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Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with

locally advanced rectal cancer and metastatic CRC have a poor long-term

prognosis, and rational and effective treatment remains a major challenge.

Common treatments include multi-modal combinations of surgery,

radiotherapy, and chemotherapy; however, recurrence and metastasis rates

remain high. The combination of radiotherapy and immunotherapy

(radioimmunotherapy [RIT]) may offer new solutions to this problem, but its

prospects remain uncertain. This review aimed to summarize the current

applications of radiotherapy and immunotherapy, elaborate on the underlying

mechanisms, and systematically review the preliminary results of RIT-related

clinical trials for CRC. Studies have identified several key predictors of RIT

efficacy. Summarily, rational RIT regimens can improve the outcomes of some

patients with CRC, but current study designs have limitations. Further studies on

RIT should focus on including larger sample sizes and optimizing the

combination therapy regimen based on underlying influencing factors.

KEYWORDS

colorectal cancer, radiotherapy, immunotherapy, metastasis, locally advanced
rectal cancer
1 Introduction

As the third most common cancer (10%) and the second most lethal cancer (9.4%)

worldwide (1), colorectal cancer (CRC) is a disease that threatens the health of the populace

and poses a major economic burden. Improving the prognosis of patients with locally

advanced rectal cancer (LARC) and metastatic CRC (mCRC) remains an important and

challenging problem. Patients with mCRC have poor prognoses, with a 5-year survival rate

of less than 15% (2). In the past few decades, radiotherapy has made great progress in

controlling local tumor progression with reduced side effects; however, controlling distant
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lesions outside the irradiated field remains a major challenge. In

recent years, immunotherapy has become the fourth pillar of cancer

treatment in addition to surgical therapy, chemotherapy, and

radiotherapy, and is increasingly recognized as a promising and

attractive partner for radiotherapy. Compared to traditional

chemotherapy, immunotherapy has higher specificity, does not

affect normal cells without tumor-specific antigens, and can

synergize with the abscopal effect of radiotherapy (3). In recent

clinical trials of melanoma, non-small cell lung cancer, and renal

cell carcinoma, RIT effectively controlled tumor progression (4).

Several case reports and preclinical studies have shown a promising

effect of RIT for patients with CRC; however, specific protocols are

required to determine treatment dosage, target selection, course of

treatment, and immunotherapy timing. Many clinical trials have

been registered and initiated, the data of which are expected to

guide and optimize the RIT regimen, clarifying its role in CRC

treatment. Here, we aimed to review the studies related to RIT for

patients with CRC, summarized the current results of clinical trials,

and make prospects for its future practical application.
2 Current roles of radiotherapy and
immunotherapy in treating patients
with CRC

2.1 Radiotherapy in CRC

The definition of LARC differs as stage II (cT3-4, N0) or Stage III

(any cT, N+). Neoadjuvant radiotherapy combined with concurrent

chemotherapy is currently the standard preoperative treatment for

stages II-III rectal cancer (5). For patients with LARC, preoperative

radiotherapy is more effective at reducing tumor volume, increasing

the likelihood of anal sphincter preservation, and reducing local

recurrence. However, radiotherapy can also increase toxic reactions

(such as radiation damage and hematological toxicity) (6).

Neoadjuvant radiotherapy is generally divided into long-course

radiotherapy (50.4Gy, 25–28 fractions) and short-course

radiotherapy (25Gy, 5 fractions). Patients in the long-course group

were more likely to develop serious complications, such as radiation

dermatitis, than those in the short-course group (0% vs. 5.6%, P

=0.003). However, the short-course group had a higher likelihood of

developing permanent postoperative stoma than the long-course

group (38.0% vs. 29.8%, P = 0.13) (7). The rates of R0 resection

(87% vs. 90%, P = 0.554), pathological complete response (12% vs.

10%, P = 0.740), and overall tumor downstaging (75% vs. 75%, P =

0.920) were similar between these two treatments (8). Therefore, the

optimal course of preoperative radiotherapy for patients with LARC

remains. Total neoadjuvant therapy (TNT) has gradually gained

attention as a preferred neoadjuvant therapy scheme. TNT usually

advocates neoadjuvant radiotherapy or chemotherapy combined with

radiotherapy, chemotherapy, or immunotherapy, to reduce the rate

of total mesorectal excision (TME) surgery and achieve a higher rate

of pathological complete response (pCR) (9). Some studies have

shown that TNT improves the overall pCR rate, DFS, and overall

survival (OS) and reduces the risk of distant metastasis compared to

standard treatment (10). However, the current TNT regimen has not
Frontiers in Immunology 02
reached optimal results. Moreover, defining the role of radiotherapy

and the choice between chemotherapy and immunotherapy is still

under discussion.

Radiotherapy has also been used in treating patients with mCRC.

Colorectal cancer liver metastasis (CRLM) is the most common

distant metastasis. Approximately 15%-25% of patients develop

CRLM during the diagnosis of primary cancer (synchronous

metastases), and 15%-25% of patients develop CRLM within 5

years after the first diagnosis (metachronous metastases) (11).

Stereotactic ablative radiotherapy (SABR) is a concentrated and

highly-precisive form of radiotherapy that can improve the survival

rate of patients with CRLM, especially for those who are not eligible

for surgery. However, the recurrence rate of CRLM after SABR still

remains 5.3%–29% in the treatment field and 59% outside, making it

necessary to combine SABR with other systemic therapies (12). The

limited application of SABR could also be attributed to the tolerated

dose of normal liver tissues being much lower than the lethal dose to

tumor cells. Lung metastasis is the second most common distant

metastasis after CRLM, with nearly 30% of patients developing

metastasis throughout CRC (13). For those inoperable CRC lung

metastases, SABR is also a practical choice (14).
2.2 Immunotherapy in CRC

Compared with chemotherapy and radiotherapy, immunotherapy

mainly utilizes the patient’s immune system to fight cancer cells (15,

16). Cancer immunotherapy targets specific antigens on cancer cells,

alerting the immune system and coordinating the immune response to

eradicate cancer, leaving normal cells without cancer cell antigens

unaffected. Cancer immunotherapy can be classified based on the

different immune mechanisms involved, including passive immune

mechanism, active immune mechanism, or antigen-specific immune

responses. Passive immunotherapy includes tumor-targeting

monoclonal antibodies, adoptive cells, and oncolytic virus therapy.

Active immunotherapy includes the immunomodulatory monoclonal

antibodies, anti-cancer vaccines, immunostimulatory cytokines,

immunosuppressive metabolic inhibitors, pattern recognition

receptor agonists, and inducers of immunogenic cell death (17).

Immune checkpoints (IC) are key regulators of immune reactions

and act as brakes for overaction. However, the overexpression of IC

contributes to immunosuppression and facilitates the proliferation and

spread of malignant cells. Immune checkpoint inhibitors (ICIs) can

restore immune function by targeting or blocking immune checkpoint

protein ligands on the surface of T cells or other immune cell subsets.

Currently, clinically approved agents are restricted to those targeting

programmed cell death 1 (PD-1)/programmed cell death-ligand 1(PD-

L1) or cytotoxic T-lymphocyte antigen 4 (CTLA4), based on various

immunotherapy-related preclinical and clinical studies for CRC (18).

Results from KEYNOTE016 (NCT01876511) first revealed that

28 patients with deficient mismatch repair high microsatellite

instability (dMMR-MSI-H) CRC receiving pembrolizumab (anti-

PD-1 antibody) had a response rate (RR) of 50% (95% CI 31–69%)

and disease control rate (DCR) of 89% (19). These promising

results officially triggered an increase in the exploration of CRC

immunotherapy, and many clinical trials have since been registered.
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One of the most promising results from ASCO 2022 presented a

prospective, single-arm, Phase II study investigating the efficacy of

neoadjuvant dostarlimab (anti-PD-1) in dMMR LARC (20). Thirteen

patients with stage II and III dMMR rectal cancer were included.

Seven patients achieved a complete clinical response after induction

therapy and then were placed on hold without chemotherapy or

surgery, and no serious adverse events were reported. This study’s

incredible 100% clinical response rate suggests new directions for

immunotherapy. However, current ICIs have no significant effect on

proficient mismatch repair (pMMR), microsatellite stable (MSS), or

low microsatellite instability (MSI-L) tumors (known as pMMR-

MSI-L tumors). Low tumor mutation burden (TMB) and lack of

immune cell infiltration may be the mechanisms of immunotherapy

resistance (21). Improving the outcomes of these patients using

immunotherapy is a key problem.
3 Coeffects of radiotherapy and
immunotherapy in CRC

RIT using radioactive element-labeled monoclonal antibodies

has been applied to various animal models and clinical trials in

patients since the emergence of hybridoma technology in 1975 and

has shown effectiveness in non-Hodgkin’s lymphoma, beginning

the exploration of RIT (22). RIT uses monoclonal antibodies to ship
Frontiers in Immunology 03
radionuclides specifically to the cancer cells, delivering high doses of

therapeutic radiation to cancer cells while minimizing exposure to

normal cells. Clinically, RIT is widely used in the most

radiosensitive tumors such as leukemia and lymphoma. For solid

tumors, direct intravenous administration of radioactive antibodies

has been relatively unsuccessful (23, 24). Therefore, radiotherapy

combined with immunotherapy as the new RIT regimen is more

widely used in the treatment of CRC after a few immunotherapy

drugs were approved. Most importantly, unique interactions

between the radiological effects of radiotherapy and the immune

system have various coeffects on local and systemic tumor

control (Figure 1).
3.1 Radiation promotes the release and
recognition of tumor-specific antigens

Radiation can enhance the clearance of damaged tumor cells by

antigen-presenting cells, thereby promoting the initiation of T cells.

The expression of the major histocompatibility complex class I

(MHC-I) on tumor cells reduces the recognition ability of cytotoxic

T cells to cancer cells. Radiation can up-regulate MHC-I on the

tumor surface, promote the recognition of tumor-specific antigens by

antigen-presenting cells, and enhance the killing effect of cytotoxic

T cells (25).
FIGURE 1

Coeffects of radiotherapy and immunotherapy in colorectal cancer.
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3.2 Radiation turns cold tumors into
hot tumors

Radiation can directly damage cancer cells, leading to their death

and triggering the activation of CD8+ T cells, whereas changes in the

immune microenvironment, involving dead tumor cells and

surrounding stromal cells, can trigger systemic immune responses.

Thus, the “one-two punch” of combined radiation and immunotherapy

may be more effective than either treatment alone because of their

unique synergies. This may turn cold tumors (not sensitive to common

therapies) into hot tumors (responding better to the same therapies)

(26). Due to the close interrelation between radiation and the immune

system, whether immunotherapy can amplify the systemic effect of

radiotherapy and turn radiotherapy into an “in situ vaccine”, to make

“cold” tumors rejected by the immune system react to immunotherapy

or make patients resistant to radiotherapy sensitive to radiation, has

become a new research direction (27).
3.3 Radiotherapy induces the
abscopal effect

Radiation can also induce T cell-mediated suppression of untreated

distant tumors by inducing tumor antigen recognition (known as the

abscopal effect) (28). The abscopal effect of amplified radiotherapy is

significant for treating patients with mCRC and is an important

complement to the current immunotherapy regimen alone. Many

preclinical studies have shown that combined immunotherapy can

enhance the abscopal effect of radiotherapy. CD4+ regulatory T cells

(Tregs) are highly immunosuppressive cell subsets that, when

overexpressed, can hinder immune surveillance of cancer, prevent

effective anti-tumor immune responses, and promote tumor

progression. Activating CTLA-4 can specifically upregulate Tregs;

therefore, anti-CTLA-4 antibodies can effectively kill effector Tregs or

weaken their immunosuppressive activity (29). Studies have shown that

compared with radiotherapy alone, radiotherapy combined with anti-

CD25/CTLA4 monoclonal antibody can significantly increase CD8+ T

cell proportion and the CD8+/CD4+ratio in patients with LARC (P

<0.05), and reduce Tregs, PD-1+ CD8+ T cells, and PD-1+ CD4+ T cells

(P <0.05). RIT inhibited the growth of local and distal unirradiated

tumors, improved the OS rate, and reduced the incidence of liver

metastasis in mouse models (P <0.05) (30). Dewan MZ et al. (31) also

found that fractionated radiotherapy combined with 9H10 (anti-CTLA-

4 antibody) in two kinds of preclinical CRC models can induce the

abscopal effect. SABR targetingmetastases can also differentially activate

the cytotoxicity of malignant cells and the cell protection pathway of

non-malignant cells, resulting in significant changes in the tumor

immune microenvironment. The synergistic effect of SABR and

immunotherapy may enhance the abscopal effect of irradiation on

field lesions by targeting different links of the immune response (12).
3.4 Radiation induces the up-regulation of
PD-L1 on tumor cells

PD-1 is an inhibitory receptor expressed by all activated T cells,

and PD-L1 shows broad expression on both hematological and
Frontiers in Immunology 04
non-hematological cells, making the PD-1 pathway as a key

regulator of immune cell functions. Studies have shown that

blocking the PD-1 pathway can promote durable antitumor

immune responses (32). Local RT could induce an immunogenic

antitumor response that is partially counteracted by upregulation of

PD-L1 and transformation of growth factor b (TGF-b) (33).

Fractional radiotherapy with aPD-1 or aPD-L1 monoclonal

antibody treatment can produce an effective CD8+T cell response,

thus improving local tumor control, long-term survival, and

effectively preventing tumor recurrence.
3.5 Radiotherapy might affect the
expression of MMR-related genes

Incheol Seo et al. (34) reported that radiation could induce

downregulation of MMR system-related genes in three CRC cells.

In addition, they analyzed RNA sequencing data from 60 pairs of

LARC tissues before and after irradiation, and found that the

MMR-related gene set was significantly downregulated in tissues

after chemoradiotherapy (CRT). Notably, they also found that one

patient with LARC showed a change in MSI status from MSS to

MSI-low after CRT. As downregulation of MMR system-related

genes and MMR deficiency could cause MSI which has been found

to predict a good response to PD-1 blockade (35, 36), this effect

might contribute to the combination of radiotherapy and

immunotherapy in CRC.
4 Studies on RIT in CRC patients

Recently, some promising advances have been achieved in

clinical studies on RIT in patients with CRC, including those with

mCRC and LARC (Table 1). The regimens of these clinical trials for

patients with mCRC and patients with LARC are shown in Figures 2

and 3, respectively.
4.1 Combination of radiotherapy and
immunotherapy in patients with mCRC

Several clinical studies have confirmed the critical role of

immunotherapy in patients with MSI-H mCRC (47, 48);

however, the effect of immunotherapy in MSS mCRC remains

unsatisfactory. Preclinical studies have shown that radiotherapy

can increase T cell infiltration and have a synergistic effect with

immunotherapy agents (31, 49). Therefore, radiotherapy might

enhance the systemic response to immunotherapy in patients with

MSS mCRC.

Several clinical trials have explored the safety and efficacy of

radiotherapy and immunotherapy in patients with MSS mCRC. In

a single-arm phase II study conducted by Neil H. Segal et al. (39),

24 patients with chemotherapy-resistant pMMR mCRC received

duvarumab (anti-PD-L1 antibody) plus tremelimumab (anti-

CTLA-4 antibody) and radiotherapy with a mean radiation dose

of 45 Gy. After a median follow-up of 21.8 months, the objective
frontiersin.org
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TABLE 1 Clinical trials of combination of radiotherapy and immunotherapy.

Study
Name
(yrs.)

Study
type

Participants Treatment
regimen

Number of
participants

Main
Outcome

ORR Toxicity Median
PFS

and OS

Floudas et al.
(2019) (37)

USA
single-

center pilot
study

Patients with
mCRC

refractory to
standard

chemotherapy

PD-1 targeting agent
AMP-224 combined

with low-dose
cyclophosphamide and

stereotactic body
radiotherapy

N=15 No CR or
PR.

SD: three
patients
(20%)

0 Nine patients (60%):
Grade 1 or 2.

No grade 3 or 4.

PFS: 2.8 m
(95% CI:
1.2–2.8 m)
OS: 6.0 m
(95% CI:
2.8–9.6 m)

Monjazeb
et al. (2021)

(38)

USA
multicenter
phase II
study

Patients with
MSS mCRC

low-dose fractionated
RT (LDFRT) or
hypofractionated

radiation (HFRT) with
PD-L1/CTLA-4

inhibition

N=18
(LDFRT: n=8.
HFRT: n=10)

No CR or
PR.

SD: one
patient

0 16 patients (84%)
had toxicity, and 8
patients (42%) had
grade 3–4 toxicity.

PFS: 1.7 m
(90%CI:

1.5–1.8 m)
OS: 3.8 m
(90% CI:
2.3–5.7 m)

Segal
et al. (2021)

(39)

USA
Phase II

Single-arm
Study

Patients with
MSS mCRC

Durvalumab and
Tremelimumab with

Concurrent
Radiotherapy

N=24 ORR: 8.3%
(2/24) (95%
CI: 1.0% to
27.0%)

ORR: 8.3% Six patients (25%):
treatment-related
grade 3–4 adverse

events.

PFS:
1.8 m(95%
CI, 1.7–1.9)
OS: 11.4 m
(95% CI,
10.1–17.4)

Parikh
et al. (2021)

(40)

USA
open-label,
single-arm,

non-
randomized
Phase 2 trial

Patients with
MSS mCRC

combining radiation (8
Gy x 3), ipilimumab

and nivolumab

N=40 DCR: 25%
(10/40; 95%
CI: 13–41%)
ORR:10%
(4/40; 95%
CI: 3–24%)

ORR:10% AEs related to
immunotherapy

Grade ≥3: 70% (53%
grade 3, 15% grade 4
and 3% grade 5)

PFS:
2.4 m(95%
CI: 1.8–2.5)
OS: 7.1 m
(95% CI:
4.3–10.9)

Shamseddine
et al. (2020)

(41)

Lebanon
single-arm,
multi-center
phase II
trial

Patients with
LARC

short-course radiation
followed by six cycles of

mFOLFOX6 with
avelumab

N=12 pCR: 25%(3/
12) near

pCR: 25%(3/
12)

major
pathologic
response:

50%

No grade 4. NA

Rahma
et al. (2021)

(42)

USA
open-label,
phase II,

randomized
clinical trial

Patients with
stage II/III
LARC

neoadjuvant FOLFOX
plus

chemoradiotherapy
(capecitabine with 50.4
Gy) with or without
pembrolizumab

N=185
Control arm
(CA): n=95

Pembrolizumab
arm(PA): n=90

neoadjuvant
rectal score:
CA: 11.53;
PA: 14.08,
P=0.26
pCR:

CA: 29.4%;
PA: 31.9%,
P=0.75

pCR:
31.9%

grade 3-4:
PA (48.2%); CA

(37.3%)

NA

Salvatore
et al. (2021)

(43)

Italian
multi-
center,
phase II
study

Patients with
resectable
LARC

preoperative
chemoradiotherapy plus

avelumab

N=101 pCR:
23%(22/96);

Major
pathological
response:
61.5% (59/

96)

pCR: 23% Rate of grade 3–4
non-immune and
immune-related

adverse events was
8% and 4%.

NA

Lin
et al. (2022)

(44)

China
Phase II,
single-
center,

single-arm
trial

Patients with
LARC (T3-

4N0M0 or T1-
4N+M0)

preoperative short-
course radiotherapy

followed by
chemotherapy
(CAPOX) and
camrelizumab

N=27 pCR
(ypT0N0)
rate: 48.1%
(13/27)

pCR:
48.1%

Immune-related
adverse events were

all grade 1–2.
No grade 4/5.

NA

Bando
et al. (2022)

(45)

Japan
single-arm
phase I/II

trial

Patients with
MSS and MSI-

H LARC

Preoperative
Chemoradiotherapy

plus Nivolumab before
Surgery

N=44
(MSS: n=39;
MSI-H: n=5)

pCR: MSS:
30% [11/37;
90%CI: 18–
44%]; MSI-
H: 60%(3/5)

pCR:
MSS: 30%;
MSI-H:
60%

Immune related
severe adverse
events: three
patients.

NA

(Continued)
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response rate (ORR) for non-irradiated lesions was 8.3%. Overall,

25% of patients had treatment-related grade 3–4 adverse events.

Increased activation of circulating CD8+T lymphocytes was

observed in patients with an objective response, implying that
Frontiers in Immunology 06
radiotherapy combined with ICIs might lead to systemic

immunity in pMMR/MSS mCRC. In another single-arm, non-

randomized Phase II trial, Parikh et al. (40) reported that 40

patients with MSS mCRC were treated with combined radiation
TABLE 1 Continued

Study
Name
(yrs.)

Study
type

Participants Treatment
regimen

Number of
participants

Main
Outcome

ORR Toxicity Median
PFS

and OS

Carrasco
et al.

2021 (46)

Belgium
phase Ib/II

study

patients with
stage II/III RC

preoperative
combination of radio-
chemotherapy plus

atezolizumab

N=26 pCR: 6/25
(24%)

pCR: 24% grade 3-4: 9/26
patients

NA
fr
mCRC, metastatic colorectal cancer; LARC, locally advanced rectal cancer; RC, rectal cancer; MSS, microsatellite stable; MSI-H, microsatellite instability high; pCR, pathologic complete response;
DCR, disease control rate; ORR, objective response rate; m, months; AE, adverse event; PFS, progression-free survival; OS, overall survival; CR, complete response; PR, partial response; SD, stable
disease; NA, not available.
FIGURE 2

Radioimmunotherapy regimens in current clinical trials for patients with metastatic colorectal cancer. (mCRC, metastatic colorectal cancer; D, durvalumab;
T, tremelimumab; RT, radiotherapy; N, nivolumab; I, ipilimumab; HFRT, hypofractionated radiation therapy; LDFRT, low-dose fractionated radiation therapy;
SBRT, stereotactic body radiotherapy; CPM, cyclophosphamide; AMP, programmed cell death 1 (PD-1) targeting agent AMP-224; WK, week).
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(8 Gy × 3), ipilimumab (anti-CTLA-4 antibody), and nivolumab

(anti-PD-1 antibody), with a DCR and ORR of 25% and 10%,

respectively. In a per-protocol analysis of patients who received

radiotherapy (27/40), the ORR was 15%. These two early clinical

trials may prove the feasibility of RIT in patients with

MSS mCRC.

Monjazeb et al. (38) investigated the efficacy of durvalumab

(anti-PD-L1 antibody) plus tremelimumab and radiotherapy at

different radiation doses and fractions in patients with

MSS mCRC (n=18). The study results demonstrated that

hypofractionated radiotherapy (8 Gy × 3), or low-dose

fractionated radiotherapy (0.5 Gy × 16) did not result in an

objective response in the disease outside of the radiotherapy field

but could change in the local immune microenvironment and

increase systemic immunogenicity.
Frontiers in Immunology 07
4.2 Combination of radiotherapy and
immunotherapy in patients with LARC

Preoperative CRT can induce increased PD-L1 expression in

rectal cancer (50–53), suggesting the potential benefits of

combining radiotherapy or CRT with PD-1/PD-L1 blockade for

an enhanced neoadjuvant strategy. Thus, clinical studies have

investigated the efficacy of this combination in patients with LARC.

Salvatore et al. (43) conducted a phase II study with 101 patients

with resectable LARC. These patients received standard preoperative

CRT plus six cycles of avelumab (anti-PD-L1 antibody) followed by

TME surgery. Of the 96 patients evaluated for pathological response,

23% (22/96) patients achieved pCR. The incidences of grades 3–4 non-

immune and immune-related adverse events were 8% and 4%,

respectively. Recently, Hideaki Bando et al. (45) reported that
FIGURE 3

Radioimmunotherapy regimens in current clinical trials for patients with locally advanced rectal cancer. (LARC, locally advanced rectal cancer; N,
nivolumab; CRT, chemoradiotherapy; SCRT, short-course radiotherapy; CAPOX, oxaliplatin plus capecitabine; Cam, camrelizumab; Ave, avelumab;
mFOLFOX6, modified 5-fluorouracil (5-FU), leucovorin, oxaliplatin; Pem, pembrolizumab; WK, week).
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preoperative CRT followed by five cycles of nivolumab increased the

pCR rate, with pCR rates of 30% (11/37) and 60% (3/5) in patients with

MSS and MSI-H LARC, respectively. These clinical trials suggest that

combining preoperative CRT and immunotherapy might improve the

pCR rate in certain patients with LARC, with a manageable

safety profile.

TNT is a novel preoperative treatment for patients with LARC that

combines induction or consolidation chemotherapy with CRT before

surgery (54). Lin et al. (44) reported the treatment efficacy and safety of

27 patients with LARC who received preoperative short-course

radiotherapy, followed by chemotherapy (capecitabine and oxaliplatin)

and camrelizumab (anti-PD-1 antibody). The pCR rate was 48.1%,

including 46.2% (12/26) for MSS LARC and 100% (1/1) for dMMR

LARC.All immune-related adverse events were grades 1–2. In a phase II

randomized clinical trial, Rahma et al. reported that adding

pembrolizumab to CRT after FOLFOX (5-fluorouracil, leucovorin,

and oxaliplatin) treatment did not significantly increase the pCR rate

compared to treatment with FOLFOX and CRT alone (31.9% vs. 29.4%,

P = 0.75), although the pCR rate of adding of pembrolizumab to CRT

was higher. Thus, further studies are required to prove the superiority of

adding immunotherapy to TNT in patients with LARC.

Moreover, several phase II clinical trials focusing on different

neoadjuvant radiotherapy regimens with other immunotherapeutic

drugs in patients with LARC are ongoing (Table 2). The

immunotherapy drugs used included durvalumab, toripalimab

(anti-PD-1 antibody), tislelizumab (anti-PD-1 antibody),

sintilimab (anti-PD-1 antibody), and pembrolizumab.
5 Predictors of the efficacy of RIT

Biomarkers that can predict the clinical efficacy of RIT must be

identified because only some patients benefit from this treatment.
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5.1 PD-L1 expression

PD-L1 expression is a promising biomarker for identifying

patients with CRC who may benefit from sequential radiotherapy

combined with immunotherapy. In a clinical study that investigated

the efficacy of preoperative CRT plus nivolumab, researchers

analyzed 38 pre-CRT samples and demonstrated that the pCR

rate of patients with PD-L1 proportion scores ≥1% was higher

than those with PD-L1 proportion scores <1% (75% vs. 17%, P =

0.004) (45). Similarly, Lin et al. reported that patients with positive

PD-L1 expression had a higher pCR rate (44). In addition, previous

studies have shown that anti-PD-1 therapy may produce better

clinical results for tumors with high PD-L1 expression than for PD-

L1-negative tumors (61, 62).
5.2 Tumor mutational burden

Patients with high TMB have demonstrated good responses to

anti-PD-1 therapy because TMB is associated with a high frequency

of new antigens (63). A study of patients with MSS LARC who

received combined radiotherapy and immunotherapy discovered

that the TMB of patients with tumor regression grades (TRG) 0–1

was significantly higher than that of patients with TRG 2–3 (45).

This finding suggests that higher TMB in pre-treatment samples of

patients with MSS LARC may be a potential predictor of good

outcomes for RIT.
5.3 Immunoscore-biopsy

Carine El Sissy et al. reported that Immunoscore-biopsy (ISB)

which was determined based on densities of CD3+ and CD8+ T cells
TABLE 2 Combination of radiotherapy and immunotherapy in clinical trials (ongoing).

Study
Name (yrs.)

Study type Participants Treatment regimen Clinical trials.
Gov number

Hanna
et al. (2021)

(55)

UK
multi-center, open label, phase

II, randomized trial

Patients with newly
diagnosed LARC

Short-course radiotherapy with concomitant durvalumab
followed by FOLFOX and durvalumab

or long-course chemoradiotherapy with durvalumab followed
by FOLFOX and durvalumab.

NCT04621370

Wang
et al. (2022)

(56)

China
Multi-center, double-arm, phase

II trial

Patients with LARC
(T3-4/N +)

short-course radiotherapy combined with chemotherapy
(CAPOX) and Toripalimab

NCT04518280

Yang
et al. (2022)

(57)

China
Multi-center, phase II trial

Patients with LARC Long-course neoadjuvant chemoradiotherapy plus
tislelizumab followed by TME surgery

NCT04911517

Li
et al. (2022)

(58)

China
Multi-center, single-arm, phase

Ib trial

Patients with MSI-H/
dMMR LARC

sintilimab plus hypofractionated radiotherapy(5 Gy x 5) NCT04636008

Corrò
et al. (2022)

(59)

Switzerland
phase II, single-arm study

Patients with localized
RC

combining pembrolizumab with short-course radiotherapy NCT04109755

Laengle et al.
(2021) (60)

Austria
phase II clinical trial

Patients with LARC neoadjuvant chemoradiotherapy in combination with
ipilimumab and nivolumab

NCT04124601
LARC, locally advanced rectal cancer; RC, rectal cancer; MSI-H, microsatellite instability high; dMMR, deficient mismatch repair; TME, Total mesorectal excision.
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in rectal cancer biopsy samples could predict response to pre-CRT

in patients with rectal cancer. The levels of ISB were positively

correlated with tumor response to neoadjuvant treatment (64).

Besides, Sakti Chakrabarti et al. found that higher CD3+ and

CD8+ T cell density was associated with higher objective response

rate and disease control duration in patients with dMMR mCRC

treated with pembrolizumab (65). These findings indicate that ISB
based on densities of CD3+ and CD8+ T cells might help predict and

stratify patients who would benefit from RIT.
5.4 CD8+ T cell/effector regulatory
T cell ratio

In the VOLTAGE study, tumor-infiltrating lymphocytes in 24

pre-CRT samples from patients with MSS LARC were analyzed using

flow cytometry (45). The results showed that patients with a high

CD8/eTreg ratio had a significantly higher pCR rate than those with a

low CD8/eTreg ratio (78% vs. 13%). This suggests that the number of

CD8+T cells is a positive predictor of efficacy, whereas the number of

Treg is a negative predictor of efficacy. Tregs can suppress the anti-

tumor immune response, and their infiltration in tumor tissues is

usually associated with poor prognosis of patients (29).
5.5 Fibroblast growth factor receptor
1-3 deletions

Lin et al. (44) found that patients with LARC without FGFR1-3

deletions might have a better tendency for pCR when they received

preoperative short-course radiotherapy followed by chemotherapy

and camrelizumab. In their study, none (0/5) of the patients with

FGFR1-3 deletions achieved pCR, whereas 55.6% (5/9) of the patients

without FGFR1-3 deletions achieved pCR. FGFR2 promotes PD-L1

expression in CRC in vivo and in vitro via the JAK/STAT3 signaling

pathway (66). Thus, the predictive significance of FGFR1-3 deletion

in further large-scale studies must be explored.
6 Discussion

Conventional treatment options for CRC typically involve a

combination of surgery, chemotherapy, and radiation, depending

on disease location and progression. However, studies have shown

that 54% of patients with rectal cancer experience relapse

following neoadjuvant CRT combined with TME surgery (67).

Approximately 66% of patients with stage II–III colon cancer and

50% of patients with stage II-III rectal cancer require adjuvant

chemotherapy or CRT, respectively (68). Traditional chemotherapy

can cause challenging toxic effects. Oxaliplatin-induced neuropathy

and chemotherapy-related diarrhea are the most common side

effects (69, 70). Other common intestinal dysfunctions include an

increased defecation frequency, urinary incontinence, radiation

proctitis, and perianal stimulation, which are more common in

patients with rectal cancer, especially those who have received

radiotherapy (71). Furthermore, nearly 50% of patients with
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mCRC exhibited resistance to chemotherapy based on 5-FU (72),

and nearly 50% of patients with rectal cancer showed resistance to

radiotherapy (73), leaving many patients with advanced CRC with

limited options. Therefore, exploring more effective treatment

strategies to supplement traditional CRT regimens is of great

importance for patients with CRC. Immunotherapy has emerged

as a promising option, and some ICIs have become the first-line

treatment for mCRC. Owing to the subtle interaction between the

radiation effect and the body’s immune response, the synergistic

effect of radiotherapy and immunotherapy may offer new options

for managing patients with CRC.
6.1 Limitations of current RIT
clinical studies

A few clinical trials on RIT have proven effective, but limitations

still exist. First, the sample size of the population included in these

studies was small (most no more than 50 patients), and most trials

were non-randomized single-arm phase I or phase II trials, making

the representativeness of the studies relatively weak. Second, due to

the late start of most studies, the follow-up time has not yet met

expectations, resulting in no relevant long-term survival data,

making it impossible to accurately judge the long-term benefits

and adverse events. Therefore, a comprehensive evaluation of RIT

based on the results of more phase III clinical trials is necessary in

the future. Furthermore, multiple regimens should be used to

conduct more comprehensive randomized controlled trials.

Moreover, the standard CRT regimen for patients with LARC or

the strategy of immunotherapy alone for patients with mCRC must

be compared with RIT to better evaluate the advantages and

disadvantages of RIT.
6.2 Exploring appropriate dosing and
fractionation regimens for radiotherapy
when combined with immunotherapy

The optimal radiotherapy dose and fractionation regimen to

optimize the benefits of RIT remains unclear. Previous studies have

demonstrated that radiotherapy induces an anti-tumor-immune

effect induced by generating type I interferon (IFN) triggered

through local high-dose radiation, thus initiating the innate and

adaptive immune attack on tumors (74, 75). However, exposing

tumor to a single high radiation dose (> 12–18 Gy) activates the

deoxyribonucleic acid (DNA) exonuclease TREX1, preventing

irradiated tumor cells from releasing IFN-b, and impairing the

increased immunogenicity induced by radiotherapy (76). In a study

of patients with MSS mCRC, Monjazeb et al. (38) found

that hypofractionated radiotherapy (8 Gy × 3) or low-dose

fractionated radiotherapy (0.5 Gy × 16) with the same

immunotherapy agents could elicit different immune responses.

Moreover, whether the optimal neoadjuvant radiotherapy regimen

for patients with LARC is short-course radiotherapy (5 Gy × 5) or

long-course radiotherapy (2 Gy × 25) remains debatable. Therefore,

the appropriate dose and fractionation scheme of radiotherapy
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when combined with immunotherapy in patients with CRC

requires further exploration.
6.3 The order of application of radiotherapy
and immunotherapy and the timing
of immunotherapy

In addition, the application sequence of radiotherapy

and immunotherapy and immunotherapy timing are often

heterogeneous. The proper sequence of RIT may depend mainly

on the specific immunotherapeutic agent used and the dose or

fraction of radiotherapy, as they might lead to different toxicities

and clinical results. A study by Parikh et al. (40) on patients with

MSS mCRC revealed that patients received immunotherapy first,

followed by radiotherapy. Finally, 10% (4/40) of patients withdrew

early because of immunotherapy toxicity without the opportunity to

receive radiation. Therefore, further research is warranted to

determine the appropriate sequence of combination therapy and

immunotherapy timing.
6.4 Finding markers that could identify
CRC groups that actually benefit from RIT

From the perspective of molecular mechanisms, RIT-related

molecular biological markers other than mismatch repair genes

must be identified to accurately identify CRC populations that may

benefit from RIT. The relationship between radiotherapy and

immunotherapy may be more profound and complex than

previously thought. Studies have identified several factors that

regulate radiosensitivity and IC expression, such as poly

adenosine-diphosphate-ribose polymerase (PARP) inhibitors,

which may induce immunosuppression by up-regulating PD-L1

expression (77), while p53, a radiation response, was confirmed to

regulate PD-L1expression (78). Immunotherapy may also affect the

tumor radiation response through mechanisms that are

independent of its effects on immune cells. Given the lack of

definitive evidence that immunotherapy may directly or indirectly

sensitize radiation, more relevant preclinical and clinical studies are

required to further explore the relevant mechanisms.
6.5 Risks of combining radiotherapy and
immunotherapy

The potential of immunotherapy as a radiation sensitizer has

not yet been established, and the combination of radiotherapy and

immunotherapy may also be a double-edged sword. ICIs can alter

the balance between immune response and immune tolerance,

leading to an over-immune reaction in normal tissues. RIT may

exacerbate immune-related adverse events, such as fatigue, rash,

dermatosis, colitis, and gastrointestinal complications (79). In

addition, radiotherapy not only promotes tumor-specific antigens

recognition in tumor tissues, but also triggers the release of non-

tumor-specific antigens into the tumor microenvironment. Some
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non-tumor-specific antigens may activate autoreactive T cells and

attack normal tissues (80). Further studies are required to clarify the

biological mechanisms underlying these toxic reactions and how to

reduce the risk of adverse events. Overall, the ideal research

methodology of clinical trials combining radiotherapy and

immunotherapy are first required to preplan for the final

analyses, including the addition of appropriate surrogate and

intermediate endpoints. Full consideration of the exact benefits

and risks of RIT should be based on increasing the enrollment of

more qualified patients and decreasing the incidence of adverse

events when refining the current regimens.
7 Conclusion

In general, this review summarized the current application of

radiotherapy and immunotherapy in CRC treatment, elaborated on

the underlying mechanisms of RIT, systematically reviewed the

preliminary results of RIT-related clinical trials for CRC, and

suggested key considerations for the future development of RIT

protocols. Our study suggested that rational RIT regimens can

improve the outcomes of some patients with CRC, although current

studies have some limitations. Further studies on RIT should focus

on including larger sample size and standardizing the combination

therapy regimens based on the underlying influencing factors.
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