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Age/autoimmunity-associated B cells (ABCs) are a novel B cell subpopulation with

a unique transcriptional signature and cell surface phenotype. They are not

sensitive to BCR but rely on TLR7 or TLR9 in the context of T cell-derived

cytokines for the differentiation. It has been established that aberrant expansion

of ABCs is linked to the pathogenesis of systemic autoimmune diseases such as

systemic lupus erythematosus. Recently, we and other groups have shown that

increased ABCs is associated with rheumatoid arthritis (RA) disease activity and

have demonstrated their pathogenic role in RA, indicating that targeting specific B

cell subsets is a promising strategy for the treatment of inflammatory arthritis. In

this review, we summarize the current knowledge of ABCs, focusing on their

emerging role in the pathogenesis of inflammatory arthritis. A deep understanding

of the biology of ABCs in the context of inflammatory settings in vivowill ultimately

contribute to the development of novel targeted therapies for the treatment of

inflammatory arthritis.

KEYWORDS
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1 Introduction

Inflammatory arthritis describes a group of chronic systemic diseases that may affect

joints as well as other organs in the body, leading to disability and organ damage that

significantly reduce the quality of life (1). These include rheumatoid arthritis (RA), juvenile

idiopathic arthritis (JIA), ankylosing spondylitis (AS), psoriatic arthritis (PsA) and other

spondyloarthritis. Although the pathogenesis remains incompletely understood, many types

of inflammatory arthritis share certain autoimmune features, where genetic and

environmental factors operate to activate an adaptive immune response and elicit

autoantibody production (2). In addition, the interactions between synovial-like fibroblasts

(FLS), macrophages, and infiltrated lymphocytes induce the production of a variety of

inflammatory cytokines, which perpetuate the synovial inflammation development and

ultimately result in cartilage and bone destruction in RA (3, 4).
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B cells have long been recognized as a central player in adaptive

immunity (5). The roles of B cells in autoimmune diseases include

cytokine secretion, antigen presentation and autoantibody production

(6–8). Despite the well-known association with autoantibodies,

knowledge of the role of B cells in the pathogenesis of synovitis is

limited (9). Indeed, pathogenic B cell subsets have been found to

accumulate in the synovial tissue and synovial fluid (SF) of RA patients

which correlated with disease activity and joint damage (10, 11).

Furthermore, the efficacy of the B cell depleting anti-CD20

monoclonal antibody in the treatment of active RA has been

demonstrated, highlighting a crucial contribution of B cells in the

pathogenesis of RA (12). Notably, the underlying mechanisms of

disease amelioration following B cell depletion have not been fully

elucidated since plasma cells are not affected during treatment (12).

Considering that depletion of whole B cells raises the risk of severe

infections (13) and that B cells are a highly heterogeneous population, it

is conceivable that targeting specific pathogenic B cell subsets rather

than pan-B cells would be a more promising strategy for the

management of inflammatory arthritis such as RA.

Age/autoimmunity-associated B cells (ABCs) are a novel B cell

subpopulation that was first identified to accumulate in the spleen of

aged female mice as well as in autoimmune-prone mice (14–16). In

contrast to follicular B (FoB) and marginal zone B (MZB) cells, ABCs

are characterized by the expression of myeloid markers and do not

divide in response to B-cell receptor (BCR) signaling (14, 15).

Importantly, ABCs were shown to secrete autoantibodies upon

stimulation in vitro, and depletion of these cells in vivo results in a

reduction of autoantibody levels, implicating their pathogenic role in

the development of autoimmunity (15). In addition, ABC-like cells are

also elevated in various infectious diseases such as influenza and

malaria (17–20). The observation that ABCs increased in human

systemic autoimmune diseases including systemic lupus

erythematosus (SLE), scleroderma, Sjögren’s syndrome (SS) and

multiple sclerosis multiple sclerosis (MS) further established a link

between ABCs and autoimmune diseases (15, 21–26). In addition,

researchers have found the expansion of CD21low B cells, a part of

ABCs, in immune deficiency (27, 28). Recently, by combining mass

cytometry and single-cell RNA sequencing analyses, Zhang et al (29)

revealed that ABCs were expanded in the synovium of RA patients,

suggesting a potential role of ABCs in inflammatory arthritis.

Consistently, a recent work in our lab has confirmed the expansion

of ABCs both in the peripheral blood and in the synovial tissue of RA

patients (30). Our findings demonstrated a distinct transcriptomic

feature of RA ABCs, which may impact their ability to migrate into

the inflammatory joints, where they induce FLS to an aggressive

phenotype and perpetuate synovitis development (30).

Herein, we summarize the current knowledge of ABCs, focusing on

their emerging role in inflammatory arthritis. ABCs formation, especially

in the context of inflammatory settings in vivo, are discussed. By better

understanding the biology and function of ABCs in arthritis, novel

insights into the pathogenesis of disease and targeting strategies of

ABCs for the treatment of inflammatory arthritis are anticipated.

2 Diverse nomenclatures of ABCs

Hao et al. and Rubtsov et al. first described a distinct murine B cell

subset that accumulates with age in the spleen and is thus termed age-
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associated B cells (14, 15). Rubtsov et al. found that this unusual

population also appears in young lupus-prone mice and in the blood

of patients with several autoimmune diseases (15). Importantly, these

cells secrete autoantibodies upon stimulation in vitro, and depletion

in vivo led to a reduction in autoantibodies, suggesting that ABCs

might have a potential role in the development of autoimmunity (15).

Although the exact markers used to define ABCs differ between these

two reports, they shared several key features such as being refractory

to BCR and CD40 stimulation whereas responsive to innate stimuli

such as Toll-like receptor (TLR) 7 (14, 15).

Since these early observations, the expression of the transcription

factor T-bet, which has long been associated with lineage specification

of Th1 cells, has become a well-known marker and regulator of ABCs

(31). Hence, they are mentioned as T-bet+ B cells or CD11c+T-bet+ B

cells in various studies (17–19, 21, 22, 32–36). Other B cell subsets

that share at least some ABCs characteristics based on phenotypic and

transcriptomic analyses, have also been reported (23, 24, 37–47). For

example, aberrant expansion of B cells that lack IgD, CD27 and

CXCR5 (DN2 B cells) has been described in SLE patients and shown

to be correlated with disease activity and clinical manifestations (23).

Interestingly, DN2 B cells shared phenotypic and functional features

with activated naive B cells (aNAV), a subset that they reported earlier

in SLE patients (23, 41).

It is now generally considered that ABCs are a heterogeneous

population, which might partly account for the lack of a uniform

definition and the various phenotyping criteria applied among

different groups. Despite the diverse nomenclature that has been

used to describe these cells (Table 1), ABCs are actually emerging as

key players in many pathophysiological settings, raising the possibility

that this compartment may represent a common pathway in

autoimmune-mediated disorders. While we recognize that the term

“ABCs” may not an ideal terminology since they are not associated

with age in many disease settings including SLE and RA (22, 30), we

adopt this nomenclature in our review to encompass ABCs and ABC-

like populations. This is in line with most recent comprehensive

reviews on the subject that focus on different aspects (31, 57–59).
3 Origin and differentiation of ABCs

3.1 Origin of ABCs in vivo

Since discovery, interest in the origin and generation routes of

ABCs has been growing. Early studies in a murine system indicated

that ABCs can be generated from FoB cells under appropriate

conditions rather than from B cell senescence (14). More recent

studies revealed that ABCs display characteristics of antigen-

experienced cells and fulfill the criteria for memory B cells (60, 61).

Sequence analyses of heavy and light chain genes from ABCs showed

that they express a diverse repertoire of VH and Vk genes with

significant somatic hypermutation, implying that ABCs are germinal

center (GC) originated and have undergone stimulation from

antigens over time (61). Furthermore, these authors found that

neither major histocompatibility complex-II (MHC-II)-deficient nor

CD40-deficient FoB cells could give rise to ABCs, indicating that

cognate T cell help is required for ABCs generation (61). However,

conflicting results have been shown that ABCs can be yielded in vitro
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https://doi.org/10.3389/fimmu.2023.1103307
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1103307
TABLE 1 Diverse nomenclatures used to describe ABCs and ABC-like populations.

Species Nomenclatures Model Cell markers Reference

Mouse Age-associated B cells Old mice CD19+, CD21/35-, CD23-, CD43-, AA4.1- (14)

Old mice, lupus-like autoimmune disease B220+, CD19+, IgM+, CD11b+, CD11c+ (15)

Collagen-induced arthritis B220+, CD11c+, T-bet+ (30)

Lupus B220+, CD19+, CD93-, CD43-, CD21-, CD23-, CD11c+, T-
bet+

(33)

Lupus B220+, CD19+, CD11b+, CD11c+, T-bet+ (48)

Lupus B220+, CD19+, CD11b+, CD11c+ (49)

Influenza virus infection Fas+GL7-, CD11b+, CD11c+, T-bet+ (20)

Age-associated/
Autoimmune B-Cell

Lupus B220+, CD11c+, T-bet+ (50)

CD11c+T-bet+ B cells Acute lymphocytic choriomeningitis virus
infection

B220+, CD19+, CD44high, CD11c+, T-bet+ (51)

Chronic graft-versus-host disease lupus CD19+, CXCR3+, CD11c+, T-bet+ (34)

Age-associated/
Autoimmune B-Cell

Lupus CD19+, CD11c+, T-bet+ (52)

T-bet+ B cells Obesity CD19+, CD21-, CD23-, CD69+, Nur77+ CD11c+, T-bet+ (35)

T-bet+ memory B cells Influenza virus infection CD19+, B220+, IgD-, T-bet+ (42)

Ehrlichia muris infection CD19+, CD80+, PD-L2+, T-bet+ (43)

Atypical memory B cells
(atMBCs)

Plasmodium infection CD19+, CD21-, CD27-, FCRL5+, CD86+, CD40+, CD11b+,
CD11c+, T-bet+

(44)

Plasmodium infection CD19+, MSPl+21, FCRL5
+, CD11b+, CD11c+ (45)

Human Age-associated B cells Rheumatoid arthritis, systemic sclerosis, systemic
lupus erythematosus

IgD-, IgM-, IgG+, CD38low, CD5high, CD80high, CD86high,
CD20high, CD23-, CD27high

(15)

Rheumatoid arthritis CD19+, CD27-, IgD-, CD21-, CD11c+ (30)

CD11c+T-bet+ B cells Systemic lupus erythematosus CD19+, CD11c+, T-bet+ (22)

Double-negative (DN2) B
cells

Juvenile Idiopathic Arthritis CD19+, CD21low/-, CD27-, IgM-, CD11c+ (53)

Obesity CD19+, IgD-, CD27-, CD21low, CD95+, CD11c+, CD86+,
HLADR+, PD1+, T-bet+

(46)

Systemic Lupus Erythematosus CD19+, IgD-, CD27-, CD11c+, CXCR5- (54)

Systemic Lupus Erythematosus CD19+, IgD-, CD27-, CD11c+, CXCR5-, T-bet+ (55)

Systemic Lupus Erythematosus CD19+, IgD-, CD27-, CD21-, CD11c+, CXCR5- (23)

T-bet+ B cells Obesity CD19+, CD11c+, T-bet+, CD69+ (35)

HIV infection CD19+, CD27-, CD21-, T-bet+ (36)

Systemic lupus erythematosus, rheumatoid
arthritis, HIV infection

CD19+, CD21low, T-bethigh (56)

T-bet+ memory B cells HIV infection CD19high, CXCR3+, CD20+, CD11c+, T-bethigh (47)

Influenza virus infection CD19+, CD21-, IgD-, T-bet+ (42)

atMBCs Malaria exposed CD19+, FCRL5+, CXCR3+, CD95+, CD11c+, T-bet+ (19)

Age-associated-like B
cells

Systemic lupus erythematosus CD19+, IgD-, CD27-, CD21-, CD11c+ (54)

Granulomatous lung diseases CD19+, CD21low, FcRL 2-5+, CD11c+ (26)
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without CD40 ligation (55, 62). Similarly, while ABCs express GC-

associated surface markers such as CD95 and Peanut Agglutinin

(PNA) in the early phase of immune response, a very recent study in a

viral infection model demonstrated that ABCs developed

independently of GC formation and exhibited distinct phenotypic

and transcriptional profiles from GC B cells (51). As infection

resolves, ABCs localize to the marginal zone of the spleen, forming

a GC-independent memory subset capable of rapid recall responses

and contribute to antibody production (51). These seemingly

contradictory results, however, are not mutually exclusive, since

ABCs may arise through multiple routes depending on signals and

context they encounter in vivo.
3.2 Innate and adaptive signals in regulating
ABCs differentiation

It has been well established in early studies that, BCR ligation,

either alone or with CD40/CD40L co-stimulation, are not sufficient

for ABCs generation (14, 15). In contrast, the participation of innate

sensor signals, particularly the engagement of TLR7 and TLR9, with

subsequent exposure to T cell-derived cytokines, are crucial in driving

ABCs differentiation in vitro (14, 15). Interestingly, TLR7 locates on

the X-chromosome and could partially escape X-chromosome

inactivation. The expression of TLR7 is critical in controlling sex-

specific differences observed in mice on a lupus-prone background, as

a dual TLR7 expression in male lupus mice results in higher ABCs

formation and more severe organ damage (48). The requisite for

TLR7 as a prime driver of ABCs in autoimmune-prone mice was also

observed in patients with SLE (23). In a very recent study, Brown et al.

described missense TLR7Y264H variant in a child with severe SLE and

confirmed that this variant cause lupus when introduced into mice

(63). They further showed that enhanced TLR7 signaling drives

aberrant accumulation of ABCs and GC B cells in a cell-intrinsic

manner (63). In line with these findings, genetic ablation of either

TLR7 or myeloid differentiation factor 88 (MyD88), an adaptor

protein downstream of TLR7, results in a lack of ABCs in aged and

autoimmune mice (15, 48). Besides, the MyD88 deficient mice

showed less T-bet expression in B cells also indicated the important

role of MyD88 in the formation of ABCs (64). In contrast to TLR7,

the role of TLR9 in ABCs differentiation is still controversial. In vitro

experiments showed that the cross-action between BCR and TLR9

can synergistically increase T-bet expression in B cells (65). Similarly,

TLR9 along with interferon-g (IFN-g) receptor are essential signals in
promoting the development of ABCs in a malaria infection model

(66). However, evidence have been emerging that TLR9 seems to exert

a protective role in SLE (67). This might be explained by the capacity

of TLR9 in limiting the stimulatory activity of TLR7.

In addition to innate stimuli, ABCs are poised to differentiate

under adaptive signals which include BCR ligation and circumscribed

cytokine milieu. Among the cytokines, interleukin (IL)-21 and IFN-g
are the most important in promoting ABCs formation whereas IL-4

negatively regulates ABCs fate in the context of IL-21 (49, 56, 62, 68,

69). In addition, our recent work demonstrated that IL-13 receptor

a1-mediated signaling regulates ABCs generation and differentiation

in lupus-prone mice (50). Interestingly, the combination of IL-21 and

IFN-g stimulation induce the highest ABCs formation both in
Frontiers in Immunology 04
infection and in lupus murine models (49, 70, 71). The regulatory

cytokine interplay between IL-21, IFN-g and IL-4 was confirmed in

vivo through experiments in various knockout mice following

influenza or Heligmosomoides polygyrus challenge, examples of Th1

versus Th2 predominated immune responses, respectively (62).

Notably, the effects of IL-21 and IFN-g in promoting ABCs

generation are not identical, since IL-21 promotes the upregulation

of both T-bet and CD11c while IFN-g induces the expression of T-bet

but not of CD11c (62), suggesting the differences in the molecular

mechanisms employed by these cytokines in regulating

ABCs differentiation.

Recently, by studying patients with defined inborn errors of

immunity, Keller et al. demonstrated the essential role of BCR and

T cell-derived IL-21 in the in vivo expansion of ABCs (56). They

further observed a significant correlation between ABCs and

circulating T follicular helper (Tfh) and T peripheral helper (Tph)

cells, suggesting potential sources of CD40L, IL-21 and IFN-g in

promoting ABCs expansion (56). This is consistent with a finding in

juvenile idiopathic arthritis, which demonstrated the expansion of

Tph cells in the joints of JIA patients and revealed a positive

correlation of synovial Tph frequencies with ABCs in situ (53).

Importantly, synovial Tph cells skewed B cell differentiation toward

ABCs phenotype in vitro by provision of IL-21 and IFN-g (53).

Altogether, the ability of ABCs to integrate both innate and adaptive

signals may enable them to reflect the inflammatory clues in their

microenvironment, thus allowing them to be an indicator of disease

activity (Figure 1).
4 ABCs in rheumatoid arthritis

4.1 ABCs are expanded in the circulation
and inflammatory joints of RA patients

RA is a prototype of immune-mediated inflammatory disease,

characterized by persistent synovitis with leukocyte infiltration.

Aberrant B cell phenotype and function have been conventionally

recognized as one of the main contributors in the immunopathology

of RA. Previous studies in other autoimmune diseases have described

that ABCs are increased in the peripheral blood of RA patients (15,

22). Until recently, more attention has been paid on ABCs

involvement in RA. Actually, increased frequency of CD27-IgM-

IgD-CD21- ABC-like B cells was observed in patients with

seropositive RA compared with healthy individuals (72). Our group

recently found that ABCs were expanded both in collagen-induced

arthritis mice and in the circulation of RA patients with more severe

symptom (30).Similarly, another group also demonstrated that

circulating ABCs were increased in RA patients with higher disease

activity and decreased in those with good treatment responses (73).

By integrating single-cell transcriptomics and mass cytometry,

Zhang et al. defined inflammatory cell states in the joints and revealed

that ABCs were one of the 5 populations expanded in the synovial

tissue of RA patients (29). In line with these findings, we found the

frequency of ABCs in the SF was more than 10 times higher than that

in the peripheral blood and confirmed their accumulation in the

synovium of RA patients by immunofluorescence and flow cytometry

(30), raising the possibility that these cells are recruited to the joints
frontiersin.org
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during ongoing inflammation. Actually, the inflammatory chemokine

receptor CXCR3, which is usually absent on circulating B cells, has

been observed to be upregulated on ABCs from both mice and

humans (49, 74, 75). Altogether, these data suggest that circulating

ABCs are capable of migrating into the inflammatory joints through

chemotaxis and contribute to the progression of chronic synovitis. In

addition, latent gHV68 infected Type II collagen-induced arthritis

(CIA) mice showed higher clinical scores and changes in paw heights.

And ABCs were increased and display an inflammatory phenotype in

the spleen of latent gHV68 infected CIA mice compared to CIA mice.

Furthermore, the knockout of ABCs can inhibit the exacerbation of

CIA, implicating that latent gammaherpesvirus exacerbates arthritis

through modification of ABCs (76). Hence, ABCs might act as a key

mediator in RA pathogenesis.
4.2 Mechanisms of ABCs contribution to
RA pathogenesis

4.2.1 Secretion of autoantibodies and
proinflammatory cytokines

ABCs can secrete autoreactive antibodies, which may play an

important role in many autoimmune diseases. In sjogren’s syndrome,

ABCs secrete autoreactive antibodies including double-stranded DNA,

insulin, and lipopolysaccharide (24). Rubtsov et al. found that the

depletion of ABCs can reduce the autoreactive antibodies in

autoimmune-prone mice (77). Researchers have confirmed that

ABCs can produce plenty of antichromatin IgG2a in autoimmune

mice, while the depletion of ABCs reduces IgG and IgG2a production

(21). In addition, the long non-coding RNA XIST maintains X-

inactivation of immune genes in cells, and the deletion of the long
Frontiers in Immunology 05
non-coding RNA XIST contributed to the formation of ABCs (78). In a

humanized lupus erythematosus mouse model, ABCs were recruited to

the inflamed site with the participation of IL-21 and TLR7/9 signals,

and then IgG2a, IgG2b and IgG3 were generated (79). In addition to the

production of autoreactive antibodies, it has been reported that

excessive ABCs compromise antigen-specific GC B-cell responses and

antibody-affinity maturation in lupus mouse models (33).

Except the secretion of autoreactive antibodies, ABCs also secrete a

variety of cytokines, including IL-4, IL-17, IL-10, IFN-g and tumor

necrosis factor-a (TNF-a), to regulate the immune system of the body

(14, 80, 81). Actually, ABCs display a distinct cytokine profile from other

B cells in autoimmune diseases. For example, in patients with Crohn’s

disease, ABCs are abundant in the gut and express large amounts of IL-6,

IFN-g and IL-12 (32). In MS patients, increased frequencies of ABCs are

found both in the blood and in the cerebrospinal fluid, where they

contribute to inflammation by induction of T cell responses and

production of TNF-a and IL-10 (25).

Compared with CD11c- naive B cells, ABCs in RA patients display

higher TNF-a, IL-17, IL-21 but not IFN-g mRNA expression (30). The

distinct cytokine expression profile of ABCs from other B cells enables

them to be the most pro-inflammatory B cell subset. However, it appears

that ABCs also produce IL-4 and regulatory cytokines like IL-10, which

has been known to exert anti-inflammatory effect in arthritis (82, 83).

More research is needed to determine how the ABCs-derived cytokines

are changed during the different phases of inflammatory diseases.
4.2.2 Antigen presentation and activation of T cells
A previous study has shown that bone marrow B cells from RA

patients expressed higher levels of CD86 than their osteoarthritis

counterparts, suggesting that B cells in RA have the potential to act as
FIGURE 1

The origin and differentiation of ABCs. B cells from follicular and marginal zone of the spleen may serve as progenitors for ABCs. The differentiation of
ABCs can be regulated by a combination of innate signals and adaptive signals. The innate signals TLR7 engagement followed by subsequent IFNg and/or
IL-21 exposure in the context of Tfh cells is required for ABC differentiation. The Figure was partly generated using Servier Medical Art, provided by
Servier, licensed under a Creative Commons Attribution 3.0 unported license. ABCs: Age/autoimmunity-associated B cells; GC: germinal center; TLR7:
Toll-like receptor 7; TLR9: Toll-like receptor 9; IL-21: interleukin-21; IFN-g: interferon-g.
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APCs (84). Actually, ABCs can present antigens effectively and

potentiate Th17 polarization in vitro (14). In aged as well as

autoimmune-prone mice, ABCs are localized at the T/B cell border

in the spleen, present antigens to T cells, both in vitro and in vivo,

more efficiently than FoB cells, indicating their ability to interact with

T cells and activate antigen-specific T cells (85).

There has been evidence that ABCs promote pathogenic T cell

activation during autoimmune and inflammatory diseases. In

Crohn’s disease, CD4+ T cells produce higher IFN-g when

cocultured with ABCs compared to cocultured with other B cells

(32). Consistently, patients with higher ABCs also displayed

increased Th1 infiltration into the gut compared to those with less

ABCs (32). Similar results were found in SLE. Conditional deletion

of T-bet from B cells in lupus mice leads to decreased activation of

both T cells and B cells (86).

4.2.3 Interplay between ABCs and FLS
Under chronic inflammation, B cells accumulate in the synovial

membrane in a process analogous to that in the germinal center (87).

Indeed, RA synoviocytes enhance the production of immunoglobulins

by activated B cells and were potent to support the differentiation of B

cells into plasma cells infiltrated in the synovium (88). It has been

demonstrated that FLS, the key effector cells in RA synovium, facilitate

the migration of B cells beneath the synoviocytes via a mechanism

dependent on stromal cell-derived factor-1 (SDF-1) and vascular cell

adhesion molecule 1 (VCAM-1) (89). In addition, C-X-C motif

chemokine ligand 13 (CXCL13) and C-C motif chemokine ligand 20

(CCL20) also play crucial roles in the accumulation of B cells within the

inflamed synovium (90). Recently, it was shown that TNF-a enhanced

adhesion of B cells to FLS via the expression of VCAM-1, further
Frontiers in Immunology 06
supporting the interaction of B cells with FLS (91). However, whether

FLS could recruit ABCs from circulation and maintain their survival in

the synovium remains unclear and thus need further investigation.

On the other hand, B cells can induce the activation of

synoviocytes via IL-36 (92), which enables binding to IL-36R

and interleukin-1 receptor accessory protein (IL-1RAcP), a

member of the Interleukin-1 receptor family, and activate the

nuclear factor-kB (NF-kB) and mitogen-activated protein kinase

(MAPK) pathways to produce pro-inflammatory cytokines (93).

When cocultured with ABCs in vitro, FLS displayed elevated

expression of ICAM-1 and VCAM-1, along with increased

production of IL-6, matrix metallopeptidase (MMP)-1, MMP-3

and MMP-13, suggesting that ABCs shifted FLS to an aggressive

phenotype (30). Notably, ABCs-conditioned medium (ABCs-CM)

exerted similar effects as ABCs in coculture system, indicating that

the activation of FLS induced by ABCs is cell-contact independent

(30). Mechanistically, ABCs-derived TNF-a promotes the

upregulation of interferon stimulated genes in FLS. Furthermore,

blockage of ERK1/2 and JAK-STAT1 pathway significantly

inhibited ABCs-induced FLS activation (30). However, cell

contact-mediated ABCs-FLS crosstalk cannot be excluded and

deserves further study.

Taken above, the mechanisms by which ABCs contribute to the

pathogenesis of RA are summarized in Figure 2.
5 ABCs in juvenile idiopathic arthritis

JIA is the most common rheumatic disease in children. It refers to

a class of diseases related to chronic childhood arthritis, that begins
FIGURE 2

Schematic diagram outlining the role of ABCs in the pathogenesis of RA. In RA patients, ABCs secrete autoreactive antibodies to contribute to
autoimmune diseases, inflammatory cytokines (i.e. TNF-a, IL-17 and IL-21) to promote inflammation, as well as anti-inflammatory cytokines (i.e. IL-4 and
IL-10) with unknown effect. ABCs also act as antigen presenting cell promoting IFN-g secretion of CD4+T cell, potentiating Th17 polarization, and Th1
infiltration. The antigen-specific GC responses and antibody-affinity maturation are compromised by ABCs in GC B cells. At sites of inflammatory
arthritis, FLS secretes chemokines that facilitate the migration of ABCs into the inflamed joints, forming ABCs-FLS interaction and further inducing
activation of FLS with increased inflammatory cytokines and metalloproteinases production. The Figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license. ABCs: Age/autoimmunity-associated B cells; RA: rheumatoid
arthritis; TNF-a: tumor necrosis factor-a; IL-1b: interleukin-1b; IL-4: interleukin-4; IL-6: interleukin-6; IL-10: interleukin-10; IL-17: interleukin-17; IL-21:
interleukin-21; IFN-g: interferon-g; GC: germinal center; FLS: synovial-like fibroblasts; SDF1: stromal cell-derived factor-1; VCAM-1: vascular cell adhesion
molecule 1; CXCL13: C-X-C Motif Chemokine Ligand 13; CCL20: chemokine (C-C motif) ligand 20; ICAM-1: intercellular cell adhesion molecule-1;
MMP-1: matrix metallopeptidase 1; MMP-3: matrix metallopeptidase 3; MMP-13: matrix metallopeptidase 13.
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before age 16 and persists for at least 6 weeks and cannot be attributed

to any other cause (e.g. Lyme disease, septic arthritis). JIA not only

affects joints, but also affects extra-articular structures, including eyes,

skin, and internal organs, ultimately leading to disability and death

without effective treatment. Although over the past decades, a variety

of interventions have been developed to reduce JIA-induced tissue

damage and eventually improve the quality of life of JIA patients, the

complex pathogenesis of JIA remains incompletely understood

(94, 95).

JIA is conventionally considered as a T cell-driven disease.

However, the presence of anti-nuclear antibodies (ANAs) in almost

half of the patients suggests that B cells are implicated in the

pathogenesis of disease. Actually, many studies have shown that B

cells play an important role in the occurrence and development of JIA

through antigen presentation, cytokine secretion and autoantibody

production (96–99).

Recently, one study explored the divergences of B cells in ANA+

JIA patients by assessing the distribution of B cell subpopulations in

the peripheral blood and SF. They found no differences of B cell

distribution in the peripheral blood between ANA- and ANA+

patients. However, increased frequencies of CD21lo/-CD27-IgM-

DN2 B cells were observed in the SF of ANA+ JIA patients,

suggesting that DN B cells are potentially involved in the

development of disease and might be a characteristic subset

expanding in the joints of ANA+ JIA patients (100). Another study

investigated the phenotype and function of synovial CD4+ T cells that

promote aberrant B cell activation in ANA+ JIA. Interestingly, the SF

Tph cells can promote the differentiation of B cells toward the

CD21low/-CD11c+ phenotype by providing IL-21 and IFN-g.
Additionally, SF Tph cell frequencies were positively correlated with

SF CD21low/-CD11c+CD27-IgM-DN2 B cells in situ in JIA (53).

Altogether, these findings suggest a model that, in arthritis settings,

expanded Tph cells in the synovium might promote B cell

differentiation into ABCs through the secretion of cytokines like IL-

21 and IFN-g.
6 ABCs-a potential therapeutic target

As the expansion and multiple functions of ABCs in diverse

autoimmune diseases have been confirmed, the questions emerge:

Whether the ABCs can be a potential therapeutic target? And if we

can develop specific therapies based on ABCs for the treatment of

autoimmune diseases?

Daniel Ramsköld et al. found that belimumab, a monoclonal

antibody targeting the B cell cytokine BAFF, can decrease the ABCs

with early clinical improvements in SLE in a prospective cohort study

(101). Consistent with these findings, another clinical study showed

that SLE patients who received rituximab treatment had a reduction of

ABCs frequency at early follow-up (54). Besides, it was found that

ABCs were reduced following plasma exchange treatment with a

reduction in all immunoglobulin subsets in the circulation in patients

with MS (102). More importantly, Gemma Vidal-Pedrola et al. found

the ABCs express chemokine receptors and adhesion molecules that

favor homing to inflammatory sites, which are the predominant B-cell

subsets in SF at early RA (103). Taken together, these studies give us a

hint that ABCs is a prognostic indicator in autoimmune diseases and
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acting as a potential therapeutic target. Notably, considering the

increased risk of severe infections by depletion of total B cells,

therapeutics that specifically target ABCs rather than pan-B cells

would be a better strategy in the management of RA in the near future.

Some researchers have explored targeting ABCs for the treatment

of autoimmune diseases. The adenosine receptor 2a (A2A receptor),

also known as ADORA2A, is a potential target for immunotherapy. It

is reported that the activation of A2A receptor can increase regulatory

T cell generation, inhibit effector T cells and T follicular helper cells

proliferation, and block the formation of GC B cells (104–107).

Lymphocytes from RA patients are highly expressed A2A receptor,

and the stimulation of A2A receptor can inhibit the production of

pro-inflammatory cytokines in vitro (108, 109). Moreover, the

expression of A2A receptor is approximately 10 times higher than

in CD11c+T-bet+B cells, compared to CD11c-B cells (110), suggesting

A2A receptor may exert immunosuppressive effects by regulating

ABCs. Indeed, Levack el al. depleted ABCs by the administration of

the adenosine receptor 2a (ABCs-specific cellular marker) agonist

CGS-21680, and they found that the depletion of ABCs reduced anti-

nuclear antibodies in lupus-prone mice, accompanied by improved

kidney pathology and lymphadenopathy (52). Although the reported

effects of A2A receptor on autoimmune diseases are mainly focused

on mouse ABCs, this targeted pharmacological approach for the

elimination of ABCs also can be explored as a new drug in RA

considering the highly expression of A2A receptor in RA

lymphocytes. In addition, Sandra Hočevar et al. established

polymer-coated gold nanoparticles, which can target ABCs and

demonstrated the polymer-coated gold nanoparticles can serve as a

safe tool to target ABCs in vivo (111). And they confirmed that

polymer-coated gold nanoparticles did not affect the percentages of

other B cell populations in different organs. However, the

development and application of treatments of polymer-coated gold

nanoparticles has not been investigated. Therefore, targeted

pharmacological therapy and nanomedicine based on ABCs will

hopefully broaden the therapeutic prospects of ABCs in RA.
7 Future prospects

Considering the heavy burden of inflammatory arthritis on

patients, new diagnostic and treatment methods for inflammatory

arthritis are urgently needed. In the past decade, abnormal expansion

of ABCs has been found to be associated with various autoimmune

diseases. And researchers have made exciting progressions, including

the discovery of the secretion of cytokines and autoantibodies by

ABCs, the intercellular regulation of ABCs and other types of cells. It

is precisely these features that make ABCs, a newly discovered cell

subset in autoimmune diseases, as an important regulator of

autoimmune responses and a potential therapeutic target.

Although it is clarified that the relationship of the ABCs and

severity of arthritis, the precise mechanisms by which ABCs function

during inflammatory arthritis requires additional delineation.

Moreover, current studies have primarily examined ABCs separately

in different immune settings in terms of autoimmune diseases. Wang

et al. (22) performed a comparison of the CD11chi B transcriptional

profile in individuals with healthy controls, SLE and RA. They found

that the CD11chi B cells display a comparable transcriptional profile
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between SLE and RA. However, whether the ABC population displays

related transcriptional profiles and exerts similar functions in

inflammatory arthritis remains largely unexplored. Meanwhile,

researchers have been investigating mouse and human ABCs

separately. As shown in Table 1, different markers were used in the

identification of mouse and human ABCs. However, ABCs with

different markers may represent different stages of differentiation and

perform different functions. Current research mainly focuses on the

role of mouse ABCs in the development of various autoimmune

diseases, but mouse models do not fully recapitulate human disease.

Therefore, a systematic comparison of the commonalities and

differences between mouse and human ABCs will promote the

clinical translation of ABCs-related research. Furthermore, ABCs are

a heterogeneous population, only approximately two-thirds of the cells

are T-bet+, and among these, roughly half are CD11c+. It is unclear

whether these cells represent stable, unrelated cell subpopulations, or

whether they are at different stages of differentiation. Further studies to

expand on the similarities and differences between ABCs in various

immune settings will be important; Heterogeneity and differentiation

characterization by single cell RNA sequencing would be valuable. With

intense ongoing investigations in more areas, it will hopefully advance

the understanding of the biology and function of ABCs in

arthritis, anticipating novel insights into the pathogenesis of

disease and targeting strategies of ABCs for the treatment of

inflammatory arthritis.
8 Conclusions

A growing body of evidence has emerged in recent years that

ABCs are implicated in the pathogenesis and development of

inflammatory arthritis. However, knowledge of ABCs origin,

differentiation, specific surface markers as well as their interactions

with other immune cells are still limited, making it a great challenge to

unravel the exact role of ABCs in the context of arthritis. More

in-depth researches are needed for the better understanding of
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ABCs involvement in the different stages of arthritis. Thus,

ABCs-based targeted therapies are anticipated for controlling

inflammatory arthritis.
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