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Postoperative cognitive dysfunction (POCD) is a prevalent clinical entity following

surgery and is characterized by declined neurocognitive function.

Neuroinflammation mediated by microglia is the essential mechanism of POCD.

Anesthetics are thought to be amajor contributor to the development of POCD, as

they promote microglial activation and induce neuroinflammation. However, this

claim remains controversial. Anesthetics can exert both anti- and pro-

inflammatory effects by modulating microglial activation, suggesting that

anesthetics may play dual roles in the pathogenesis of POCD. Here, we review

the mechanisms by which the commonly used anesthetics regulate microglial

activation via inflammatory signaling pathways, showing both anti- and pro-

inflammatory properties of anesthetics, and indicating how perioperative

administration of anesthetics might either relieve or worsen POCD development.

The potential for anesthetics to enhance cognitive performance based on their

anti-inflammatory properties is further discussed, emphasizing that the beneficial

effects of anesthetics vary depending on dose, exposure time, and patients’

characteristics. To minimize the incidence of POCD, we recommend

considering these factors to select appropriate anesthetics.

KEYWORDS

anesthetics, postoperative cognitive dysfunction, microglia, inflammatory signaling
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1 Introduction

POCD is a common postoperative complication characterized by personality changes

and impaired learning and memory capacities (1, 2). The incidence of POCD in elderly

surgical patients can reach 41.4%, and it increases postoperative complications and mortality

rates (3). The pathogenesis of POCD is still unknown. In recent years, it has become clear that

neuroinflammation mediated by microglia plays a key role in the pathogenesis of POCD (4,
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5). In response to inflammatory stimuli, microglia, which serve as the

first line of defense in the central nervous system (CNS), are activated

and polarized into two opposing phenotypes: pro-inflammatory M1

and anti-inflammatory M2 (6, 7). M1 and M2 phenotypes are

responsible for the release of pro- and anti-inflammatory mediators,

respectively (8). Excessive microglial activation and a dysregulated

M1/M2 ratio exacerbate neuroinflammation and impair

neurocognitive function (6, 9). Inhibition of microglial activation

and promotion of microglial M2 polarization are potential treatment

strategies for neuroinflammatory diseases. Therefore, microglia are

essential research targets for the pathogenesis of POCD.

The administration of anesthetics is a critical risk factor for

POCD, which is associated with the microglial activation and

neuroinflammation induced by anesthetics (2, 10, 11). However,

recent evidence suggests that anesthetics have both anti- and pro-

inflammatory properties and may play dual roles in the pathogenesis

of POCD (12–14). Several commonly used anesthetics can improve

neurocognitive outcomes by suppressing microglial activation,

promoting M2 polarization, and exerting anti-neuroinflammatory

effects (15–17). These findings suggest a role for anesthetics in

perioperative neuroprotection studies. In contrast, high doses, long-

term exposure, and the vulnerable phases of newborns and elderly

patients are likely to drive anesthetics to switch from inhibiting

microglial activation to promoting it, which increases the risk of

anesthetic-induced POCD (18, 19).

Although anesthetics play a key role in the development of

POCD, the contribution of anesthesia versus surgery in POCD is

difficult to distinguish. In this review, to better understand the anti-

and pro-inflammatory mechanisms of anesthetics, we review

literature on the independent effect of anesthetics, and introduce

intravenous, volatile, and local anesthetics that regulate microglial

activation and M1/M2 polarization via multiple inflammatory

signaling pathways. In particular, we list the anti-inflammatory and

neuroprotective effects of anesthetics in various inflammatory models,

such as lipopolysaccharide (LPS) stimulation, cerebral ischemia/

reperfusion (I/R) injury, and laparotomy surgery. We discuss the

potential role of anesthetics in ameliorating POCD by suppressing

microglial activation, a topic requiring further exploration. And we

suggest anesthesiologists should consider the anti- and pro-

inflammatory properties of anesthetics, as well as their dose,

exposure time, and patients’ specific characteristics, to minimize the

incidence of POCD.
2 Microglial activation

Microglia are resident immune cells in the CNS, accounting for

10-15% of all brain cells (20). They are typically in a resting state and

secrete neurotrophic factors such as nerve growth factor (NGF) and

brain-derived neurotrophic factor (BDNF), which are involved in

neuronal development, maintenance, and survival (21). Microglial

functions such as synapse pruning and synaptic stripping are essential

for regulating synaptic plasticity and maintaining proper learning and

memory capabilities (22). In addition, during the development of

neuroinflammation processes with the disruption of the blood-brain

barrier (BBB) and the infiltration of peripheral immune cells,

microglia are activated by several inflammatory mediators (23, 24).
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Depending on the activated state, microglial activation can have

both neuroprotective and neurotoxic effects. Microglial activation is

traditionally classified into two major phenotypes: pro-inflammatory

M1 (classical activation) and anti-inflammatory M2 (alternative

activation) (8). The M1 phenotype is activated by pro-inflammatory

mediators such as tumor necrosis factor-alpha (TNF-a), LPS, and
interferon-gamma (IFN-g) (25), while the M2 phenotype is activated

by anti-inflammatory cytokines such as interleukin (IL) -4 and IL-13

(26). Microglial M1 phenotype releases proinflammatory cytokines

(such as IL-1b, TNF-a, and IL-6), chemokines, nitric oxide (NO), and

reactive oxygen species (ROS), resulting in neuronal cell injury and

BBB disruption (27). The neuronal damage mediated by chronic M1

phenotype activation is a component in the pathogenesis of

Alzheimer ’s disease (AD), Parkinson ’s disease (PD), and

amyotrophic lateral sclerosis (ALS) (6). The microglial M2

phenotype releases anti-inflammatory cytokines IL-10, arginase

(Arg-1) and chitinase-3 (Chil3) to maintain and repair neural tissue

(28). The polarization of M2 microglia is essential for the restoration

of tissue homeostasis after inflammatory injury (28). Promoting the

polarization of microglia from M1 to M2 ameliorates the progression

of several neuroinflammatory diseases (6, 29), suggesting a

prospective therapeutic potential. Indeed, this dichotomous

classification simplifies microglial activation, and multiple

intermediate phenotypes between M1 and M2 phenotypes have

been identified in recent years (30). However, the regulation of M1/

M2 polarization remains a focus in the study of neuroinflammatory

disease pathogenesis, and further studies are required.
3 Inflammatory signaling pathways
involved in microglial activation

Multiple receptors expressed in microglia recognize inflammatory

mediators and transmit the inflammatory stimulus signal to induce

microglial activation via downstream signaling pathways (7, 31),

mediating the release of pro-inflammatory cytokines, chemokines,

and promoting increased NO and ROS production from microglia,

thus contr ibut ing to the deve lopment of the centra l

neuroinflammatory response (32). Targeting the upstream receptors

or the downstream pathways has been a crucial strategy for regulating

microglial activation and has promising research prospects for the

treatment of neuroinflammatory diseases (31, 33). Therefore, it is vital

to recognize the inflammatory signaling pathways involved in

microglial activation.
3.1 Microglial receptors for inflammatory
signal transmission

In addition to chemokine and IL receptors, there are critical

components that recognize danger-associated molecular patterns

(DAMPs), ligands produced by damaged cells (4). The toll-like

receptor (TLR) family of pattern recognition receptors (PRRs) plays

a crucial function in recognizing DAMPs (34). Toll-like receptor 4

(TLR4), a member of the TLR family, is overexpressed in microglia in

response to inflammatory stimuli (35). TLR4 identifies DAMPs and
frontiersin.org
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transmits signals downstream by binding to the cytosolic adaptor

protein myeloid differentiation primary response 88 (MyD88) (35,

36). As the upstream signal transduction node, TLR4 mediates the

activation of multiple inflammatory signaling pathways, such as the

nuclear factor kappa B (NF-kB) pathway, phosphatidylinositol 3-

kinase (PI3K)/protein kinase B (Akt) pathway, and mitogen-activated

protein kinases (MAPKs) pathway, suggesting its pivotal role in

neuroinflammation (37–39). Another surface receptor that

identifies DAMPs and mediates the NF-kB pathway activation is

the receptor for advanced glycation end products (RAGE) (40), a

multiligand receptor involved in non-PRRs (41). Recently, the

activation of triggering receptors expressed on myeloid cells 2

(TREM2), a surface receptor expressed on microglia (42), has been

shown to exert anti-neuroinflammatory effects via the PI3K/Akt

pathways (43, 44). These microglial receptors, as nodes of signal

transduction, are essential targets for neuroinflammatory

mechanisms and may play a significant role in the amelioration of

neuroinflammatory diseases.
3.2 NF-kB signaling pathway

The transcription factor NF-kB is a key regulator involved in

microglial M1 activation (20), based on the role of promoting the

expression of numerous inflammatory mediators (45), such as

proinflammatory cytokines IL-1, IL-6 and TNF-a, proinflammatory

enzymes cyclooxygenase 2 (COX2) and inducible nitric oxide

synthase (iNOS) (45). NF-kB exists in multiple dimeric forms,

mostly as RelA (p65)/P50 complexes that are involved in the

canonical NF-kB pathways activated by proinflammatory cytokines,

LPS, and DAMPs (46, 47). As a member of DAMPs, high mobility

group box 1 (HMGB1) has been identified as a major

neuroinflammatory biomarker associated with cognitive

impairments (48, 49). HMGB1 is recognized by both TLR4 and

RAGE on microglia (35, 40), and the inactive NF-kB p65/p50 in

cytosolic is released from the NF-kB inhibitor IkB, where it becomes

active to enter the nucleus, binding to the promoter region of pro-

inflammatory genes and promoting the express ion of

proinflammatory mediators (47). Studies focusing on the inhibition

of the HMGB1/TLR4/NF-kB and HMGB1/RAGE/NF-kB axes

showed a suppression of microglial M1 polarization and promotion

of M2 polarization, resulting in neuroprotective benefits (40, 50).
3.3 PI3K/AKT signaling pathway

PI3K is an intracellular lipid kinase that transduces signals from

microglial surface receptors such as TLR4 and tyrosine receptor

kinase B (TrkB) and activates Akt via phosphorylation of

phosphatidylinositol 4,5 bisphosphate (PI (4, 5)P2) to

phosphatidylinositol 3,4,5 trisphosphate (PI (3–5)P3) (51, 52).

Phosphorylated Akt can activate NF-kB and mediate inflammation;

inhibiting the microglial PI3K/Akt/NF-kB pathway reduces

microglial activation and the release of pro-inflammatory cytokines

(53). Glycogen synthase kinase-3 beta (GSK-3b), as a serine/threonine
kinase, can be inactivated by phosphorylated Akt to activate nuclear

factor erythroid 2-related factor 2 (Nrf2) (54), thus facilitating the
Frontiers in Immunology 03
microglial M2 polarization (55). In addition, new evidence suggests

that microglial TREM2 activation reduces microglia-mediated

neuroinflammation and ameliorates cognitive impairment via the

PI3K/Akt signaling pathway (43, 44), indicating the TREM2/PI3K/

Akt pathway may be a potential neuroprotective target. Together, the

PI3K/Akt pathway is involved in microglial activation and M1/M2

phenotype polar izat ion, exert ing both ant i - and pro-

inflammatory effects.
3.4 MAPK signaling pathway

The MAPKs family, as intracellular signaling molecules, are

comprised of extracellular signal-regulated kinase (ERK), p38, and

c-Jun N-terminal kinase (JNK) and regulating inflammatory

responses (56). NF-kB is also the MAPK family’s downstream

activated molecule (57, 58). The activation of microglial MAPKs

pathways enhanced the release of pro-inflammatory cytokines and

promoted the microglial M1 polarization through the activated NF-

kB (58). In vivo and in vitro studies revealed that inhibiting the

MAPKs/NF-kB pathway can attenuate microglia-mediated

neuroinflammation (59, 60). Furthermore, inhibiting the MAPKs/

NF-kB pathway reversed LPS-induced M1 polarization and balanced

the M1/M2 ratio (61, 62). TLR4/MyD88 can phosphorylate MAPKs

through the activated TNF receptor associated factor 6 (TRAF6) (39).

Therefore , TLR4, as the upstream signal transduct ion

node of MAPKs/NF-kB pathway, has been served as an

important target to inhibit MAPKs/NF-kB activation and against

neuroinflammation (35).
3.5 BDNF/TrkB signaling pathway

BDNF is a neurotrophin exerting a neuroprotective role via

binding to its high-affinity receptor TrkB (63). BDNF and TrkB are

highly expressed in the microglia (64), and play an important role in

modulating microglial activation. The upregulated BDNF/TrkB

pathway promotes M2 microglial polarization and neurogenesis

(65). Activating the BDNF/TrkB pathway also triggers various

intracellular signaling pathways (66), such as PI3K/Akt and

MAPKs, and has anti-inflammatory properties (67). The PI3K/Akt

signaling pathway is the main pathway for TrkB-mediated anti-

inflammatory effects (68). The BDNF/TrKB/PI3K/Akt pathway is

involved in the mechanisms by which the natural compound

curcumin (Cur) inhibits microglial activation induced by traumatic

brain injury (TBI) (68). The BDNF/TrkB/ERK pathway has been

confirmed to inhibit LPS-induced microglial activation through

phosphorylation of the downstream cAMP-response element

binding protein (CREB) (64), which is an inhibitor of NF-kB (69).
3.6 NLRP3 inflammasome signaling pathway

The NLRP3 inflammasome is a cytoplasmic polyprotein complex

existing in microglia constituted by NLRP3, inflammatory protease

caspase-1, and the adaptor protein, apoptosis-associated speck-like

protein containing a caspase recruitment domain (ASC) (70, 71). The
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activation of the NLRP3 inflammasome activates caspase-1,

promoting pyroptosis as well as the release of proinflammatory

cytokines IL-1b and IL-18 (72). The NLRP3 inflammasome

is considered a key contr ibutor tomicrogl ia-mediated

neuroinflammation (70, 73). Recent studies indicate that targeting

the microglial NLRP3 inflammasome signaling pathway alleviates

cognitive abnormalities in POCD (74, 75), and increase treatment

efficacy in AD, PD, and TBI (70, 76, 77). Therefore, the NLRP3

inflammasome has become a preventative and therapeutic target for

neuroinflammatory diseases.
4 Effects of anesthetics on microglial
activation via signaling pathways

Microglia-mediated neuroinflammation is the critical mechanism

in POCD (4, 5). Animal experiments of POCD often use microglial

activation as an indicator to assess neuroinflammation and neuronal

damage, and it is strongly associated with a decline in cognitive

performance (78, 79). Targeting microglia has been proposed as a

potential strategy to improve the development of POCD (5).

Emerging in vivo and in vitro evidence (Tables 1, 2) indicates that

commonly used anesthetics could target microglial activation

through signaling pathways to produce anti- and pro-inflammatory

effects, thus ameliorating or exacerbating the development of POCD.
4.1 Intravenous anesthetics

4.1.1 Propofol
Propofol is a short-acting intravenous anesthetic commonly used

for anesthesia induction and maintenance (120). It potentiates the

gamma-aminobutyric acid A (GABAA) receptors while blocking the

N-methyl-D-aspartate (NMDA) receptors (120). Clinical evidence

suggests that propofol could be beneficial in reducing elderly POCD

incidence (121, 122), as the anti-inflammatory property of propofol.

Aged rats with cardiac surgery under propofol anesthesia showed less

neuroinflammation and improved cognitive outcomes because of

attenuated microglial activation (14). Similarly, in the TBI model

with significant neuroinflammation, the administration of propofol

inhibits microglial activation and attenuates neuronal cell death, thus

improving cognitive recovery after brain injury (17). Therefore,

propofol is a potential anesthetic with neuroprotective properties

through suppressing microglial activation.

Accumulating evidence has confirmed that propofol targets NF-

kB and its upstream signaling pathways to inhibit microglial

activation in vivo and in vitro (80, 108–110). Microglial activation

in the spinal cord induced by peripheral inflammation can be reversed

by propofol via inhibition of the MAPK ERK1/2/NF-kB pathway

(80). In the LPS-induced cell model, the release of pro-inflammatory

cytokines and the genes TICAM1, IRF3, and NFKB1 involved in NF-

kB pathway are downregulated by propofol (108, 109). TLR4 and its

adaptor protein MyD88, key upstream inflammatory mediators that

activate NF-kB, are also downregulated by propofol, thus inhibiting

the microglial activation induced by LPS (110, 111).
Frontiers in Immunology 04
The PI3k/Akt pathway is also involved in the anti-inflammatory

mechanisms of propofol on microglial activation (109, 123). Liu et al.

(109) found that miRNA miR-106b acted as an upstream anti-

inflammatory regulator, inhibiting Akt phosphorylation; propofol

induced the overexpression of miR-106b to attenuate LPS-induced

microglial activation by inhibiting the PI3k/Akt pathway (109). In

addi t ion , GSK-3b , the act ivat ion of which fac i l i ta tes

neuroinflammation, can be inactivated by Akt (123) and is also

inactivated by propofol in LPS-treated BV2 cells, and this may be

related to the activation of PI3k/Akt pathway (111). Together,

multiple signaling pathways, including the NF-kB pathway, with

the upstream MAPK and TLR4/MyD88 signaling, and the PI3k/Akt

pathway, are involved in the anti-inflammatory mechanisms of

propofol on microglia. This provides important evidence for the

potential benefits of propofol on POCD. Could propofol be

recommended as a preventative therapy for POCD?

Unfortunately, propofol is not entirely anti-inflammatory and

neuroprotective. Propofol also promotes neuroinflammation and

microglial activation in an age-dependent manner (13, 19).

Propofol-induced neuroinflammation occurs primarily in the

developing brain, vulnerable due to extensive synaptogenesis,

resulting in developmental neurotoxicity (124, 125). Propofol

a dm i n i s t r a t i o n i n d u c e s m i c r o g l i a l a c t i v a t i o n a n d

neuroinflammation in P7 neonatal rats (13, 19). However, the

mechanism by which propofol promotes microglial activation in

the developing brain is not completely clear. Studies indicate it is

related to the downregulated hippocampal neurotrophin BDNF, thus

inhibiting BDNF/TrKB signaling and downstream PI3K/Akt

activation (19, 81). Importantly, the pro-inflammatory effect of

propofol is closely related to exposure time. Repeated

administration of propofol in both neonatal and aged rats led to

long-term cognitive injury as well as the upregulation of NF-kB and

NLRP3 inflammasome in the brain (13, 82), suggesting the activation

of NF-kB and NLRP3 inflammasome pathways participate in the pro-

inflammatory mechanisms of propofol. Further validation of the

effects of repeated propofol exposure on microglial activation,

which is the key to neuroinflammation development, is required.

4.1.2 Ketamine
Ketamine and its more potent S-enantiomer (esketamine) work as

NMDA-receptor antagonists, benefiting from their short-term anesthesia

and analgesia, which are frequently used for pediatric anesthesia and for

procedure sedations outside the operating room (126, 127). The effects of

ketamine on POCD remains controversial. Clinical research suggesting

an alleviated impact of ketamine on cognitive impairment following

cardiac surgery is inconclusive (128–130), and this may be the result of

ketamine’s anti- and pro-inflammatory effects.

Several studies have elucidated the anti-inflammatory properties

of ketamine, notably in neuroinflammation-induced depression (84,

131). Ketamine’s anti-inflammatory role is primarily associated with

the suppression of microglial activation (84, 112). Shibakawa et al.

(113) found ketamine, more so than propofol, inhibited the release of

TNFa in LPS-treated microglia cells. It was confirmed in vitro that

ketamine inhibits microglial activation through the MAPK ERK1/2

pathway (112). In addition, blockade of the glutamate NMDA

receptors by ketamine or esketamine induces binding between
frontiersin.org
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TABLE 1 Effects of anesthetics on microglia and related signaling pathways in vivo.

Anesthetic Anesthetic adminis-
tration

Animal Inflammatory
model

Cellular/Molecular
findings

Signaling
pathways

Behavioral
findings

Study

Propofol 15mg/kg bolus followed by
1mg/kg/min, iv. with
cardiac surgery

20-month-old
male rats

Cardiac surgery
under propofol or
isoflurane
anesthesia

↓ microglial activation/↑
miR-223-3p, ↓TNF-a, ↓
IL-1b, ↓IL-6

none Improving spatial
learning and
memory

(14)

2mg/kg bolus followed by
1.3mg/kg/min, i.v. with
TBI

Adult male rats TBI under
propofol or
isoflurane
anesthesia

↓ microglial activation, ↓
neural cell loss

none Improving
reference memory,
spatial learning and
memory

(17)

5 mg/kg, i.v. with CFA 4-week-old male
mice

CFA injection ↓ microglial activation/
↓phosphorylated (p)-
ERK1/2, ↓ NF-kB p65

MAPK ERK1/2/
NF-kB pathway

Reducing pain
hypersensitivity

(80)

20mg/kg repeated for 2, 4,
6 times, i.p.

P7 male rats Propofol
anesthesia

↑microglial activation/
↑caspase-1, ↑IL-1b

NLRP3
inflammasome
related pathway

Enhancing
locomotoractivity

(13)

50,75,100,150 mg/kg, i.p. P7 rats Propofol
anesthesia

↑microglial activation/↓
TrkB, ↓ PI3K, ↓ Akt, ↓
CREB

BDNF/TrkB/
PI3K/Akt
pathway

No deficits in
Morris water maze
test

(19)

15 mg/kg for 4 h, i.g. Adult male rats Propofol
anesthesia

↓ BDNF, ↑TNF-a, ↑IL-
1b, ↑IL-6

BDNF related
pathway

Impairing spatial
learning and
memory

(81)

200mg/kg daily for 6 days,
i.p.

18–20 months old
male rats

Propofol
anesthesia

↑p-NF-kB p65, ↑NLRP3,
↑caspase-1, ↑TNF-a,
↑IL-1b,↑IL-6

NF-kB pathway
and NLRP3
inflammasome
pathway

Impairing spatial
learning and
memory

(82)

Esketamine 5mg/kg, i.p. after
laparotomy

7-week-old male
mice

laparotomy under
2,2,2-
tribromoethanol
anesthesia

↓microglial activation/↓
NF-kB p65, ↓ TNF-a, ↓
IL-6

BDNF/TrkB/NF-
kB pathway

Improving
depression-like
behavior

(83)

Ketamine 10, 90 mg/kg, i.p. after LPS
injection

9 and 11 weeks
old male mice

LPS injection ↓ microglial activation/↓
IL-1 a, ↓ IL-6

none Improving anxiety-
like behavior

(84)

10mg/kg, i.p. after
laparotomy

2-month-old
male/female and
16-month-old
male mice

laparotomy under
isoflurane
anesthesia

↑mBDNF, ↑pTrkB BDNF/TrkB
pathway

Improving
depression-like
behaviors

(85)

10 mg/kg, i.p. before LPS
injection

8-10 weeks old
male mice

LPS injection ↓ M1 polarization, ↑M2
polarization/↓ HMGB1,
↓ RAGE

HMGB1/RAGE
pathway

Improving
depression-like
behaviors

(15)

20 mg/kg, i.p. P7 male and
female rats

Ketamine
anesthesia

↑hippocampal
pyroptosis/↑NLRP3,
↑caspase-1, ↑IL-1b, ↑IL-
18

NLRP3
inflammasome
pathway

Impairing spatial
learning and
memory

(86)

10, 20, 40, 80 mg/kg, single
or six times, i.p.; 30, 60
mg/kg, daily for 6 months,
i.p.

2 and 3 months
old male mice

Ketamine
anesthesia

↑IL-6, ↑IL-1b none Inducing spatial
memory deficits

(87)

Sevoflurane 3% for 2h P7 male and
femal mice

Sevoflurane
anesthesia

↑microglial activation,
↑M1 polarization/↑IL-6,
↑TNF-a, ↑NF-kB

NF-kB pathway Impairing spatial
learning and
memory

(88)

2% for 5h 20‐month‐old
male rats

Sevoflurane
anesthesia

↑microglial activation/
↑IL-6, ↑TNF-a, ↑IL‐1b,
↑p-NF-kB p65

NF-kB pathway Impairing spatial
learning and
memory

(89)

3% for 6 h 16-month-old
male mice

Sevoflurane
anesthesia

↑ microglial activation/
↑NLRP3

NLRP3
inflammasome
pathway

Impairing spatial
learning and
memory

(90)

(Continued)
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TABLE 1 Continued

Anesthetic Anesthetic adminis-
tration

Animal Inflammatory
model

Cellular/Molecular
findings

Signaling
pathways

Behavioral
findings

Study

3% for 50min with
laparotomy

4-month-old
female mice

laparotomy under
sevoflurane
anesthesia

↑microglial activation/
↑NLRP3, ↑caspase-1,
↑IL-1b, ↑IL-18

NLRP3
inflammasome
pathway

Inducing memory
decline

(91)

2% for 5h 18-20 months old
male rats

Sevoflurane
anesthesia

↑M1 polarization, ↓ M2
polarization

none Impairing spatial
working memory

(92)

3% for 2h daily for 3 days P6 and P60 male
and femal mice

Sevoflurane
anesthesia

↑ microglial activation none Impairing spatial
learning and
memory

(93)

3.6% for 6 h 2–3 and 18–20
months old rats

Sevoflurane
anesthesia

↑NF-kB p65, ↑TNF-a,
↑IL-1b, ↑IL-6

NF-kB pathway Impairing age-
related spatial
learning and
memory

(18)

2.5% for 1 h daily for 5
days prior to the MCAO

8 and 10 weeks
old male mice

MCAO under
sevoflurane
anesthesia

↑M2 polarization
↑p-GSK‐3b, ↑Nrf2

GSK-3b/Nrf2
pathway

improving
behaviors in
neurobehavioral
test

(54)

2% for 1 h prior to the LPS
injection

Adult male mice
and rats

LPS injection ↓ microglial activation/↓
IL-6, ↓IL-1b, ↓TNF-a

none Improving
neurocognitive
outcomes

(12,
94)

2% for 15min prior to the
MCAO

Rats MCAO under
chloral hydrate
anesthesia

↓TLR4, ↓NF-kB p65 TLR4/NF-kB
pathway

none (95)

2.5% for 4h P7 male and
female mice

Sevoflurane
anesthesia

↑neuronal apoptosis/
↔IL-1b, ↔IL-6, ↔
TNF-a

none none (96)

Isoflurane 1.5% for 2 h 6–8 and 14
months old male
mice

Isoflurane
anesthesia

↑ microglial activation/
↑IL-1b, ↑IL-18,
↑caspase-1 P20

NLRP3
inflammasome
pathway

Inducing age-
related cognitive
decline

(97)

0.75% for 6h P7 rats Isoflurane
anesthesia

↑ microglial activation,
↑M1 polarization/
↑TLR4, ↑ MyD88, ↑p-
NF-kB

TLR4/NF-kB
pathway

none (98)

1.3% for 6h 8-week-old male
mice

Isoflurane
anesthesia

↑ microglial activation,
↑M1 polarization/
↑CD68, ↑iNOS

none Inducing cognitive
decline

(99)

1.5% for 4 h P7 male and
female mice

Isoflurane
anesthesia

↑neuronal apoptosis/
↑IL-1b, ↑IL-6, ↑ TNF-a

none none (96)

2% for 30min prior to the
MCAO

Adult male rats MCAO under
chloral hydrate
anesthesia

↓microglial activation/
↓TLR4,↓MyD88, ↑IkB-a

TLR4/NF-kB
pathway

Inproving
neurological deficits

(100)

1.1% or 2.2% for 30min
prior to the MCAO

2-month-old male
rats

MCAO under
isoflurane
anesthesia

↓neuronal apoptosis/
↑Bcl-2

none Inproving
neurological deficits

(101)

2% for 30min prior to the
MCAO

Adult male rats MCAO under
isoflurane
anesthesia

↓neuronal apoptosis/↑p-
MAPK P38

MAPK P38
pathway

Inproving
neurological deficits

(102)

2% for 30min prior to the
EMP exposure

6-week-old male
rats

EMP exposure ↑anti-inflammatory
microglia polarization/
↑IkB-a, ↓TNF-a, ↓IL-
1b, ↓IL-6

NF-kB pathway none (103)

Desflurane 6% or 12% for 30min prior
to the MCAO

2-month-old male
rats

MCAO under
desflurane
anesthesia

↔Bcl-2 none No improvement in
neurological
outcome

(101)

9% for 2 h daily for 3 days P6 and P60 male
and femal mice

Desflurane
anesthesia

↔TNF-a, ↔IL-6 none No spatial memory
impairment

(93)

(Continued)
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glutamate and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) receptors, leading to synaptic release of BDNF, which

activates the TrkB pathway and participates in NF-kB translocation

inhibition (85). Esketamine decreases the number of activated

microglia cells and improves depression-like behaviors in a

postoperative depression (POD) model, via the BDNF/TrkB/NF-kB
signaling pathway (83). Moreover, the administration of ketamine

reverses microglial M1 polarization induced by LPS and promotes M2

polarization in vivo and in vitro in association with the downregulated

HMGB1/RAGE axis (15). The HMGB1/RAGE axis activates NF-kB,
and its inhibition can induce neuroprotective effects (40, 132).

Recent evidence suggests ketamine’s potential targeting of microglial

activationmay explain its pro-inflammatory role (86, 87, 114), but studies

remain insufficient. A recent in vitro study suggests that ketamine

administration induces microglial M1 polarization, thus increasing

neural cell death (114). However, the mechanism by which ketamine

increases the M1 phenotype remains unknown. In terms of ketamine’s

pro-inflammatory effect, it has been suggested that ketamine-induced

neuroinflammation depends on dose and exposure time. A high dose of

ketamine (80 mg/kg) or long-term exposure for 6 months can aggravate

neuroinflammation and impair neurocognitive performance (87). In

addition, like propofol, developmental neurotoxicity is also induced by

ketamine (86, 133). The cognitive deficits in P7 neonatal rats induced by

clinical doses of ketamine (20 mg/kg) are associated with hippocampal

NLRP3 inflammasome activation (86). In short, the anti-inflammatory

properties of ketamine might transform into pro-inflammatory

properties, depending on dose, exposure time, and age. It is thus

crucial to identify the dose-, exposure time-, and age-dependent effects

of ketamine on microglial activation and elucidate the pro-inflammatory

mechanisms of ketamine.
4.2 Volatile anesthetics

4.2.1 Sevoflurane
Sevoflurane, the most widely used volatile anesthetic agent, can

exhibit both anti- and pro-inflammatory properties (12, 54, 134).
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Sevoflurane-induced neuroinflammation plays a major role in the

pathogenesis of POCD and has been well-explored (11, 134).

Several animal studies suggest the neurocognitive dysfunction

induced by sevoflurane is related to microglial activation and

microglial M1 polarization via the NF-kB pathway (88–90). In

vivo and in vitro studies have identified sevoflurane as suppressing

microglial M2 polarization in the process of neuroinflammation

(92, 115), thereby aggravating neural injury development. This

suggests the imbalance of the M1/M2 microglia ratio is the central

mechanism involved in sevoflurane-induced neuroinflammation.

A recent study by Tang et al. (88) showed that resveratrol, a

polyphenolic compound, reverses the imbalance of the M1/M2

microglia ratio in sevoflurane-exposed neonatal mice via the NF-

kB pathway. Similarly, carnosol, a natural ingredient, can inhibit

sevoflurane-induced microglial activation through the NF-

kB pathway in aged rats (89). In addition, the NLRP3

inflammasome pathway is upregulated by sevoflurane with or

without surgery, and induces abnormal microglial activation (90,

91). Inhibiting the NLRP3 inflammasome in activated microglia

has produced beneficial reduction in cognitive deficits (90, 91).

Thus, the microglial NF-kB and NLRP3 inflammasome pathways

could be potential targets for the intervention of sevoflurane-

induced neuroinflammation.

The pro-inflammatory effects of sevoflurane are age-dependent,

manifesting primarily in neonatal and elderly individuals (18, 93).

Previous studies show that the neuroinflammation and cognitive

impairment induced by sevoflurane occurs in neonatal and old-age

mice, but not adult mice (18, 93). Moreover, several clinical trials

suggest that sevoflurane exposure caused neurocognitive deficits in

elderly surgical patients (121, 135). The pro-inflammatory effect of

sevoflurane also depends on exposure time. Microglial activation is

directly associated with long-term exposure to sevoflurane, e.g., 5-6 h

of exposure (89, 90, 92). Therefore, clinical procedures that require

prolonged anesthesia, especially in newborns and elderly3patients,

require extra attention to the potential neuroinflammation and

postoperative cognitive impairment induced by sevoflurane.
TABLE 1 Continued

Anesthetic Anesthetic adminis-
tration

Animal Inflammatory
model

Cellular/Molecular
findings

Signaling
pathways

Behavioral
findings

Study

Lidocaine 1.5mg/kg and maintained
with 2 mg/kg/h for 2h, i.v.
during isoflurane
anesthesia

18-month-old
male rats

Isoflurane
anesthesia

↓hippocampal cell
apoptosis/↔ IL-1b,
↔TNF-a

none Improving
hippocampus-
dependent learning
and memory.

(104,
105)

25mg/kg, i.v. after
resiniferatoxin injection

6-8 weeks old
male rats

Resiniferatoxin
injection

↓microglial activation none No effects on
depression-like
behaviors

(106)

100, 200, and 400 mg/10 mL
daily for 7 days, i.t. with
morphine

Adult male mice Morphine
injection

↓microglial activation/
↓p-MAPK P38 and
↓NF-kB

TLR4/NF-kB
pathway and
MAPK P38
pathway

none (107)

1%, 50ul for 1min, i.t. after
CCI

8-10 weeks old
male rats

CCI surgery ↓M1 polarization, ↑M2
polarization

none Reducing
neuropathic pain

(16)
fronti
↑, promoting effect; ↓, inhibiting effect; ↔, no effect; i.v., intravenous; i.g., intragastric; i.p., intraperitoneal; i.t., intrathecal; TBI, traumatic brain injury; CFA, complete freund’s adjuvant; LPS,
lipopolysaccharide; MCAO, middle cerebral artery occlusion; EMP, electromagnetic pulse; CCI, chronic constriction injury; TNF-a, tumor necrosis factor- alpha; IL, interleukin; ERK, extracellular
signal-regulated kinase; NF-kB, nuclear factor kappa B; TrkB, tropomyosin receptor kinase B; PI3K, Phosphatidylinositol 3-kinase; Akt, protein kinase B; CREB, cAMP-response element binding
protein; BDNF, brain-derived neurotrophic factor; NLRP3, nod-like receptor protein 3; HMGB1, high mobility group box 1; RAGE, receptor for advanced glycation end products; GSK-3b, Glycogen
synthase kinase-3 beta; Nrf2, nuclear factor erythroid 2-related factor 2; TLR4, toll-like receptor 4; iNOS, Inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase.
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Although the neurotoxicity of sevoflurane has been described

in several studies, the neuroprotection of sevoflurane is still

discovered, and known to be dose-dependent (12, 54, 94, 136).

The anti-inflammatory mechanisms of sevoflurane have been well

explored in cerebral I/R injury models (137). A sub-anesthetic

dose of sevoflurane (2.5%) preconditioning engages M2 microglia

polarization via the GSK-3b phosphorylation and Nrf2 activation

(54), which contributes to the M1/M2 microglial phenotype shift

(55). A lower dose of sevoflurane (2.0%) administration inhibited
Frontiers in Immunology 08
LPS-induced microglial activation (12, 94) and the release of

proinflammatory cytokines after cerebral I/R injury via the

TLR4/NF-kB pathway (95). In addition, low-dose sevoflurane

(1.3% and 1.8%) promoted hippocampal neurogenesis and

enhance spatial learning memory in neonatal rats (136, 138).

Based on these studies, the low dose of sevoflurane may

be responsible for its anti-inflammatory effects. Assessing

the neuroprotective threshold concentration of sevoflurane is

there necessary.
TABLE 2 Effects of anesthetics on microglia and related signaling pathways in vitro.

Anesthetics Anesthetic adminis-
tration

Cell type Inflammatory
model

Cellular/Molecular findings Signaling path-
ways

study

Propofol 50 mM treated with LPS BV2 cells and
Primary
microglia

LPS treatment ↓microglial activation/↓NF-kB, ↓ IL-1b, ↓IL-6,
↓TNF-a

NF-kB pathway (108)

10,20, 50, 100 µM treated
for 2 days after LPS
treatment

BV2 cells and
Primary
microglia

LPS treatment ↓microglial activation/↓NF-kB pathway
components (Ticam1, Myd88, Irf3, Nfkb1), ↑
miR-106b, ↓ p-Akt.

NF-kB pathway
miR-106b/PI3k/Akt
pathway

(109)

6.25, 12.5, 25, 50, and 100
mM treated for 30min before
OGD/R

BV2 cells OGD/R ↓ microglial activation/↓TLR4, ↓MyD88, ↓NF-
kB p65

TLR4/NF-kB
pathway

(110)

30 mM treated for 24h
before LPS treatment

BV2 cells LPS treatment ↓microglial activation/↓TLR4, ↑p-GSK-3b TLR4 and GSK-3b
related pathway

(111)

ketamine 100, 250uM treated for 24h
before LPS treatment

Primary
microglia

LPS treatment ↓microglial activation/↓p-ERK1/2, ↓NO, ↓IL-
1b

MAPK ERK1/2
pathway

(112)

100uM treated for 15min
before LPS treatment

Primary
microglia

LPS treatment ↓TNF-a none (113)

none BV2 cells LPS treatment ↓ M1 polarization. HMGB1/RAGE
pathway

(15)

25, 50, 100, 150uM treated
for 6h

Human
microglia cells

Ketamine
treatment

↑ M1 polarization, ↑neural cell death none (114)

Sevoflurane 2.0% for 5h BV2 cells Sevoflurane
treatment

↑ M1 polarization, ↓M2 polarization none (115)

2.5% for 1h before OGD Primary
microglia

OGD ↑M2 polarization/↑ p-GSK‐3b, ↑Nrf2 GSK-3b/Nrf2
pathway

(54)

Isoflurane 2% for 6h Primary
microglia

Isoflurane
treatment

↑nuclear NF-kB NF-kB pathway (116)

3% for 24h BV2 cells Isoflurane
treatment

↑microglial activation/↑NLRP3, ↑IL-1b, ↑IL-18 NLRP3
inflammasome
pathway

(117)

2% for 6h after LPS
treatment

Primary
microglia

LPS treatment ↑NLRP3, ↑IL-1b, ↑IL-18 NLRP3
inflammasome
pathway

(97)

0.4% for 6h BV2 cells Isoflurane
treatment

↑microglial activation/↑IL-1b, ↑TNF-a, ↑IL-6,
↑TLR-4

TLR4 related
pathway

(98)

Lidocaine 0.1 mM, 1 mM, or 10 mM
treated for 2h with ATP

Primary
microglia

ATP treatment ↓p-MAPK p38, ↓TNF-a, ↓IL-1b, ↓IL-6 MAPK P38
pathway

(118)

0.2, 2, and 20 mg/mL treated
for 1h before LPS treatment

Primary
microglia

LPS treatment ↓p-MAPK p38, ↓PGE2, ↓TNF-a, ↓ IL-1b MAPK P38
pathway

(119)

10ug/ml treated for 24h with
LPS

HAPI
microglia cell
line

LPS or IL-4
treatment

↓ M1 polarization, ↑ M2 polarization none (16)
fronti
↑, promoting effect; ↓, inhibiting effect;↔, no effect; OGD/R, oxygen-glucose deprivation/reoxygenation; ATP, adenosine triphosphate; HAPI, highly aggressively proliferating immortalized; Ticam1,
toll-like receptor adaptor molecule 1; Myd88, myeloid differentiation primary response 88; Irf3, interferon regulatory factor 3; Nfkb1, nuclear factor kappa B subunit 1; NO, nitric oxide; PGE2,
prostaglandin E2.
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4.2.2 Isoflurane
Another volatile anesthetic, isoflurane, has pro-inflammatory

effects similar to sevoflurane. Both the microglial NF-kB and

NLRP3 pathways are major agonist pathways for isoflurane-

induced neuroinflammation (97, 98, 116, 117). Additionally,

prolonged isoflurane inhalation for 6 h leads to microglial

activation and M1 polarization via the upregulation of TLR4/NF-

kB pathway (98, 99), and cognitive impairment correlates directly

with the multiple isoflurane exposures (139). One study comparing

the pro-inflammatory properties of isoflurane with sevoflurane,

discovered that at equivalent doses, isoflurane induces a

significantly greater neuroinflammatory response (96), although

whether this leads to more severe cognitive impairment remains to

be explored.

Isoflurane also has neuroprotective benefits, suppressing

microglial overactivation and reducing neuroinflammatory

response. Short-term isoflurane pretreatment for 30 min reduces

infarct size and enhances neurological function in the cerebral I/R

model (100–102), and isoflurane reduces both microglial activation

and neuronal apoptosis in infarct foci via the TLR4/NF-kB pathway

(100, 101). In a model of electromagnetic pulse (EMP) exposure that

triggers neuroinflammation and microglial activation, 30 min

isoflurane pretreatment shifts microglia from pro-inflammatory to

anti-inflammatory phenotype by significantly upregulating IkB-a, an
inhibitor of NF-kB (103). It is thus possible that a temporary

application of isoflurane may have neuroprotective benefits.

However, to date, the neuroprotective mechanism of isoflurane and

sevoflurane pretreatment have been primarily seen in the cerebral I/R

model, which cannot rule out disease model specificity, and additional

validation in the POCD model is required.

The volatile anesthetic desflurane, which has the benefit of rapid

elimination, has been studied comparatively little in the pathogenesis of

POCD. Clinical evidence suggests that desflurane may be superior to

sevoflurane and isoflurane in reducing cognitive decline after surgery

(140, 141). Previous studies found that multiple exposures to desflurane

do not lead to cognitive impairment and neuroinflammation (93).

However, neuroprotective effects were not observed following

pretreatment with desflurane prior to cerebral I/R injury (101).

Further studies are necessary to discover which volatile anesthetic

improves patient safety the most.
4.3 Local anesthetics

Lidocaine, as the most used amino-amide local anesthetic, is well-

known for its anti-inflammatory and neuroprotective properties

(142–144). Clinical trials indicate that a continuous intravenous

infusion of lidocaine for 48 h can reduce the cerebral inflammatory

response induced by cardiopulmonary bypass (CPB) (144). A meta-

analysis suggests that the perioperative administration of lidocaine

was protective against POCD occurrence following cardiac surgery

(143). The neuroprotective properties of lidocaine have also been

observed in POCD rats (104, 105). In vivo and in vitro studies indicate

that anti-inflammatory mechanisms of lidocaine include the

inhibition of microglial activation via the TLR4/NF-kB and MAPK

P38 pathways (106, 107, 118, 119). In addition, a recent study showed

that the administration of lidocaine can alleviate microglial activation
Frontiers in Immunology 09
by inhibiting M1 polarization while increasing abundance of the anti-

inflammatory M2 phenotype in the microglial line HAPI cells, and

this was also confirmed in the rat neuropathic pain model (16).

However, the regulatory mechanism of lidocaine on the M1/M2 ratio

awaits further exploration.

Although the anti-inflammatory and neuroprotective effects of

lidocaine are well supported, some clinical studies have failed to

confirm that lidocaine reduces the occurrence of POCD (145, 146).

Individual animal studies suggest that lidocaine injections induce

neuroinflammation, possibly in association with the promotion of

other immune cell activation (147). Therefore, the inhibitory effect of

lidocaine on neuroinflammation remains inconclusive and warrants

further investigation. Furthermore, since the inhibitory effect on

microglial activation has been identified mostly in a neuropathic

pain model, further validation in the POCD model is necessary.
5 Discussion

In recent years, the role of anesthetics in POCD has been

extensively studied, yet it continues to be controversial. In this

review, we summarize the effects of anesthetics on microglial

activation and M1/M2 polarization via multiple inflammatory

signaling pathways (Figure 1). We focus on the possible dual

beneficial and detrimental effects of anesthetics in POCD by targeting

microglia with anti- and pro-inflammatory properties. In terms of

evaluating the potential of anesthetics to ameliorate POCD based on

their anti-inflammatory properties, we conclude the following.

First, the intravenous anesthetics propofol and ketamine show

significant anti-inflammatory and neuroprotective effects (14, 17, 84),

but the neuroinflammation and cognitive impairment induced by

long-term administration (82, 87), and especially developmental

neurotoxicity (133), cannot be ignored. Mechanistically, the pro-

inflammatory effects of propofol may be associated with

downregulated BDNF/TrkB/PI3K/Akt pathway (19, 81), as well as

activated NF-kB and NLRP3 inflammasome pathways in microglia

(13, 82). Recent studies demonstrate that ketamine promotes

microglial M1 polarization (114), but the exact mechanism by

which this occurs is unclear and needs further exploration.

Furthermore, ketamine as a novel antidepressant (148), the anti-

inflammatory mechanism of which has mostly been studied using

depression models (15, 84), also requires further validation in

POCD models.

Second, the volatile anesthetics sevoflurane and isoflurane have

similar pro-inflammatory mechanisms, but their distinct pro-

inflammatory properties may result in different degrees of cognitive

impairment. It is of interest that, in cerebral I/R injury models,

pretreatment with low-dose sevoflurane or short-term isoflurane

can both suppress microglial activation, which may be via the

TLR4/NF-kB pathway (95, 100). Sevoflurane and isoflurane also

promote microglial M2 polarization by activating Nrf2 and

inhibiting NF-kB, respectively (54, 103). In addition, the rapid

elimination of desflurane may explain why it is less likely to cause

neuroinflammation and cognitive impairment, although the exact

mechanism remains to be studied. These studies reveal the

neuroprotective potential of volatile anesthetics, an important

direction for future research to reduce POCD.
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Third, lidocaine, a commonly used local anesthetic, has been

suggested to reduce the occurrence of POCD after cardiac surgery

(143), but contradictory results remain (145, 146). Current evidence

suggests lidocaine has significant anti-inflammatory effects and

facilitates microglial M2 polarization (16, 106, 107, 118); however,

the related signaling pathways need further exploration. It has also

been suggested that lidocaine may induce neuroinflammation and be

associated with the activation of other CNS immune cells (147), and

that its pro-inflammatory effects are complex and require further

study. Moreover, it is important to note that these mechanistic studies

of anesthetics need to be combined with clinical studies in the future

to obtain more convincing conclusions.

In conclusion, anesthetics are a double-edged sword for POCD.

High doses, prolonged exposure time, and the vulnerable phase of
Frontiers in Immunology 10
newborns and elderly patients may lead to a shift from a beneficial

impact of anesthetics on POCD toward worsening outcomes. The

selection of appropriate anesthetic drugs will always be a challenge for

anesthesiologists, but the anti-inflammatory properties of anesthetic

drugs provide promise in helping to reduce the incidence of POCD

and more in-depth studies are urgently needed.
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FIGURE 1

Effect of different anesthetics on microglial activation and M1/M2 polarization through inflammatory signaling pathways. *The potential signaling
pathways involved in the mechanism of anesthetics on microglial activation.
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