B-2

cells by a mechanism that is not completely clear, possibly by

facilitating the tolerogenic presentation of autoantigens (61). On the
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other hand, natural antibodies can be an integral part of

immunopathological processes such as ischaemia-reperfusion

injury or the delayed hypersensitivity response in skin (62, 63).

B-1 cells have been shown to regulate immune response by

mechanisms other than antibody secretion, including cytokine

production. At steady state, a subset of peritoneal, and to a lesser

extent splenic, B-1 cells spontaneously secretes the regulatory

cytokine IL10 (64). A protective role for B-1 cell-derived IL10 has

been demonstrated in an endotoxaemic-induced systemic

inflammatory response and in autoimmune-prone mice (65–67).

In addition to IL10, B-1 cells can also exert their regulatory function

by secretion of IL35 and transforming growth factor beta (TGFb)
(68, 69) or in contact-dependent manner by expression of

inhibitory molecules FasL, PD-L2 and CTLA-4 (in particular, B-1

cells with autoreactive specificities) (70–73).

Conversely, Rauch and Weber et al. described a B-1 cell subset

they termed “innate response activator” (IRA) that upon TLR

stimulation, migrated from body cavities to spleen or lung to

enhance acute inflammatory responses via granulocyte

macrophage colony stimulating factor (GM-CSF) and IL3

secretion, in addition to IgM (74, 75). Others observed that

peritoneal B-1 cells stimulated with LPS increased both IL10 and

IL6 secretion, proposing that the ratio between these cytokines

ultimately determines whether their effect on co-cultured CD4 T

cells is activating or inhibitory (76). Finally, B-1 cells may also act as

efficient antigen-presenting cells and activators of T cells through

their high constitutive expression of MHCII and CD80/86, as

reviewed by Popi et al. (77).

Together these data indicate that B-1 cells are a functionally

heterogeneous population capable of both immune suppression and

stimulation (Figure 1C). It is unclear howmuch functional plasticity

exist in any given B-1 cell for these two opposing roles and whether
Frontiers in Immunology 04
under certain circumstances all B-1 cells can eventually mount a

pro-inflammatory response to infection.
5 Presence of B-1 cells in NLOs

Although some studies of tissue-resident memory B cells or

natural antibody-producing plasma cells have identified B-1 B cells

in NLOs at steady state (5, 78), these NLO-resident B-1 cells have

received limited attention to date. However, evidence suggests the

homeostatic presence of B-1 cells in skin, lungs, gut, liver and

visceral fat, in addition to pleural and peritoneal cavities (Figure 2).

Geherin et al. used afferent lymphatic cannulation in sheep to

demonstrate the presence of innate-like (IgMhiCD11bhi) B cells

trafficking from uninflamed skin (18). Subsequently, they reported

IL10+ B-1 B cells residing both in murine and human skin under

normal conditions (1). Baldan et al. observed an expansion of B-1

cells in the lungs of ATP-binding cassette transporter G1 (ABCG1)-

deficient mice as a result of lipid accumulation and chronic

inflammation. These B-1 cells produced natural lipoprotein-

binding antibodies that may protect against atherosclerosis (79).

Stark et al. found a marked accumulation of aberrant B-1 cells in the

lungs of mice with either global or B-cell specific activating

mutation in the catalytic subunit of phosphoinositide-3-kinase d
(PI3Kd) that was demonstrated by others to increase the generation

of B-1 cells in the bone marrow (80, 81). These lung B-1 cells

secreted IL10 and were associated with higher susceptibility to

bacterial pneumonia as seen in patients with activated PI3Kd
syndrome (80, 82). Using long-term B cell chimeras, Krosse et al.

reported that almost half of IgA secreting plasma cells in the gut

were derived from peritoneal B-1 B cells (83). However, this finding

was subsequently disputed in gnotobiotic Ig allochimeric mice
FIGURE 2

B-1 cell distribution across mouse lymphoid and non-lymphoid organs. Numbers within B-cell icons label mouse organs where B-1 cells have been
documented. B-cell icon color indicates whether intra-organ production of natural antibodies is low (blue) or high (red). Grey panels show cytokines
produced by tissue B-1 cells (#) and conditions associated with expansion of tissue B-1 cells (♦), linked literature references numbers are in brackets.
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experiments (84) or by examining Igavh repertoire in lamina

propria from L2 mice that lack B-2 cells (85). Recently, two

studies re-examined this controversy: Bunker et al. performed a

series of B-cell transfer experiments into Rag1-/- mice and found

that commensal-specific IgA+ gut plasma cells originated from B-2

and, to a lesser extent, also from B-1b (but not B-1a) cells (86).

Vergani et al. demonstrated that B-1a cells and IgA+ gut plasma

cells shared the same haematopoietic progenitors in early life using

two different lineage-tracing mouse models (87). However, there

was no substantial clonal overlap between these two populations,

suggesting an early bifurcation likely at the point of antigen

selection (87). B-1 cells have been also identified in mouse

visceral fat in steady state, forming special lymphoid clusters (19,

88). Zhang et al. reported IL10-producing B-1a cells in wild-type

mouse liver but their quantification did not account for B cells from

blood contamination (89). The presence of B-1 B cells in mouse

liver and lung was indirectly supported also by experiments

showing that a small number of cells from homogenized organs

spontaneously secreted IgM on ELISPOT (49).
6 Evidence for homeostatic role of
tissue-resident B-1 B cells in NLOs

As discussed above, B-1 cells secreting IL10 and natural

antibodies have been identified across several NLOs in steady

state and with increased abundance during inflammation,

suggesting their anti-inflammatory homeostatic role protecting

tissue integrity (Figure 2). Skin is an exemplar NLO to

demonstrate such a B-1 cell function.

Using radioactive labeling, Geherin et al. showed that B-1 cells

migrate from their natural reservoirs in the serous cavities into both

non-inflamed, and upon innate stimulation, inflamed skin and

intestine, in an a4b1 integrin-dependent manner to provide

immunosurveillance and to suppress inflammation (1). The

regulatory function of cutaneous B-1 cells is also consistent with

several case reports of psoriasis exacerbation after therapeutic B-cell

depletion with rituximab or a4-integrin blockade with natalizumab

(90–92). Similarly, CD5+ IL10+ B cells were found to suppress

contact hypersensitivity dermatitis in a mouse model (73, 93). A

recent study by Wu et al. demonstrated the presence of IL10-

producing CD5+ B-1a cells in pericardial fat in homeostasis that

were subsequently shown to be capable of ameliorating damage

associated with myocardial infarction (88). The ameliorating effect

of IL10+ B-1 cells on local tissue inflammation was also found in the

liver after Schistosoma infection (94) and in the gut during acute

and chronic colitis (95, 96).

Although the body of evidence for the homeostatic role of IL10

produced by B-1 cells in NLOs organ immunity is increasing, its

precise impact on other immune and non-immune cell subsets

within tissues is an outstanding question that requires further

investigation. In peritoneal cavity, Wong et al. identified that

macrophages are polarized toward anti-inflammatory (M2)

phenotype by the presence of B-1 cells both in vitro and in vivo

and that this is driven by IL10 but not by IgM (97). They
Frontiers in Immunology 05
subsequently showed that such B-1 cell driven anti-inflammatory

macrophage polarization was detrimental for a skin tumor

clearance (97). The regulatory role of tissue innate-like B cells in

homeostasis can increase organ susceptibility to infection or be even

actively hijacked by pathogens (80, 82). Liu et al. reported that

Listeria infection stimulates IL10 production by MZ B cells, which

in turn, inhibits inducible nitric oxide synthase (iNOS) production

in splenic macrophages, leading to an increased bacterial burden

(98). In contrast to the anti-inflammatory function of B-1 cells in

NLOs at steady state, there is also data for a pro-inflammatory/

protective role of B-1 cells in local infection as exemplified by IRA

B-1 cells relocating from the pleural cavity into the lung to protect

against pneumonia via GM-CSF and IgM secretion (75).

As outlined above, most studies examining the role of natural

antibodies in tissue homeostasis and protection were based on

sampling blood or serous cavities. Savage et al. showed that the

vast majority of natural IgM-secreting B-1 cells and plasma cells are

located in bone marrow and spleen with only less than 5% found in

serous cavities and NLOs (49). B-1 cells in peritoneal cavity (outside

FALCs/milky spots) are largely suppressed in their natural antibody

production by nearby macrophages (28, 50). Although the data on

the homeostatic presence of B-1 cells in NLOs suggest some local

secretion of natural antibodies, it is unclear if this secretion is

inhibited by similar tissue-specific cues as seen in peritoneal cavity.
7 Evidence for B-1 cells in
human NLOs

The identification of a human equivalent to murine B-1 cells has

been a focus of ongoing study, and a source of heated debate and

controversy in the field. Early attempts to find human B-1 cells were

based on searching for CD5+ B cells. As noted previously, the vast

majority of human B-CLL cells are CD5 positive. A more detailed

analysis of these pathological CD5+ B cell clones revealed marked

repertoire skewing for auto- and polyreactive BCRs, a feature of

murine B-1 cells (99). Recently, Hayakawa et al. found a mouse B-1

cell clone with a non-mutated CDR3 region encoding a binding site

for non-muscle myosin IIA, which is often a target of human B-CLL

BCRs. These B-1 cells expanded with age and eventually became

malignant, likely because of the chronic stimulation with a potent

auto-antigen (100). Moreover, expanded polyreactive IgM+/

IgA+CD5+ B cells were documented in human autoimmune

conditions such as rheumatoid arthritis or IgA nephropathy

(101–103).

Given the preferential residence of murine B-1 cells in coelomic

cavities, human peritoneal washings were also examined for the

presence of CD5+ B cells. Although the relative proportion of these

cells was higher than in blood, their absolute number was negligible

compared to mouse (104, 105). Early studies reported a significantly

increased frequency of CD5+ B cells in human umbilical cord blood,

which clearly mirrored findings in mice, in particular with regards

to the recently demonstrated role of Lin28b/Let7 as a switch

between fetal and adult hematopoiesis, both in mouse and human

(101, 102, 106). However, Lee et al. showed subsequently that the
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majority of CD5+ B cells in human blood represent “pre-naïve” B

cells, having an intermediate phenotype between transitional and

naïve B cells. Most of these cells lost their CD5 expression upon

further differentiation into naïve cells (107). The fact that the

frequency of CD5+ B cells in human adult blood is almost 20-

times higher than in mice and that CD5 is also expressed by

transitional, activated or anergic B-2 cells, further support the

notion that CD5 is unlikely to be a useful marker for human B-1

cells (108–110).

One effort to define surface markers of putative human B-1 cells

was presented by Griffin et al. (111). When profiling human

umbilical cord blood they found an unexpectedly high percentage

of CD27+ “memory” B cells (3-11% of CD20+ subset) that also

expressed CD43, a canonical marker of murine B-1 cells.

Subsequent functional examination of this FACS-sorted subset

(CD20+CD27+CD43+) from both neonatal and adult blood

confirmed three key B-1 cell characteristics – spontaneous IgM

secretion, tonic signaling, and efficient stimulation of T cells (111).

The proportion of these putative B-1 cells within CD20+CD27+

subset clearly declined with age, and only three quarters of these

cells were CD5 positive. Since CD43 can be a marker of B-2 cell

activation, the authors confirmed that other typical markers of

activation (i.e. CD69, CD70) were not expressed by these cells (111).

In a subsequent study, they further split CD20+CD27+CD43+

human “B-1” cells into CD11b- “secretor” cells (i.e. primarily

secreting natural antibodies) and CD11b+ “orchestrator” cells that

were expanded in SLE patients, and spontaneously secreted IL10,

but could enhance T-cell proliferation and modulate T-cell

activation (112, 113). Other groups have struggled to replicate
Frontiers in Immunology 06
these findings, suggesting potential issues with T cell

contamination and doublets and confusion with B-2 pre-

plasmablasts (114–116).

Geherin et al. identified B cells in healthy human skin, where 3.9

– 28.6% of them secreted IL10 after four-hour stimulation. Only

3.5% of total skin B cells expressed markers of putative human B-1

B cells (i.e. CD3-CD20+CD27+CD43+) discussed earlier (1). Nihal

et al. found that B cells are rare in normal human skin, and hence

difficult to phenotype, but using PCR-based Ig heavy chain

rearrangements analysis, they showed that these B cells had a

clonally-restricted BCR repertoire, potentially indicating antigen-

driven clonal expansion. These finding suggested the potential

existence of tissue-resident B-1 cells in normal human skin (117).

Recently, we identified putative B-1 cells in human embryonic and

foetal tissues using single cell RNA sequencing (16) (Figure 3A). In line

with previous reports, these IgMhiIgDlow B cells were CD27+CD43+CD5+

and shared functional characteristics with murine B-1 cells, including

spontaneous antibody secretion and BCR features (reduced CDR3

junction length and NP additions and lower mutation frequency)

(Figure 3B). Interestingly, by the third trimester, the ratio of B1/

mature B cell significantly decreased in most organs except the thymus

(Figure 3C) (16). The putative B-1 cells expressed also high levels of

CCR10 thatmay play a role in their tissue homing and retention. CCL28,

the ligand of CCR10, was expressed in bonemarrow stromal cells, and in

skin and gut epithelial cells (Figure 3B) (16).

Asano et al. reported an accumulation of innate-like B cells in

human kidney allografts during rejection that were transcriptionally

similar to murine peritoneal B-1 cells, secreted autoantibodies

directed against kidney (rather than donor-specific) antigens and
A

B C

FIGURE 3

Identification of putative B-1 cells in prenatal human tissues by single cell RNA/BCR sequencing (adapted from Suo et al. (16)). (A) Study design
schematic: Tissues from 25 human embryos/foetuses aged between 4 and 17 post-conception weeks (PCW) were homogenized into single cell (sc)
suspensions, sorted for CD45+ live cells and subjected to sc RNA and BCR sequencing (10X Genomics). Total 27,800 non-progenitor B cells were
recovered from all processed tissues following quality control (shown in UMAP plot, putative B-1 cells in light blue). (B) Characteristics of putative B-
1 cells found in this study; mature (IgD+IgM+CD27-) B cells were used as the comparator. CDR3, complementarity-determining region 3; TF,
transcription factors; ASC, antibody-secreting cell. (C) Plot showing the change of B-1/mature B cell number ratio across different tissues with post-
conception age.
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expressed a signature gene, AHNAK (118). However, it is not clear

whether these innate-like B cells expanded locally from cells

residing in the kidney in homeostasis or infiltrated from the

blood or other reservoir.

Finally, there are several examples that illustrate marked inter-

species differences in innate-like tissue-resident lymphocyte

populations. For example, iNKT cells constitute the main

lymphocyte subset in mouse liver, but they represent less than 1% of

human liver lymphocytes (119). gd T cells are more prominent in

bovine skin than mouse or human and significantly differ in their

oligoclonality and diversity (120). These studies suggest, that while the

functions of innate-like tissue-resident lymphocytes are conserved

across species, this common function is not necessarily conserved to

specific cell types. Moreover, there is some evidence that innate-like

lymphocytes, such as epidermal gd T cells in mouse skin, might be

replaced by Trm after an infection (121). It is plausible that similar

phenomena could explain why the equivalent to murine B-1 cells

cannot be convincingly identified in adult human tissues (including the

peritoneal cavity) as they may have been functionally replaced by other

innate-like subsets such as MZ B cells. Indeed, Weller et al.

demonstrated marked phenotypic and functional similarity between

“IgM memory” B cells in peripheral blood and human MZ B cells

suggesting their re-circulation (122). Moreover, humanMZ-like B cells

were also described in the inner wall of the subcapsular sinus of lymph

nodes, tonsillar crypts andmucosa-associated lymphoid tissue (MALT)

(123–125).
8 Concluding remarks

B-1 cells with their unique combination of innate-like and

adaptive functions are well suited to be efficient tissue-resident

immune cells. In contrast to B-2 cells, they do not respond to

activation by extensive clonal expansion, but rather rapidly migrate,

re-distribute and differentiate in a process that seems to be

controlled by the receipt of innate immune signals (20, 21, 126).

B-1 cells represent an exemplar of how adaptive immune cells

residing in NLOs adapt a hybrid functionality with innate and

adaptive features, together contributing to the maintenance of local

tissue immunity homeostasis and defense. Although tissue-resident

innate-like B(-1) cells might have a clear therapeutic potential in a
Frontiers in Immunology 07
number of intra-organ pathologies (for example, cancer or

transplant rejection), future studies should first convincingly

delineate their equivalents in human.
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