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Colitis-associated colorectal cancer is the most serious complication of

ulcerative colitis. Long-term chronic inflammation increases the incidence of

CAC in UC patients. Compared with sporadic colorectal cancer, CAC means

multiple lesions, worse pathological type and worse prognosis. Macrophage is a

kind of innate immune cell, which play an important role both in inflammatory

response and tumor immunity. Macrophages are polarized into two phenotypes

under different conditions: M1 and M2. In UC, enhanced macrophage infiltration

produces a large number of inflammatory cytokines, which promote

tumorigenesis of UC. M1 polarization has an anti-tumor effect after CAC

formation, whereas M2 polarization promotes tumor growth. M2 polarization

plays a tumor-promoting role. Some drugs have been shown to that prevent and

treat CAC effectively by targeting macrophages.
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1 Introduction

Ulcerative colitis (UC) is a chronic nonspecific intestinal inflammation caused by a

variety of factors including heredity, immunity and environment exposure. Hemorrhagic

diarrhea, abdominal spastic pain, and weight loss are the most common symptoms (1). In

the past few decades, the incidence trend of UC is on the rise (2). Most ulcerative colitis

patients only need medication to control their symptoms. When severe bleeding,

obstruction or tumorigenesis occur, surgical treatment is required. Colitis-associated

colorectal cancer (CAC) is the most serious complication of UC. The risk of

tumorigenesis of UC includes long course of disease, wide range of lesions, and primary

sclerosing cholangitis (3). Previous studies have shown that the incidence of colorectal

cancer in patients with ulcerative colitis in Asia is 0.02%, 4.81% and 13.91% in 10 years, 20

years and 30 years, respectively (4). CAC is distinguished from sporadic colorectal cancer

by the presence of multiple lesions, more serious pathological types, and a poor prognosis

(5, 6). CAC and sporadic colorectal cancer(S-CRC) have different pathogenesis. S-CRC

develops according to the sequence of adenoma–dysplasia–carcinoma, while CAC follows
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the sequence of inflammation–dysplasia–carcinoma. DNA damage

caused by inflammation and reactive oxygen species promotes the

occurrence of mutations. The mutations that occur in the

development of CAC are similar to those of S-CRC, but the order

of mutations is opposite. For example, in the development of CAC,

the mutation of TP53 occurs in the early stage and the mutation of

APC occurs in the late stage. In the process of sporadic colorectal

cancer, TP53 mutation occurs in the late stage and APC mutation

exists in the early stage (7). Despite accounting for a small

proportion of colorectal cancer, CAC is still a leading cause of

mortality and the reason for colectomy in UC patients (8).

The cause of UC tumorigenesis is not clearly understood.

However, now most physician believe that it is related to the

inflammatory microenvironment caused by intest inal

inflammation (9). Inflammatory factors act on the intestinal

mucosa, promoting the occurrence of tumor. Macrophages, as

innate immune cells, contribute to the UC’s inflammatory

response. Furthermore, macrophages play an important role in

tumors. Therefore, it is critical to comprehend the role of

macrophages in UC carcinogenesis and CAC progression. This

article reviews the role of macrophages in the occurrence and

progression of CAC.
2 Macrophage

Macrophage is an innate immune cell, most of which originate

frommonocytes (10). Recent research suggests that have monocytes

may not be the only source of macrophages, and intestinal

macrophages are derived from resident macrophages in the

intestine. Macrophages secrete cytokines (11), remove cell

fragments (12), kill pathogens (13), and are involved in

inflammation (14), tissue repair (15), angiogenesis (16) and so on.

Macrophages exist in many tissues of the body and play different

roles in different tissues: alveolar macrophages in the lungs can

maintain the stability of the environment in the alveoli (17),

osteoclasts in bones have the ability of bone remodeling (18), and

a large number of macrophages in the liver are called Kupffer cells

which participate in immune response in liver (19, 20).
2.1 Basic biology of macrophage

Macrophages are white blood cells that exist in tissue. It is

generally believed that macrophages are derived from monocytes,

while monocytes are derived from the granulocyte-macrophage

colony (GM-CFUc) forming unit in bone marrow. Monocytes

migrate from blood to different tissues and form groups of cells

with different functions, such as “inflammatory” monocytes and

“resident”monocytes distinguished by the expression of cell surface

marker CX3CR1 (21). Inflammatory monocytes have a short half-

life and can differentiate into inflammatory macrophages and

dendritic cells. Inflammatory monocytes may also be one of the

sources of resident monocytes. Resident macrophages are usually

produced by resident monocytes and sometimes by inflammatory

monocytes. Resident macrophages and Foxp3+T cells play an
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important role in maintaining the stability of intestinal

environment through the mechanism of IL-10 and TGF-b
dependence. When intestinal inflammation occurs, inflammatory

monocytes migrate to the intestinal tract and differentiate into

dendritic cells and inflammatory macrophages, which can

produce a variety of cytokines involved in inflammatory response

(22). Inflammatory macrophages are usually activated as M1

phenotype, while resident macrophages are usually activated as

M2 phenotype. This process, which is affected by a variety of

complex factors, is known as polarization. The polarization of

macrophages is dynamic and could be reversed under certain

conditions. The polarized macrophages mainly include M1

activated by classical pathway and M2 activated by alternative

pathway (23). M2 can be divided into four subtypes in response

to various stimuli: M2a (24), M2b (25), M2c (26) and M2d (27).

Inflammatory cytokines, such as IFN- g, TNF-a, and the

microbial product LPS stimulate M1 polarization of macrophages

(28). TLR2, TLR4, CD80, CD86, and CCR7 are among the surface

receptors expressed by M1. And M1 secretes a variety of

inflammatory cytokines and chemokines, including TNF-a, IL-6,
IL-1, IL-12, ROS, CXCL9, CXCL10, CXCL11, CCL2, CCL3, CCL4

and CCL5 (29). Polarized M1 macrophages have increased antigen

presentation ability (30). As a result, M1 shows strong

inflammation, antibacterial and anti-tumor performance. Th-2

cytokines IL-4, IL-10 and IL-13 can stimulate M2 polarization of

macrophages (31). Dectin-1, mannose receptor, scavenger receptor

A/B, DC-SIGN (CD209) and CD163, CCR2, CXCR1, and CXCR2

expression in M2 macrophages. As the main member of tumor-

associated macrophages TAMs, M2 has strong phagocytic ability,

removes fragments and apoptotic cells, promote tissue repair,

angiogenesis, suppresses immunity, and promotes tumor

progression and metastasis (32).
2.2 Interaction between macrophages and
other immune cells

The immune state of the body is maintained by the

coordination of a variety of immune cells. The interaction

between macrophages and other immune cells is complex and

diverse, which can regulate the direction and intensity of immune

response through a variety of ways and mechanisms, thus having

different effects on the body.

2.2.1 T cells
T cells are important immune cells, which participate in

adaptive immunity. In tumor immunity, T cells can directly kill

tumor cells and coordinate different anti-tumor immunity. As

antigen presenting cells, macrophages affect the immune response

of CD8+T cells by phagocytosis and degradation of antigens such as

pathogens and tumor cells, or by regulating the expression of

costimulatory molecules (33). In addition, macrophages can

regulate the immune response of CD8+T cells by secreting

cytokines and chemokines. M1 macrophages can promote the

activation and proliferation of CD8+T cells and enhance their

killing ability by releasing cytokines such as IL-12 and IL-18, thus
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clearing pathogens and tumor cells. M2 macrophages may inhibit

the activation and proliferation of CD8+T cells and weaken their

killing ability by releasing immunosuppressive factors such as IL-10,

which may lead to immune tolerance or immune escape (34). M1

macrophages can secrete chemokines such as CXCL9/10 to attract

CD8+T cells to the infection site and promote inflammatory

response, while M2 macrophages can secrete chemokines such as

CCL17 to attract Treg to the inflammatory site, thus inhibiting the

inflammatory response (35, 36). In addition, Th1 cells secrete

cytokines such as IFN- g, which can stimulate M1 polarization of

macrophages. And M1 macrophages can also secrete some

chemokines, such as CXCL10 and CXCL11, which can attract

and activate Th1 cells and enhance cellular immune response.

Th2 cytokines such as IL-4 and IL-13 can stimulate M2

macrophage differentiation and activation which in turn can

promote sustained Th2 T cell activation and survival (12). M1

macrophages activate signal transduction pathways such as NF- kB
pathway and STAT3 pathway by secreting cytokines such as IL-1 b,
IL-6 and IL-23, and then promote the differentiation and function

of Th17 cells, thereby enhancing inflammatory response. M2

macrophages inhibit the differentiation and function of Th17 cells

by producing anti-inflammatory factors such as IL-10 and TGF- b,
thus reducing inflammatory response (37). Some studies have

shown that IL-17 produced by Th17 can promote the

differentiation and function of M1 macrophages, while inhibit the

differentiation and function of M2 macrophages, thus enhancing

the inflammatory response (38). However, other studies have also

found that IL-17A can induce the differentiation and function of

M2 macrophages, thus reducing the inflammatory response (39).

2.2.2 B cells
B cells can secrete antibodies to participate in adaptive

immunity. Macrophages can recognize and absorb antigens such

as pathogens and present them to B cells, thus activating the

immune response of B cells and promoting the production of

antibodies (40). And M1 macrophages can activate B cells by

secreting TNF- a, IL-6 and other cytokines, promote the

proliferation and differentiation of B cells, and induce B cells to

secrete antibodies such as IgM and IgG. On the other hand, M2

macrophages can secrete immunosuppressive factors such as IL-10

and TGF- b to inhibit the activation and differentiation of B cells,

thus reducing the level of humoral immunity (41).

2.2.3 NK cells
The interaction between M1 macrophages and NK cells

usually helps to enhance cytotoxicity, while the interaction

between M2 macrophages and NK cel ls may lead to

immunosuppression. On the one hand, M1 macrophages can

activate NK cells by secreting cytokines such as IL-12, IL-15, IL-

18 and IFN-g. These cytokines can promote the proliferation and

differentiation of NK cells and enhance their cytotoxicity. On the

other hand, the interaction between M2 macrophages and NK

cells is relatively complex. Some studies have shown that M2

macrophages can inhibit the activity of NK cells by secreting

cytokines such as IL-10. In addition, M2 macrophages can also
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inhibit the function of NK cells by expressing costimulatory

molecules such as PD-L1 (42).

2.2.4 ILCs
Unlike other lymphocytes, ILCs does not have T cell receptor or

B cell receptor, so it does not participate in specific immune

response. On the contrary, they play an important role in innate

immunity. ILC is usually divided into three different subtypes: ILC1,

ILC2 and ILC3, which play an important role in regulating immune

response. M1 macrophages can secrete IL-12 and IL-18 to promote

the differentiation and function of ILC1. ILC1 mainly produces

IFN- g and participates in antiviral and cytotoxic effects. M2

macrophages can secrete IL-33 to promote the differentiation and

function of ILC2. ILC2 mainly produces cytokines such as IL-4, IL-

5, IL-9 and IL-13, which are involved in anti-parasite infection,

allergic reaction and tissue repair. Macrophages can secrete IL-23 to

regulate the differentiation and function of ILC3. ILC3 mainly

produces cytokines such as IL-17 and IL-22, and participates in

antifungal and antibacterial effects (43, 44).
2.3 Roles of macrophage in UC

Skin and mucosa are the first line of immune defense of the

body. In intestinal mucosa, macrophages and dendritic cells play an

innate immune role, while B cells and T cells participate in adaptive

immune response. Macrophages are important cells in chronic

inflammation and the pathological processes. And macrophage

infiltration is a sign of chronic inflammation. The polarization of

macrophages is associated with some autoimmune diseases, such as

UC (45) and systemic lupus erythematosus (46). Under

physiological conditions, macrophages in the intestine

phagocytize microorganisms and present antigens to activate T

cells. Excessive activation of macrophages transforms physiological

inflammation into pathological damage of intestinal mucosa. The

number of macrophages increased significantly in active ulcerative

colitis, suggesting that macrophages were involved in the

occurrence and development of UC (47). And during the active

phase of UC, most of the macrophages in the lamina propria of the

intestinal wall are M1 phenotype. M1 breaks down tight junction

proteins, destroys the epithelial barrier, induces apoptosis of

epithelial cells, and leads to excessive inflammation (48). M1

plays a major role in intestinal inflammation, while M2 plays an

antagonistic role which eliminates inflammation and promotes

tissue healing. Previous studies have confirmed that increasing the

proportion of M2 could reduce the symptoms of colitis in mice (49).

A variety of inflammatory cytokines secreted by macrophages

play an important role in UC. IL-6 is an important mediator in

inflammatory response, which directly participates in inflammatory

response and corresponding injury process. IL-6 increases the

permeability of epithelial cells, which promotes the infiltration of

macrophages and aggravate the development of ulcerative colitis.

Previous studies have shown that the level of IL-6 is positively

correlated with the severity of intestinal inflammation (50). IL-18 is

also highly expressed in serum and colon tissues of patients with
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ulcerative colitis. The application of IL-18 inhibitor relieves the

symptoms of mouse colitis model and reduce the expression of

many inflammatory factors (51). TNF-a regulates the NF-kB
pathway by promoting IkBa degradation, NF-kB p65

phosphorylation and NF-kB nuclear transfer, which aggravates

the injury of ulcerative colitis (52). Infliximab has been used as a

TNF-a antagonist in the treatment of ulcerative colitis (53).

These cytokines not only play a role in the inflammatory

response, but also participate in the tumorigenesis and

progression of tumors. TNF- a is a kind of inflammatory

cytokine with strong anti-tumor effect (54). Many kinds of

immune cells, including macrophages, can produce TNF- a. It
has been shown to promote tumor growth in chronic inflammatory

diseases, although TNF- a has anti-tumor property. In chronic

inflammation, by production of RONS, TNF- a promotes DNA

damage caused by oxidative stress and promotes the tumorigenesis

of CAC (55). And targeting TNF- a may prevent or reduce the

tumorigenesis of CAC (56). Similarly, IL-6 can also promote early

CAC tumorigenesis by inducing oxidative stress (57).

Interestingly, although TNF- a has anti-tumor effect, even some

studies have shown that TNF- a can promote tumor cell apoptosis

and inhibit tumor liver metastasis in colorectal cancer (58).

However, more studies have found that TNF- a plays an

important role in tumor progression. By stimulating epithelial-

mesenchymal transformation, TNF- a can enhance the ability of

invasion and metastasis of colon cancer cells (59). And TNF- a can

promote angiogenesis by inducing human fibroblasts to secrete

VEGF (60). TNF- a can also promote tumor lymphangiogenesis

and lymphatic metastasis (61). In addition, TNF- a promote the

progression and metastasis of CRC through NF- k B pathway and

induction of MACC1 (62, 63). By blocking TNF- a, the promotion

of TNF- a on tumor can be reduced (64, 65).
3 Roles of macrophages on CAC

Macrophages have the dual functions of anti-tumor and

promoting tumor in cancer. In view of the fact that M2 plays a

promoting role in tumor development and metastasis, reducing the

proportion of M2 polarization could be used as a way to treat tumor

(66). On the other hand, M1 has the anti-tumor effect of promoting

tumor immunity (67). The polarization of macrophages is affected

by tumor microenvironment, which indicates that macrophage has

the ability to become potential target for tumor therapy. In CAC,

macrophages not only play a role in tumor immunity, but also play

a role in the inflammatory environment before tumor formation.

Overactivated macrophages not only aggravate inflammatory

damage, but also promote tumorigenesis.
3.1 Macrophage infiltration aggravates
inflammation and promotes tumorigenesis
of UC

Inflammation is an important cause of carcinogenesis of UC.

Macrophage infiltration is one of the characteristics of
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inflammation in UC. A large number of infiltrating macrophages

aggravate the mucosal damage caused by inflammation and

promote the transformation from inflammation to tumor. The

infiltration of macrophages and the release of pro-inflammatory

factors promote the carcinogenesis of epithelial cells.

CCL2 and CX3CL1 are important cytokines that induce

macrophage infiltration. By promoting the expression of these

cytokines, macrophage infiltration is enhanced and the

occurrence and development of CAC is promoted. MUC1 is a

kind of cell surface mucin which exists in intestinal epithelial cells

and some leukocytes. MUC1 promotes the expression of CCL2 and

mediates the recruitment and activation of macrophages. Activated

macrophages secrete IL-6 and promote the occurrence and

development of CAC through IL-6/STAT3 pathway (68).

Glucocorticoid is a drug for the treatment of active UC. In an

acute experimental UC mouse study, it was found that

glucocorticoid increased the expression of CCL2 and CX3CL1,

promoted macrophage infiltration and promoted the occurrence

of UC and CAC by targeting mTOR signal of intestinal epithelial

cells (69). Corticotrophin-releasing hormone receptor (CRHR1)

belongs to the CRH family and is highly expressed in

inflammatory tissues adjacent to CAC tumor tissue. CRHR1

promotes the recruitment of macrophages, secretes more

inflammatory factors such as IL-1b, IL-6 and TNF- a, and

promotes the early occurrence of CAC (70).

And inhibition of macrophage infiltration reduces the

occurrence and development of inflammation and CAC. By

inhibiting the expression of CCL2, GDC-0575, a CHK1 inhibitor,

reduces macrophage infiltration in the mouse colon, which may

inhibit the occurrence of CAC and colitis (71). Suppressor of AP‐1

(SAR1), a tumor suppressor, down-regulates the expression of p-

STAT1 and STAT1 in CAC cells, inhibits the activation of MCP-1/

CCR2 axis, reduces macrophage infiltration, which may inhibit the

tumorigenesis of CAC (72). Serum amyloid A (SAA) is an

evolutionarily conserved protein family associated with

inflammation. It was found that in the CAC mouse model, SAA

deficient mice showed a decrease in macrophage infiltration, which

may inhibits tumorigenesis of CAC (73). Nerve injury inducer

protein 1 (ninjurin1) is a homogenous cell surface adhesion

molecule, which plays an important role in cell migration.

Overexpression of Ninjurin1 in macrophages weakens the

infiltration of macrophages by targeting FAK signaling pathway,

thus may inhibiting the tumor progression of CAC (74).

Diphenyleneiodonium (DPI) is an inhibitor of NADPH oxidase,

which inhibits a variety of inflammatory responses. Low-dose DPI

inhibits macrophage infiltration and migration, reduce the

production of pro-inflammatory cytokines such as TNF- a and

IL-6, reduce inflammatory response and may inhibit tumorigenesis

(75). Estrogen receptor b (Erb) reduce the occurrence and

development of tumor by reducing macrophage infiltration and

reducing the production of TNF-a (76). As a non-coding RNA,

miRNA cannot encode proteins, but it can still exert its biological

functions in a variety of physiological or pathological processes. A

large number of previous studies have confirmed that miRNA plays

an important role in inflammation and tumor (77, 78). Abdullah

et al. found that overexpression of miR-132 inhibits macrophage
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infiltration and the production of proinflammatory cytokines,

which may inhibit CAC (79).

These factors that affect macrophage infiltration are quite

pleiotropic and have numerous downstream targeting effects, so

the impact on CAC may not be direct, and may not all be caused by

macrophage infiltration. And the effect of macrophage infiltration

on CAC mainly occurred in the early stage. The underlying

mechanism may be the large amount of macrophage infiltration

leads to more severe intestinal inflammation. A large number of

cytokines produced by macrophages promote DNA damage and

promote the process of inflammation-dysplasia-tumor. The

regulation of intestinal macrophage infiltration affects the

tumorigenesis of CAC (Figure 1). Therefore, early inhibition of

macrophage infiltration may be of significance to not only reduce

the inflammation of ulcerative colitis but also prevent the

occurrence of CAC.
3.2 The influence of macrophage
polarization on CAC

Macrophages express different phenotypes under the influence

of different environments, which is called macrophage polarization

(80). The polarized macrophages mainly include M1 activated by

classical pathway and M2 activated by alternative pathway. M1 and

M2 have different functions. M1 secretes inflammatory cytokines

and enhances the inflammatory response, but it has the anticancer

effect of enhancing tumor immunity in tumor tissues. M2 promotes

tissue repair and has anti-inflammatory effect, but it is considered to

inhibit tumor immunity in tumor tissue. This means that

macrophage polarization can not only affect the occurrence of

CAC by regulating inflammation, but also directly affect CAC by

regulating tumor microenvironment.

Excessive M1 polarization aggravates the inflammatory

symptoms of the UC, promotes mutation involvement and
Frontiers in Immunology 05
provides an inflammatory environment suitable for tumorigenesis.

M2 antagonize the pro-inflammatory effect of M1 and inhibit

tumorigenesis. Low-dose DPI inhibited the classical activation

pathway of macrophages and the level of M1 by down-regulating

the pathways of STAT3, NF-kB and ERK, and inhibited the

tumorigenesis of CAC in the early stage (75). MiR-146b targets

MyD88 and IRAK1, regulates TLR4 pathway, inhibits M1 activation,

and then reduces inflammation and inhibits the tumorigenesis of

CAC (81). In the early stage of CAC, xanthine oxidoreductase (XOR)

mediated M1 macrophage polarization, which promoted the

tumorigenesis of CAC (82). In macrophage, Fibrinogen-like protein

2 (Fgl2) deficiency promotes M1 polarization and inhibit M2

polarization, which promote the tumorigenesis of CAC (83).

However, inflammation is not the only factor affecting the

tumorigenesis of UC. M2 macrophages in tumor microenvironment

also have the effect of pro-tumor. In myofibroblasts, MyD88 secretes

OPN through TLR pathway, binds to CD44 and avb3 on

macrophages, promotes M2 polarization through STAT3 and

PPARg pathway, which promotes the tumorigenesis of CAC (84).

And a study found that the loss of SLC7A2 enhanced M2 polarization

to promote the tumorigenesis of CAC (85).

After tumor formation, M1 plays an anti-tumor role through

direct tumoricidal mechanisms or by promoting CD8 cytotoxic T

cell and NK cell killing of tumor cells in later phases of CAC

progression. M2 promotes tumor immune escape and enhanced

tumor progression, especially invasion and metastasis. In a study on

vitexin in CAC mice, vitexin inhibited M1 polarization in

inflammatory tissue, but promoted M1 polarization in tumor

tissue, which reduces tumorigenesis, inhibited tumor progression,

and reduced tumor load (86). Transient receptor potential vanilloid

1 (TRPV1) is an ion channel expressed in a variety of immune cells.

In the early stage of CAC, TRPV1 directly stimulates M1

polarization and promotes tumorigenesis. After that, TRPV1

regulates the Calcineurin/NFATc2 pathway to increase the

phenotype of Th2, enhance M2 polarization and promote tumor
FIGURE 1

The regulation of intestinal macrophage infiltration affects the occurrence of CAC. MUC1, Glu, CRHR1 and SAA enhance macrophage infiltration to
promote the tumorigenesis. SARI, GDC-0575, Ninjurin1, DPI, ER-b, miR-132 reduce macrophage infiltration to inhibit the tumorigenesis.
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progression (87). IL-28B inhibits M2 polarization of macrophages

through STAT3 and JNK signaling pathways, which reduces the

expression of M2 cytokines Arg-1 and TGF-b, to inhibit the tumor

progression of CAC (88). Hematopoietic cell kinase (HCK) is one of

nine non-receptor tyrosine kinases in the SRC family, which has the

function of regulating innate immunity. HCK promotes M2

polarization which promotes the tumor progression of CAC

(89) (Figure 2).

Tumor immunity is an important factor affecting tumor

progression. The main reason for the effect of macrophage

polarization on CAC is that polarized M1 and M2 play different

functions in tumor immunity.

M1 produces ROS, which can directly kill tumor cells and

inhibit tumor growth. M1 macrophages can produce a series of pro-

inflammatory cytokines, including TNF- a, IL-1 b, IL-6, IL-12.
These cytokines can stimulate the activity of immune cells such as

NK cells and CD8+T cells and enhance their ability to attack tumor

cells (90). In addition, M1 macrophages can activate tumor-specific

T cells through antigen presentation and mature DC cells, thus

promoting anti-tumor immune response (91). Recent studies have

shown that M1 macrophages can also enhance anti-tumor immune

response by inhibiting immunosuppressive cells in tumor

microenvironment, including Tregs and MDSCs (92).M2 cells

play an important role in different stages of tumor progression. In

the early stage of tumor, M2 macrophages are mainly involved in

tumor growth and angiogenesis. They secrete a variety of growth

factors and cytokines, including VEGF, TGF- b, EGF, which
promote tumor cell proliferation and neovascularization. In the

middle stage of the tumor, M2 macrophages mainly play an

immunosuppressive role. They can inhibit the activity of tumor

immune cells and reduce the immune recognition and killing of

tumor cells by secreting a variety of cytokines and surface

molecules, including IL-10, TGF- b, PD-L1. In the late stage of

tumor, M2 macrophages are mainly involved in tumor invasion and

metastasis. By secreting a variety of proteases and lysosomal

enzymes, they can promote tumor cell infiltration and invasion of
Frontiers in Immunology 06
surrounding tissues, and promote tumor cell metastasis and distant

metastasis (36, 93–95). In general, M2 macrophages have complex

mechanisms in the process of tumor growth and development,

which can not only promote tumor growth and angiogenesis, but

also inhibit the activity of tumor immune cells and promote tumor

invasion and metastasis. Tumor cells also produce cytokines that

affect the differentiation and function of immune cells. Some studies

have shown that G-CSF released by tumor cells can activate

MDSCs, thus forming an immune microenvironment suitable for

tumor progression. In mechanism, MDSCs expresses high levels of

inhibitory receptors and ligands, such as PD-L1, B7-H1 and CTLA-

4, which can bind to T cell activation signal molecules (such as

CD28), thus inhibiting T cell activation and proliferation. MDSCs

can produce a variety of immunosuppressive molecules, including

ROS, TGF- b, IL-10. These molecules can directly or indirectly

inhibit the function and proliferation of T cells. MDSCs can

promote T cell apoptosis through a variety of mechanisms,

including secreting apoptosis-inducing molecules, expressing

apoptosis-inducing receptors, inhibiting survival signals (96–98).

These production of factors by MDSC and M2 macrophages

provide a productive microenvironment tumor invasion and

metastasis during tumor progression to malignant carcinoma

stage tumors, including CAC.
3.3 The mechanism of macrophages
affecting CAC

In addition to infiltration of a large number of macrophage and

break of the balance of macrophage polarization, macrophages also

affect CAC through some other mechanisms such as regulating the

secretion of inflammatory cytokines or tumor-promoting factors

and targeting NF-kB pathway in macrophages.

Pou3f1 is a member of POU family and participates in cell

apoptosis and immune response (99, 100). Nuclear factor of

activated T cell 3 (Nfatc3) targets Pou3f1 to increase its
FIGURE 2

In the early stage, DPI, miR146b and Fgl2 inhibit M1 polarization, and Fgl2 promote M2 polarization, which both inhibit the tumorigenesis of CAC. XOR
promotes M1 polarization and enhance the tumor progression of CAC. In the later stage, vitexin promotes M1 polarization, IL-28B and Embelin inhibit
M2 polarization, which both inhibit CAC progress. TRPV1, HCK and OPN promote M2 polarization and enhance the tumor progression of CAC.
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expression, while Pou3f1 can promote inflammation in

macrophages. Knockout of Pou3f1 decreased the levels of pro-

inflammatory cytokines such as IL-1b, IL-6 and TNF-a, and
inhibited the tumorigenesis of CAC (101). G protein-coupled

receptor 35 (GPR35) is a soliton G protein-coupled receptor that

interacts with sodium-potassium pumps. In macrophages, GPR35

promotes macrophages to release angiogenic factors and promote

angiogenesis and tumor metastasis through the activation of Na/k-

ATPase and non-receptor tyrosine kinase SRC (102). Dana et al.

found that in macrophages, EGFR signal activates M2 polarization

through STAT6, which promotes angiogenesis and CAC

progression. Interestingly, in this study, M1 polarization is also

activated by EGFR signals via NF-kB. The promotion of

angiogenesis and tumor metastasis is due to the joint action of

M1 and M2 to produce angiogenic factors CXCL1 and VEGF (103).

Macrophage scavenger receptor A1 (SR-A1) is a pattern recognition

receptor, which is mainly expressed in macrophages. In

macrophages, SR-A1 inhibits the classical and non-classical

activation of NF-kB signal through TRAF6 and TRAF3,

respectively, thus inhibiting the occurrence of colitis and CAC

(104). Elongation factor Tu GTP binding domain containing 2

(EFTUD2) is a mRNA splicing protein that could promote the

occurrence of CAC by regulating the inflammatory response of

macrophages. In macrophages, EFTUD2 deletion reduces the

secretion of inflammatory factors and inhibits the occurrence of

CAC by inhibiting the activation of TLR4-NF-kB pathway (105).

MiRNA26a is overexpressed in macrophages, targeting IL-6, TLR3

and PKCs, inhibiting the activation of NF-kB/STAT3 pathway and
inhibiting the occurrence and development of CAC (106). M1

promotes the expression of TNF-related apoptosis-inducing

ligands (TRAIL) in adipose tissue-derived stem cells (ASCs),
Frontiers in Immunology 07
while ASCs induce apoptosis of CD133+ tumor cells and reduce

the number of M2 through TRAIL, which inhibits the progress of

CAC (107).

The discovery of these mechanisms not only gives us a deep

understanding of the role of macrophages in CAC, but also provides

a new direction for the treatment of CAC by targeting these

molecular pathways. At present, some potential drugs for the

treatment of CAC, especially traditional Chinese medicine, play a

role by affecting macrophage infiltration or polarization. Some

drugs that directly target these molecular pathways are

highly anticipated.
4 Drugs that regulate CAC through
macrophages

5-ASA is thought to reduce the risk of CAC in patients with UC,

which may be related to its effect on controlling inflammation (108).

In view of the important role of macrophages in CAC, some drugs

can prevent and treat CAC by targeting macrophages (Table 1).

Dimethyl itaconate (DI) inhibits the secretion of IL-1 b, thus
reduces the production of CCL2, restricts the recruitment of

macrophages by the combination of CCL2 and CCR2, which

inhibits CAC (109). EGFR signaling pathway plays an important

role in the growth and metastasis of colorectal cancer. However,

most of the studies focused on the colon epithelial cells. It has been

found that EGFR in macrophages can regulate macrophage

polarization and promote the tumorigenesis and angiogenesis of

CAC. Targeting EGFR with cetuximab eliminates the cancer

promoting effect of macrophages (103, 110). Ultra-low dose of

DPI reduces the M1 polarization and macrophage infiltration of
TABLE 1 Drugs that regulate CAC through macrophages.

Drug Effect on macrophages Function on CAC References

DI Inhibit macrophage infiltration Inhibit tumorigenesis (109)

cetuximab Inhibit M2 polarization Inhibit tumorigenesis and angiogenesis (103, 110)

DPI (ultralow dose) inhibit M1 polarization and macrophage infiltration inhibit tumorigenesis (75)

OTSSP167 inhibit M1 polarization and macrophage infiltration inhibit tumorigenesis (111)

mannose inhibit M2 polarization inhibit tumorigenesis (112)

Embelin inhibit M2 polarization Inhibit angiogenesis (85)

YYFZBJS inhibit M2 polarization Inhibit tumorigenesis (113)

GLP inhibit macrophage infiltration inhbit tumorigenesis (114)

SYD inhibit macrophage infiltration Inhibit tumorigenesis (115)

YTE-17 Inhibit M2 polarization Inhibit tumorigenesis (116)

triptolide Inhibit M2 polarization Inhibit tumor growth (117, 118)

ISL Inhibit M2 polarization inhibit tumorigenesis (119)

Vitexin Inhibit M1 polarization (Inflammatory tissue)
promote M1 polarization (tumor tissue)

Inhibit tumorigenesis
Inhibit tumor growth

(86)

DHA Inhibit macrophage infiltration Inhibit tumorigenesis (120)

corylin inhibit M1 polarization Inhibit tumorigenesis (121)
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macrophages, and then inhibit the tumorigenesis and tumor

progression of CAC. But it cannot kill CAC tumor cells directly

(75). OTSSP167 inhibits macrophage infiltration and M1

polarization by targeting Maternal embryonic leucine zipper

kinase (MELK), thereby inhibiting the tumorigenesis of CAC

(111). Mannose inhibits M2 polarization to inhibit tumorigenesis

of CAC (112). Embelin is a small molecule inhibitor of X-junction

apoptotic protein inhibitor with anti-tumor effect. In the late stage

of CAC, embelin reduce M2 polarization to reduce angiogenesis

and MMP expression, which inhibits tumor metastasis (122).

Many traditional Chinese medicines have definite therapeutic

effects on UC. Some traditional Chinese medicines or their active

components regulate the occurrence and progression of CAC by

targeting macrophages. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) is a

traditional Chinese medicine, and its extract inhibits the imbalance

of enterotoxigenic bacteroid fragilis (ETBF) in the intestinal tract.

The imbalance of ETBF stimulates STAT3-mediated polarization of

M2 macrophages to promote malignant transformation of

adenomas, thus promoting the occurrence and development of

CAC. By inhibiting ETBF imbalance, YYFZBJS inhibits M2

polarization and plays an antitumor role in CAC (113).

Ganoderma lucidum polysaccharide (GLP) is a component of

Ganoderma lucidum, which reduce intestinal macrophage

infiltration, down-regulate the expression of inflammatory factors

such as IL-1 b, and attenuate the tumorigenesis of CAC (114).

Shaoyao decoction (SYD), as a traditional Chinese medicine, also

inhibit the proliferation of macrophages, reduce the expression of

NF-kB and cytokines IL-1 b, IL-6, TNF-a, which inhibits the

tumorigenesis of CAC. In addition, SYD down-regulates EMT

and inhibits CAC by inhibiting the expression of cytokines (115).

YTE17 is the active fraction of Garcinia yunnanensis. In CAC

mouse model, YTE17 suppresses M2 polarization by down-

regulating JNK, STAT3 and ERK signal pathways, thus inhibiting

the tumorigenesis of CAC (116). Triptolide is the active ingredient

of Tripterygium wilfordii, which has the effects of suppressing

immunity and anti-inflammation. Triptolide inhibits M2

polarization of macrophages and reduce the secretion of anti-

inflammatory cytokines. By inhibiting the promoting effect of M2

on the growth of CAC tumor, it plays an anti-tumor effect

(117, 118). Isoliquiritigenin (ISL) is a flavonoid extracted from

licorice and has anti-inflammatory effects. In CAC mouse model,

ISL inhibits M2 polarization through cox-2/PGE2 pathway and IL-

6/STAT3 pathway, and then prevents against tumorigenesis of CAC

(119). Vitexin is the active ingredient of many traditional Chinese

herbal medicines, which is found in hawthorn, mung bean and

other traditional Chinese medicines. It has antioxidant, anti-

inflammatory and antitumor effects. In the CAC mice, the M1 in

the inflammatory tissues adjacent to the tumor of the mice treated

with vitexin decreased and M2 increased. In tumor tissues, vitexin

enhanced M1 polarization of macrophages. The reduction of

inflammation of inflammatory tissue inhibits the occurrence of

tumor. M1 polarization in tumor tissue promotes tumor immunity

and reduces tumor burden (86). Dihydroartemisinin (DHA) is an

active metabolite of artemisinin compounds, which could inhibit
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inflammation and tumor progression. At the early stage of CAC

formation, DHA inhibits macrophage activation, reduces

macrophage infiltration which inhibits the occurrence of CAC by

inhibiting TLR4 signal. And in the late stage of CAC, DHA

inhibited tumor growth by enhancing cell cycle arrest and

apoptosis in tumor cells (120). Corylin is a natural polyphenol

compound, which has antioxidant effect. It was found that corylin

inhibits M1 polarization so that inhibits the tumorigenesis of

CAC (121).

It is worth noting that these drugs mentioned above are in the

preclinical animal model stage. Further human clinical trials are

needed to determine whether it can be transferred to humans. In

spite of this, we still have great expectations for targeted

macrophage therapy for CAC.

In addition to drugs, diet also affects CAC by regulating

macrophages. b-carotene (BC) has the ability of antioxidation.

Previous study have found that drinking carrot juice rich in b-
carotene reduces cell DNA damage (123). In addition, BC inhibits

the growth of human leukemia and colon cancer by regulating NF-

kB signal pathway (124). In CAC, BC inhibits tumor growth by

inhibiting M2 polarization of macrophages (125).

Obesity is a risk factor for colorectal cancer. In obese mice model,

IL-6 induces the expression of chemokine CCL-20 in M2, recruits

immune cells expressing CCR-6, and promotes the progress of CAC

(126). A study on western diet found that the western diet with high

fat and low fiber promoted the infiltration of macrophages in colon

tissue of mice, aggravated intestinal inflammation and promoted the

development of CAC (127). Metformin combined with probiotics

seems to inhibit the infiltration of macrophages and the destruction

of intestinal epithelial barrier caused by western diet, thus inhibiting

the occurrence of CAC (128).
5 Conclusion

The development from UC to CAC includes two processes:

inflammation and tumor. Macrophages are also involved in both

inflammation and tumor. Obviously, in the inflammatory stage of

UC, excessive macrophage infiltration aggravates the damage

of inflammation and promotes the occurrence of CAC.

However, macrophages polarize into M1 macrophages

and M2 macrophages , which play di fferent roles in

inflammation and tumor. M1 macrophages have the effects of

promoting inflammation and antitumor, while M2 macrophages

have the effects of anti-inflammation and promoting cancer. Before

the tumor forms, M1 plays a pro-inflammatory role in promoting

the tumorigenesis. After the formation of CAC, M1 polarization

inhibits the progression of CAC by tumor immunity, while M2

promotes tumor progression and metastasis. Interestingly, some

studies have found that M2 not only promotes tumor progression,

but also increases the incidence of CAC (84, 85). This may be

because M2 play a tumor-promoting role in the early stage of

tumor formation.
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Some drugs, especially traditional Chinese medicine, have been

confirmed that play a role in the prevention and treatment of CAC

by targeting macrophages. In the future, there is still great potential

and possibility to prevent the occurrence of CAC and improve the

prognosis of CAC patients by targeting macrophages.
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AK, Bernabe-Garcıá M, Chávez-Sánchez L. IL-17-differentiated macrophages secrete
pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids
Health Dis (2017) 16(1):196. doi: 10.1186/s12944-017-0588-1

39. Nishikawa K, Seo N, Torii M, Ma N, Muraoka D, Tawara I, et al. Interleukin-17
induces an atypical M2-like macrophage subpopulation that regulates intestinal
inflammation. PloS One (2014) 9(9):e108494. doi: 10.1371/journal.pone.0108494

40. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol (2010)
125(2 Suppl 2):S3–23. doi: 10.1016/j.jaci.2009.12.980

41. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation:
Time for reassessment. F1000prime Rep (2014) 6:13. doi: 10.12703/P6-13

42. Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells
in the tumor microenvironment. Int Immunopharmacol (2021) 101(Pt B):108374. doi:
10.1016/j.intimp.2021.108374

43. Yin G, Zhao C, Pei W. Crosstalk between macrophages and innate lymphoid
cells (ILCs) in diseases. Int Immunopharmacol (2022) 110:108937. doi: 10.1136/gutjnl-
2012-303063

44. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate
lymphoid cells: 10 years on. Cell (2018) 174(5):1054–66. doi: 10.1016/j.cell.2018.07.017

45. Uo M, Hisamatsu T, Miyoshi J, Kaito D, Yoneno K, Kitazume MT, et al.
Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative
colitis through FcgR-mediated CD14 macrophage activation. Gut (2013) 62(12):1734–
44. doi: 10.1136/gutjnl-2012-303063
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Glossary

ASCs adipose tissue-derived stem cells

BC b-carotene

CAC Colitis-associated colorectal cancer

CRHR1 Corticotrophin-releasing hormone receptor

DHA Dihydroartemisinin

DPI Diphenyleneiodonium

EFTUD2 Elongation factor Tu GTP binding domain containing 2

Erb Estrogen receptor b

ETBF enterotoxigenic bacteroid fragilis

Fgl2 Fibrinogen-like protein 2

GLP Ganoderma lucidum polysaccharide

GPR35 G protein-coupled receptor 35

HCK Hematopoietic cell kinase

ISL Isoliquiritigenin

MELK Maternal embryonic leucine zipper kinase

Nfatc3 Nuclear factor of activated T cell 3

SAA Serum amyloid A

SAR1 Suppressor of AP‐1

SR-A1 scavenger receptor A1

SYD Shaoyao decoction

TRAIL TNF-related apoptosis-inducing ligands

TRPV1 Transient receptor potential vanilloid 1

UC Ulcerative colitis

XOR xanthine oxidoreductase
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