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Diagnostic and predictive
values of pyroptosis-related
genes in sepsis
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Ziwen Wang1, Feng Chen1 and Zhong Wang2*

1School of Clinical Medicine, Tsinghua University, Beijing, China, 2Department of General Medicine,
Beijing Tsinghua Changgung Hospital affiliated to Tsinghua University, Beijing, China
Background: Sepsis is an organ dysfunction syndrome caused by the body’s

dysregulated response to infection. Yet, due to the heterogeneity of this disease

process, the diagnosis and definition of sepsis is a critical issue in clinical work.

Existing methods for early diagnosis of sepsis have low specificity.

Aims: This study evaluated the diagnostic and predictive values of pyroptosis-related

genes in normal and sepsis patients and their role in the immunemicroenvironment

using multiple bioinformatics analyses and machine-learning methods.

Methods: Pediatric sepsis microarray datasets were screened from the GEO

database and the differentially expressed genes (DEGs) associated with

pyroptosis were analyzed. DEGs were then subjected to mult iple

bioinformatics analyses. The differential immune landscape between sepsis and

healthy controls was explored by screening diagnostic genes using various

machine-learning models. Also, the diagnostic value of these diagnosis-related

genes in sepsis (miRNAs that have regulatory relationships with genes and related

drugs that have regulatory relationships) were analyzed in the internal test set and

external test.

Results: Eight genes (CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3, and

TLR2) related to sepsis diagnosis were screened by multiple machine learning

algorithms. The CIBERSORT algorithm confirmed that these genes were

significantly correlated with the infiltration abundance of some immune cells

and immune checkpoint sites (all P<0.05). SIRT1, STAT3, and TLR2 were

identified by the DGIdb database as potentially regulated by multiple drugs.

Finally, 7 genes were verified to have significantly different expressions between

the sepsis group and the control group (P<0.05).

Conclusion: The pyroptosis-related genes identified and verified in this study may

provide a useful reference for the prediction and assessment of sepsis.
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1 Introduction

Sepsis is the systemic response to severe infection. It is the main

cause of death in critically ill patients, and its incidence keeps rising

(1). Sepsis can be caused by an infection that originates at multiple

sites and most patients with sepsis are infected by pathogenic

microorganisms. Patients with severe underlying diseases (such as

diabetes, leukemia, etc.) are more likely to suffer from this condition.

Sepsis is the leading cause of death in hospitalized patients (2), and

previous studies have shown that 30% of inpatient mortality is caused

by sepsis (3). Yet, due to the heterogeneity of the development of this

disease, the diagnosis and definition of sepsis are critical issues in

clinical work. In early 2016, the new definitions of sepsis changed

dramatically; briefly, greater emphasis was placed on the diagnostic

value of “organ dysfunction”, described as an acute increase in total

Sequential Organ Failure Assessment (SOFA) score. According to the

new sepsis 3.0 diagnostic criteria, sepsis is defined as “life-threatening

organ dysfunction caused by the imbalance of the body’s response to

infection” (4). Therefore, the diagnosis of sepsis is delayed compared

with previous systemic inflammatory response syndrome (SIRS)

scores. However, screening for patients at risk of developing sepsis

may lead to more effective interventions that can greatly reduce the

incidence of sepsis, mortality, and medical costs of infected patients

(5). Therefore, early diagnosis and prevention of sepsis may be one of

the main means to prevent and control sepsis in the future.

Pyroptosis is a new type of programmed cell death with lytic and

pro-inflammatory characteristics. It is mediated by the cysteine

aspartate-specific protein kinases 1, 4, 5, and 11, and its final step is

dependent on the activity of the gasdermin family proteins that form

pores in the cell membrane (6, 7). Pyroptosis is characterized by cell

swelling, changes in plasma membrane permeability, and

inflammatory release (8). Inflammasomes have a crucial role in the

occurrence and development of sepsis (9). Studies have shown that

inflammation-damaged and infected cells in sepsis patients can

release pathogens through pyroptosis, which is then promptly

eliminated by various immune cells (10). Therefore, pyroptosis can

help to fight sepsis-induced infection to a certain extent. Some

pyroptosis-related genes have been confirmed to be closely related

to sepsis. For example, GSDMD has a vital role in sepsis by initiating

pyroptosis and activating immune response (11, 12). However, the

role of many pyroptosis-related genes in sepsis remains unclear.

In this study, we evaluated the diagnostic and predictive values of

pyroptosis-related genes in normal and sepsis tissue and their role in

the immune microenvironment using machine-learning methods.
Abbreviations: BP, Biological process; CC, Cellular component;DEGs,

Differentially expressed genes; DGIdb, Drug-Gene Interaction Database; DNN,

Deep Neural Network; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes

and Genomes; MF, Molecular Function; NLRP3, NLR family pyrin domain

containing 3; PCC, Pearson correlation coefficient; PD-1, Programmed cell death

protein – 1; PD-L, Programmed death Ligand; RF, Random Forest; RT-PCR,

Quantitative Real-time polymerase chain reaction; TNF-a, Tumor necrosis

factor-a.
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2 Methods

2.1 Differential expression analysis of genes

The Limma package of R language was used to analyze the

differential expression of whole genes (13). The filtering conditions

were set as a P-value< 0.05 and an absolute value of logFC > 0.2.
2.2 Construction of protein-protein
interaction network

A PPI network was constructed to explore the interaction among

DEGs and the intersection genes of pyroptosis-related genes.

Specifically, the PPI network was obtained using protein interaction

relationships in the STRING database (14) and the highest confidence

interaction score was set to 0.4. Then, the PPI visualization results

were obtained using Cytoscape software.
2.3 Gene ontology and functional
enrichment analysis

Gene Ontology (GO) enrichment analysis (http://www.

geneontology.org) (15) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis (www.genome.jp/kegg/) (16)

were used to determine the gene biological functions. The GO term is

composed of three parts, i.e., biological process (BP), cellular

component (CC), and molecular function (MF). Ultimately,

significant pathways with P<0.05 were selected.
2.4 Construction of diagnostic
model construction

The machine learning methods used for diagnostic model

construction and the relevant package in Scikit-learn (17) were

used. These packages’ specific parameter setting ranges are

presented in the algorithms.

2.4.1 Random Forest algorithm
The RF algorithm was applied to calculate the importance of

genes (18). For each decision tree in the RF, the corresponding out-

of-pocket (OOB) data was used to calculate its out-of-pocket data

error. The error value could be denoted as errorOOB1 . Next, by

randomly adding noise to the out-of-pocket data X , the out-of-

pocket data error errorOOB2 could be calculated again. Finally, the

calculation formula of the importance of out-of-pocket data X

(feature(X) ) was obtained:

feature Xð Þ =o( err00B2-errOOB1Þ =Ntree  (1)

where Ntree represents the number of decision trees. When

ranking feature importance, the specific parameters of RF were set

as follows: the number of decision trees was selected between 100 and

1000, and the default values were used for other parameters.
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2.4.2 Adaboost algorithm
The Adaboost algorithm was used to construct the diagnostic model.

The AdaBoost algorithm is a boosting algorithm (19). In model training,

each sample was given a probability (weight) that indicates that it was

selected into the training set in a specific classifier. If the sample was

accurately classified, the probability of it being chosen for the next

training set was reduced. Conversely, the probability of being selected

for the next training set was considerably improved.

In a binary classification training set (X={(x1,y1),(x2,y2),⋯,(xn,yn)}

}, xi and yi represent the sample points and their corresponding binary

classification results yi . The algorithm first initializes the weights of

the training set, and the weight redistribution value of the MTH weak

learner is Dm=(wm1,⋯,wmi,⋯,wmN) . Here, wmi =
1
N , i = 1, 2,⋯,N .

Next, the weight redistribution values of the training set are updated

for the M learners. Let Gm(x) represent the base classifier of the

training set with weight distribution Dm . Then the classification error

rate em of Gm(x) on the training set can be calculated as follows:

em =o
N

i=1
WmiI(Gm(xi) ¿ yi) (2)

the value of I(Gm(xi)≠yi) is 0 or 1, representing correct and

incorrect classification, respectively. Next, the weight coefficient

a_m of the classifier was calculated.

am =
1
2
log

1 − em
em

(3)

Finally, the final classifier G(x) was obtained by updating the

weight redistribution value of the training set.

Dm+1 = wm+11,wm+12,⋯,wm+1Nð Þ
wm+1i =

wmi
Zm

exp −amyiGm xið Þð Þ, i = 1, 2,⋯N

G(x) = sign(oM
m=1amGm(x)) (4)

The specific parameters of Adaboost were set as follows: the

number of decision trees was selected between 100 and 300, the

learning rate was determined from two values of 0.01 and 0.1, and

the default values were used for other parameters.

2.4.3 Logistic Regression algorithm
LR is a probabilistic nonlinear regression model that can be used

for binary classification tasks. Its prediction function is shown below.

y =
1

1 + e− wTx+bð Þ (5)

where w and b are the weight and bias vectors, respectively. In this

paper, the specific parameters of LR were set as follows: the reciprocal

of the regularization strength was selected between 0.1 and 3.1, and

the default values were used for other parameters.
2.4.4 Deep Neural Network algorithm
DNN is an extension based on perceptron. It can be understood as a

neural network with many hidden layers (20). The layers of the DNN are

fully connected, andanyneuron in layer imustbeconnected toanyneuron

in layer i+1 . The forward propagation algorithm of DNN uses several

weight matrices W and bias vectors b to perform a series of nonlinear
Frontiers in Immunology 03
operationswith the input value vector xwhere the output value al of layer l

can be expressed as the following equation.

al = s Wlal−1 + bl
� �

l = 2,…, Lð Þ (6)

where Wl and bl represent the l−th layer’s weight matrix and bias

vector, respectively; L represents the total number of layers, and 6A

represents the activation function. Next, the DNN algorithm updates W

and b by backpropagation. The loss function J(W,b,x,y) in the

backpropagation process can be expressed as the following equation.

J(W , b, x, y) =
1
2

aL − y
�� ��2

2 (7)

where aL and y represent the output of the output layer and the

sample, respectively. The W and b of each layer can be obtained by

gradient descent. In this paper, the specific parameters of DNN were set

as follows: the number of hidden layers was 2, the number of neurons in

the two hidden layers was 8 or 16, the regularization parameters were

selected in 0.001 and 0.01, and the learning rate was selected in ‘constant’

and ‘adaptive.’ Default values were used for other parameters.

2.4.5 Performance evaluation of diagnostic model
The evaluation method of the diagnostic model included

calculating the model’s sensitivity, specificity, and f1 score, using

the following formulas:

Sensitivityi =
TPi

TPi + FNi
(8)

Specificityi =
TNi

TNi + FPi
(9)

F1scorei =
2� TPi

2� TPi + FPi + FNi
(10)

where TPi and TNi are the true positive and true negative of class i ,

respectively, and FPi and FNi are the false positive and false negative of

class i , respectively.
2.5 Immune infiltration analysis

To explore the relationship between diagnosis-related genes and

immune cell-related expression, the CIBERSORT algorithm was used to

calculate the proportion of different immune cell types in significant

samples of GSE26440 dataset (P<0.05) (21). Furthermore, the infiltration

abundance of 22 kinds of immune cells was obtained, and the correlation

between thediagnosis-relatedgenes and the contentof 22 immunecellswas

calculated using the Spearman correlation coefficient. In addition, based on

the datasetGSE26440,weusedPearson to calculate the correlationbetween

47 immune test sites and diagnosis related genes. Finally, we used the

external dataset GSE12904 to verify the expression of diagnostic genes.
2.6 Construct diagnostic
gene-miRNA network

To explore the regulatory relationship between diagnostic genes

and miRNAs, miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.
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php), miRDB (http://mirdb.org/), and TargetScan (http://www.

targetscan.org/vert_72/) databases were queried for miRNAs that

have a regulatory relationship with diagnostic genes, and the

intersection genes of the three databases were selected to construct

a diagnostic gene-miRNA network.
2.7 Identifying potential drugs

To identify potential therapeutic drugs for sepsis, Drug-Gene

Interaction Database (DGIdb) version 3.0.2 (https://www.dgidb.

org) (22) was used to analyze the interaction between the

diagnostic genes and related drugs. In addition, we searched the

DGIdb to predict potential drugs or molecular compounds that

interact with DEG.
2.8 qRT-PCR

The whole blood samples of six patients with sepsis and six

healthy people were collected from Beijing Tsinghua Changgung

Hospital (Beijing, China). Demographic information could be

found in Table S1 of Supplementary materials. The screening

criteria for sepsis patients were based on sepsis 3.0 (4). Whole

blood samples were obtained from patients, and the quantitative

real-time polymerase chain reaction (RT-PCR) was performed

(Primer list could be found in Table S2 of Supplementary

materials). None of the patients had a history of autoimmune

disorders, neoplastic diseases, or oral immunosuppressants. This

study was approved by the Ethics Committee (NCT05095324).
3 Results

3.1 Microarray data set acquisition and
data processing

Microarray data sets related to sepsis were downloaded from the

GEO database. GSE26440 was selected as the internal training and

test set and GSE13904 as the external test set. GSE26440 contains 130

whole-blood RNA samples from 98 samples with septic shock and 32

healthy controls. GSE13904 includes 158 samples with sepsis and 18

healthy controls.

GPL570-55999 platform file was used to convert gene symbols

for the two GEO datasets. When multiple probes were mapped to

the same gene symbol, the average value of the probes was selected

as the gene expression value. Furthermore, 3837 DEGs were

selected for differential expression analysis on the GSE26440

dataset. Of these, 2302 were down-regulated (Figure 1, blue

dots) and 1535 were up-regulated (Figure 1, red dots). Next, a

heat map of the top 50 up-regulated genes and the top 50 down-

regulated genes among the differentially expressed genes were

drawn (Figure 1).

Also, 110 genes related to pyroptosis were collected from

previous studies. There were 35 intersection genes of DEGs and
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pyroptosis-related genes, which could be visualized by the Venn

diagram in this paper (Figure 1). The PPI network of intersecting

genes is shown in Figure 1. Among them, the node color’s depth and

area represent the number of connections with the gene. Figure 1

shows the Pearson correlation coefficient (PCC) network plot

among intersecting genes. Most of the 35 intersecting genes have

strong correlations.

In addition, to explore the pathway information involved in the

intersection genes, we drew a bubble plot of significant pathways with

the BP (Figure 2), CC (Figure 2), and MF (Figure 2) entries in the GO

enrichment analysis and the KEGG enrichment analysis

(Figure 2), respectively.
3.2 Gene screening and diagnostic
model construction

To screen out the genes related to diagnosis from the 35

intersection genes, RF was used to rank the importance of the 35

features. The mean weight of 35 genes was 0.0285. We retained nine

genes larger than the weight mean (Figure 3A). Next, we constructed

sepsis diagnostic models using Adaboost, LR, and DNN classifiers to

identify the pyroptosis-related genes related to diagnosis.

Specifically, the top 1-top 9 genes on the training set were input

to the three classifiers. After setting the corresponding classifier

parameter range, the optimal parameters were selected using ten-

fold cross-validation, and then the AUC results on the internal test

set were obtained (Figure 3B). The AUC of the DNN classifier

reached 0.9935 when using the top 9 genes. To further confirm the

diagnostic power of the signature genes, the results were validated

using the GSE13904 dataset (Figure 3C). The DNN classifier can

reach an AUC of 0.9786 when using the top 8 genes. Table 1

presents the model performance metrics when the AUC is

maximized using the DNN model.

In addition, eight genes were further validated in the internal

test set (Figures 4A–H) and external test set (Figures 5A–H)

independently using the DNN classifier. Table 2 and Table 3 state

the diagnostic model’s performance on the internal and external test

sets, respectively. LRPPRC was not considered because it presented

false positives in diagnostic model construction.
3.3 Immune infiltration and the landscape of
immune checkpoint genes in sepsis

To explore the immune infiltration of sepsis, the CIBERSORT

algorithm was used to analyze the differences in peripheral blood

immune cells between the significant sepsis samples and healthy

control samples. The boxplots in Figures 6A–H showed the

expression of eight diagnostically relevant genes in sepsis

patients and healthy controls. Eight genes significantly differed

between the two groups. Figure 7A shows the proportional

expression of 22 immune cells in Control samples and sepsis

samples. Figure 7B shows a heatmap of correlations between

immune cells. Resting mast cells and resting dendritic cells had
frontiersin.org
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the strongest posit ive correlation (r=0.94). Conversely,

Macrophages M0 and T cells CD8 had the strongest negative

correlation (r=0.5). Figure 7C shows the differential expression of

different immune cell marker expression types between sepsis and

controls. Among them, the expression levels of B cells naive, B cells

memory, T cells CD8, activated T CD4 memory cells, T cells
Frontiers in Immunology 05
follicular helper, regulatory T cells, T cells gamma delta, activated

NK cells, macrophages M0, macrophages M1, resting dendritic

cells, resting and cells activated mast cells, and neutrophils were

significantly different between the two groups (all P<0.05). In

addition, we showed the lollipop plots of eight sepsis diagnosis-

related genes (CLEC5A, MALT1, NAIP, NLRC4, SERPINB1,
A B

D E

C

FIGURE 1

Differential analysis of the internal training set. (A) is the volcano plot from the difference analysis. (B) is a Venn diagram of pyroptosis-related genes
plotted against the differentially expressed genes of the training set. (C) is the expression heatmap of the top 50 up-regulated and down-regulated genes
by absolute logFC. (D) is the PPI network constructed by the intersection genes of DEGs and pyroptosis-related genes. (E) is a correlation network plot
among intersecting genes.
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SIRT1, STAT3, and TLR2) associated with 22 immune cells in

Figures 7D–K.

Next, we analyzed the association of diagnostic genes with 47

immune checkpoints. Specifically, the immune checkpoints were

retained with significant associations (P<0.001) with eight

diagnosis-related genes and a heatmap of the associations

between them was created (Figures 8A–H). For CLEC5A, the

immune checkpoints with the strongest positive/negative

correlat ion were CD44 (r=0.39) and CD244 (r=-0.34) ,

respectively. For MALT1, the immune checkpoints with the

strongest positive/negative correlation were BTLA (r=0.55) and

BTNL2 (r=-0.55), respectively. For NAIP, the immune

checkpoints with the strongest positive/negative correlation were

CD44 (r=0.72) and TNFRSF25 (r=-0.49), respectively. For NLRC4,

the immune checkpoints with the strongest positive/negative

correlation were LAIR1 (r=0.75) and TNFRSF25 (r=-0.45),

respectively. For SERPINB1, the immune checkpoints with the

strongest positive/negative correlation were LAIR1 (r=0.75) and

TNFRSF25 (r=-0.51), respectively. For SIRT1, the immune

checkpoints with the strongest positive/negative correlation were

BTLA (r=0.47) and ICOSLG (r=-0.68), respectively. For STAT3,

the immune checkpoints with the strongest positive/negative

correlation were C10orf54 (r=0.66) and CD276 (r=-0.49),

respectively. For TLR2, the immune checkpoints with the

strongest positive/negative correlation were C10orf54 (r=0.71)

and ICOSLG/TNFRSF25 (r=-0.49), respectively.

To determine the regulatory relationship among eight

diagnosis-related genes and miRNAs, three miRNA databases

were used to query the regulatory relationship among diagnosis-

related genes. We took the intersection genes of the three database
Frontiers in Immunology 06
results and mapped the regulatory network of diagnosis-related

genes and miRNAs (Figure S1A). More miRNAs regulated STAT3,

NAIP, and SIRT1. Furthermore, we applied DGIdb to identify

potential drugs or molecular compounds that could reverse the

expression of diagnostically relevant genes (Figure S1B). Various

drugs might regulate SIRT1, STAT3, and TLR2. The inhibitory

effects of some compounds on sepsis were demonstrated. Rare

ginsenosides Rk1 and Rg5 have an inhibitory effect on high

mobility group box 1 (HMGB1)-mediated sepsis (23). HMGB1 is

a cytokine present in the late stage of sepsis. The up-regulation of

SIRT1 by ethyl pyruvate (EP) may promote the deacetylation of

HMGB1, thereby reducing the release of HMGB1 from

lipopolysaccharide (LPS)-activated macrophages (24). Lee et al.

demonstrated the inhibitory effect of ginsenoside Rh1 on HMGB1-

mediated sepsis response (25). In addition, celecoxib combined

with low-dose antibiotics in treating sepsis in mice can

significantly reduce the bacterial load and inflammatory markers

in different organs of mice (26).
3.4 Expression validation of
diagnosis-related genes

qRT-PCR was used to verify the expression levels of eight

diagnosis-related genes between the sepsis group and the control

groups, Demographic information could be found in Table S1 of

Supplementary materials. The results showed that, except for

STAT3, the expression of other genes was significantly different

between the two groups (Figure 9), which was consistent with the

results of bioinformatics analysis. Therefore, further exploration of
A B

DC

FIGURE 2

GO and KEGG enrichment analysis results of intersecting genes. (A–C) are the analysis results of BP, CC, and MF in GO, respectively. (D) is the result of
the KEGG enrichment analysis.
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their roles in sepsis is of great significance for diagnosing and

treating sepsis.
4 Discussion

Sepsis is a syndrome that often occurs due to various infections.

Its incidence is increasing year by year. Therefore, early diagnosis of
Frontiers in Immunology 07
sepsis is necessary. In addition, the role of pyroptosis-related genes in

the occurrence and development of sepsis is still unclear. Therefore,

this paper aims to explore the genes related to the diagnosis of sepsis

and pyroptosis.

We performed enrichment analyses after the intersection of DEGs

and pyroptosis-related genes and obtained multiple immune-related

pathways. The GO and KEGG enrichment analysis showed that most

of these genes were enriched in immune and tumor progression-
A

B

C

FIGURE 3

Bar and line graphs associated with diagnostic model construction. (A) is a bar graph of the 35 genes ranked by feature importance using RF algorithm.
(B, C) are line plots of the AUCs corresponding to different numbers of top genes selected using the three classifiers on the internal and external test
sets, respectively.
TABLE 1 AUC, sensitivity, specificity, and f1 score of the diagnostic model consisting of multiple genes on the internal and external test sets.

Test set type Number of genes AUC Sensitivity Specificity f1 score

Internal test set 9 0.9935 1 0.8889 0.9714

External test set 6 0.9786 0.9423 1 0.9703
fro
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related pathways. Danielski et al. systematically reviewed the NLRP3

inflammasome and its role in developing sepsis, and incorrect

regulation of NF-kB has been associated with inflammation and

autoimmunity (27). Zhou et al. found that NF-kB activation is

involved in cardiomyocyte apoptosis, cardiomyocyte autophagy,

and inflammatory cytokine release in sepsis patients (28). Toll-like

receptors (TLRS) are an important class of protein molecules

involved in non-specific immunity. Chen et al. systematically

reviewed the complexity of using Toll-like receptors to intervene in

sepsis (29).

Programmed cell death protein 1 (PD-1)/programmed death

ligand-1 (PD-L1) immune checkpoint blockade has successfully

treated cancer. Because the immune paralysis of sepsis involves

depleted T lymphocytes, Nakamori et al. suggested that the role of

PD-1/PD-L1 on innate lymphocyte function and the exosome

form of PD-L1 deserves further investigation (30). In addition,

pathways associated with macrophage apoptosis were identified.

Tumor necrosis factor-a (TNF-a) was a key regulator of innate

immunity related to sepsis-induced acute lung injury. Yang et al.

confirmed that polymorphonuclear neutrophils stimulated by

TNF-a up-regulates the expression of NLR family pyrin domain
Frontiers in Immunology 08
containing 3 (NLRP3) inflammasome through the nuclear factor-

kb signal ing pathway, which triggers macrophages for

pyroptosis (31).

CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3,

and TLR2 were confirmed as sepsis biomarkers. Yang et al.

performed bioinformatics analysis and identified SERPINB1 as a

potential biomarker of sepsis (the expression of SERPINB1 was up

regulated in patients with sepsis) (32). Zhang et al. used a weighted

co-expression network to analyze and establish 15 mRNAs,

including NLRC4, as hub genes of the mRNA-lncRNA-pathway

network related to sepsis, and the expression of these genes was

up-regulated in sepsis patients (33) Salmonella typhimurium is a

Gram-negative pathogen that causes diseases ranging from

gastroenteritis to systemic infections and sepsis. Related

experimental analysis by Naseer et al. confirmed the response of

caspase-4-mediated inflammasome of NAIP to Salmonella

pathogenic island 1-expressing Salmonella (34). Their study

elaborated that high expression of NAIP is sufficient to activate

the inflammasome in response to infection under physiological

conditions. Shayantan et al. used a machine learning approach to

identify 20 differentially expressed genes using gene expression
A B

D E F

G H

C

FIGURE 4

Results of separate validation of the top eight genes on the internal validation set. (A–H) are ROC curves for the top 8 genes, respectively.
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profiles of peripheral blood cells obtained within 24 hours of

admission to the pediatric ICU (pICU) and extensive clinical

data from 228 septic patients from pICU. Among them, eight

genes, including CLEC5A, were confirmed to be closely related to

sepsis mortality (35). Activation of CLEC5A by the dengue virus

and Japanese encephalitis virus leads to the secretion of pro-

inflammatory cytokines (36). In addition, many studies have

shown that targeting STAT3 has a broad application prospect in

treating sepsis (37). STAT3 was further up-regulated during the
Frontiers in Immunology 09
transition from healthy to sepsis induction. MALT1 deficiency is a

congenital immunodeficiency characterized by recurrent bacterial,

viral, and fungal infections. Wang et al. demonstrated a

significantly high expression of MALT1 in septic samples, and

its high expression was closely related to various organ

dysfunction (38). In addition, some studies have confirmed that

NEAT1 alleviates sepsis-induced myocardial injury by regulating

TLR2/NF-kB signaling pathway (39). NEAT1 can significantly

down-regulate TLR2 to improve myocardial injury induced by
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FIGURE 5

Results of separate validation of the top eight genes on the external validation set. (A–H) are ROC curves for the top 8 genes, respectively.
TABLE 2 AUC, sensitivity, specificity, and f1 score of the diagnostic model composed of a single gene on the internal test set.

Gene symbol AUC Sensitivity Specificity f1 score

SERPINB1 0.8664 0.9412 0.3333 0.8205

NLRC4 0.75 0.8889 0.25 0.8

NAIP 0.7273 0.8889 0.25 0.8

CLEC5A 0.8523 0.9444 0.375 0.85

STAT3 0.7727 0.8636 0.25 0.8636

MALT1 0.9318 0.9524 0.6 0.9302

TLR2 0.7159 0.85 0.1667 0.8095

SIRT1 0.8409 0.8571 0.2 0.8372
fro
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LPS in mice. Deng et al. demonstrated that SIRT1 could alleviate

sepsis-induced acute kidney injury through autophagy activation

mediated by Beclin1 deacetylation (40) They found that low SIRT1

expression promotes the development of acute kidney injury. In

addition, PCR results showed significant differences in the

expression of the other 7 genes between the sepsis samples and

the normal samples (P<0.05).

To explore the relationship between eight diagnostically

relevant genes and the immune microenvironment and immune

checkpoints, we applied CIBERSORT to estimate the abundance of

22 immune cells. We found that some immune cells were significantly

different between the two groups. Xiao et al. elucidated the role of

regulatory B cells in the pathogenesis of sepsis (41). Chaturvedi et al.

showed that CD8+ T cells have a substantial predictive value for

hemophagocytic lymphohistiocytosis versus early sepsis or healthy

controls (42). Furthermore, another study suggested that post-sepsis

immunosuppression depends on the regulation of mTOR/IFN-g in

NK cells by NKT cells (43). M1 macrophages increase endothelial

permeability and enhance p38 phosphorylation in sepsis through
Frontiers in Immunology 10
PPAR-g/CXCL13-CXCR5 (44). Mast cells exacerbate sepsis by

inhibiting phagocytosis of peritoneal macrophages (45). Neutrophils

can interfere with pulmonary microcirculation in sepsis-induced

acute lung injury (46).

Our analysis also showed that multiple immune checkpoints

were significantly expressed in sepsis. A review by Richendrfer

et al. suggested that proteoglycan 4 may enter cells through the

CD44 receptor, act on the receptor, and prevent downstream

processes of inflammation (47). Wang et al. showed that up-

regulation of BTLA expression in bone marrow dendritic

cells was associated with treatment outcomes in neonatal

sepsis (48).

The present study has some similarities with Wang’s study

(49), namely, mining the role of pyroptosis-related genes in sepsis

patients and constructing a diagnostic model. In addition, both

these studies discussed the immune landscape of hub genes.

However, the two papers differed in the following ways. Firstly,

we aimed to identify genes associated with sepsis diagnosis using

machine learning approaches. To this end, various machine
TABLE 3 AUC, sensitivity, specificity, and f1 score of the diagnostic model composed of a single gene on the external test set.

Gene symbol AUC Sensitivity Specificity f1 score

SERPINB1 0.7598 0.902 0.4211 0.8519

NLRC4 0.6727 0.8333 0.25 0.8108

NAIP 0.6275 0.8364 0.2667 0.8214

CLEC5A 0.7706 0.9245 0.5294 0.8909

STAT3 0.7072 0.8421 0.3077 0.8421

MALT1 0.9271 0.9808 0.6667 0.9358

TLR2 0.8691 0.8621 0.4167 0.8696

SIRT1 0.8731 0.873 0.7143 0.9167
fro
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FIGURE 6

Expression of eight diagnostically relevant genes in sepsis patients and healthy controls of CLEC5A (A), MALT1 (B), NAIP (C) NLRC4 (D), SERPINB1 (E),
SIRT1 (F), STAT3 (G) and TLR2 (H) relative to GAPDH. Median ± maximum/minimum.
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learning methods were used for gene importance assessment and

classifier design. However, that paper focused on constructing

nomogram models to evaluate the predictive value of clinical

factors and genes for sepsis risk. Secondly, the regulatory
Frontiers in Immunology 11
relationship of the mined genes was queried, and the regulatory

network of diagnosis-related genes and miRNAs was constructed.

Furthermore, DGIdb was applied to identify potential drugs or

molecular compounds that could reverse the expression of
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FIGURE 7

Immune infiltration landscape in sepsis and healthy controls. (A) is a bar graph of the proportions of 22 immune cells in sepsis and controls. (B) is a
heatmap of correlations among 22 immune cells. (C) shows the differential expression of different immune cell infiltration abundance in sepsis and
control. (D–K) are lollipop plots of CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3, and TLR2 correlations with immune cells, respectively.
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diagnosis-related genes. Finally, experimental verification of the

mined diagnosis-related genes was carried out.

This study has some limitations. First, the study has a small

sample size. Therefore, we started collecting samples from patients

with sepsis to investigate these findings further. Secondly, the

specificity of the selected pyroptosis-related genes in diagnosing

sepsis needs further experimental verification and discussion,

especially comparing other inflammatory diseases and sepsis.

Finally, given the complexity of the pathological process of

sepsis, and to further reduce the application scenario and scope

of this experimental results, the following experiments will further

verify the different stages of sepsis, e.g., taking suspected sepsis (5),

sepsis, and septic shock as separate experimental groups, which
Frontiers in Immunology 12
can better divide the pathological process of sepsis, which we plan

to perform in our next study.
5 Conclusion

In this paper, the potential value of diagnosis-related genes in

the early diagnosis of sepsis was discussed using machine-

learning methods based on the genes related to pyroptosis. In

addition, various bioinformatics analysis methods were used to

identify the differences between these genes in immune cells

and checkpoints. However, different subtypes of sepsis

may significantly differ in prognosis and survival . In
frontiersin.org
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FIGURE 8

Heatmap of the association of eight genes with immune checkpoints. (A–H) are correlation heatmaps with significant associations between diagnosis-
related genes (CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3 and TLR2) and immune checkpoints.
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future research, we plan to further analyze the differences

between different subtypes of sepsis pat ients through

various clustering algorithms to provide new insights for

precision medicine.
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FIGURE 9

Transcriptional expression in whole blood from sepsis patients and healthy controls of CLEC5A (A), MALT1 (B), NAIP (C) NLRC4 (D), SERPINB1 (E), SIRT1
(F), STAT3 (G) and TLR2 (H) relative to GAPDH. Mean ± standard deviation, ***P<0.001, **P<0.01, *P<0.05 vs. the Control group.
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