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Although COVID-19 is primarily a respiratory disease, its neurological complications,

such as ischemic stroke (IS), have aroused growing concerns and reports. However,

the molecular mechanisms that underlie IS and COVID-19 are not well understood.

Therefore, we implemented transcriptomic analysis from eight GEO datasets consist

of 1191 samples to detect common pathways and molecular biomarkers in IS and

COVID-19 that help understand the linkage between them. Differentially expressed

genes (DEGs) were detected for IS and COVID-19 separately for finding shared

mechanisms and we found that immune-related pathways were outlined with

statistical significance. JAK2, which was identified as a hub gene, was supposed to

be a potential therapeutic gene targets during the immunological process of

COVID-19 and IS. Besides, we found a decrease in the proportion of CD8+ T and

T helper 2 cells in the peripheral circulation of both COVID and IS patients, andNCR3

expression was significantly correlated with this change. In conclusion, we

demonstrated that transcriptomic analyses reported in this study could make a

deeper understanding of the common mechanism and might be promising for

effective therapeutic for IS and COVID-19.

KEYWORDS

COVID-19, ischemic stroke, gene expression profiles, immune system, immune
cell proportion
1 Introduction

Although the cause of ischemic stroke associated with COVID-19 is unclear, ischemic

stroke (IS) is a major contributor of morbidity and mortality in patients infected with

SARS-COV2 (1–3). There is rising incidence that post-COVID-19 stroke patients tend to

lack the cardiovascular risk factors (4–6). Besides, numerous independent studies have

reported increasing arterial and venous thrombosis, which are probably caused by the

activation of the immune system in response to viral pathogen invasion (7, 8). Multiple
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mechanisms associated with SARS-CoV-2 infection and the

development of COVID-19 were considered to contribute to the

onset of acute ischemic stroke, which include generalized

hypercoagulability, dysregulated immune response leading to the

cytokine-release syndrome, damage to endothelial cells leading to

increased inflammation and thrombosis (9–11).

Given the significant role of the immune system as a bridge

between COVID-19 and ischemic stroke, increasing research is

exploring the immune molecular mechanisms interlinking the two

diseases. Cytokine storm, a hyper-inflammatory response, is the likely

initiating sequence of pathological thrombosis in patients with

COVID-19 (3, 4). Systemic inflammatory responses, such as cytokine

storms, promote changes in immune cell polarization toward more

unstable phenotypes (9). The general agreement is emerging that recent

bacterial and/or viral infections can be the primary triggers of acute

ischemic stroke and may be related to the prothrombotic effects of

inflammatory reactions (8, 12). However, this risk seems to be higher

following COVID-19 (e.g., the risk of stroke was 7.6 times higher with

COVID-19 compared with influenza), probably due to the disease’s

unique pathophysiological alterations (5).

This study used eight datasets to discover and validate the

biological relationship between ischemic stroke and COVID-19.

Differentially expressed genes (DEGs) were initially identified and

then common DEGs of two diseases were found. Based on these
Frontiers in Immunology 02
common DEGs, we performed pathway analysis and confirmed the

critical role of immune-related pathways. Furthermore, 19 genes

were defined as immune-related among these common DEGs and

further analyses of drug targets, transcript factors, and miRNA-

mRNA interaction were applied on them. In addition, proportion

changes of various immune cells in the peripheral blood of IS

patients were evaluated using CIBERSORT and ImmunecellAI, and

correlation analyses were performed between immune genes and

differentially distributed immune cells. The sequential workflow of

our research is presented in Figure 1.

2 Methods

2.1 Datasets employed in this study

The microarray datasets used in this study were obtained from

the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The criteria

for retrieval were: A) samples were from human peripheral whole

blood samples, B) gene expression was profiled, C) datasets

contained both patients and healthy people without a history of

stroke nor COVID-19 exposure, D) all IS patients were clinically

diagnosed radiographically (with magnetic resonance imaging or

computed tomography), E) all COVID-19 patients were positive for

COVID-19 confirmed by RT-PCR.
FIGURE 1

Flowchart of the study. Expression profile data from whole peripheral blood of patients with COVID-19 or ischemic stroke (IS) were obtained, and
differential gene expression was performed between patients and healthy controls. ClueGO, drug targets, miRNA network, transcription factors and
immune infiltration analysis were applied to common IDEGs between COVID and IS to explore shared mechanism between these two diseases. Hub
genes obtained by LASSO regression were validated with test dataset of COVID and IS, using four machine learning methods. RF, Random Forest;
SVM, Support Vector Machine; LR, Logistic Regression; LDA, Linear Discrimination Analysis. 108 IS patients and 47 matched controls as well as 281
COVID patients and 414 matched controls were employed to perform differential analysis.
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To ensure the consistency and completeness of the datasets, we

manually identified relevant literature using keyword filters and

applied R programming language (version: 4.1.3) for subsequent

analysis. Finally, IS datasets [GSE16561 (13–15) and GSE58294 (16)]

and COVID-19 datasets [GSE171110 (17) and GSE198449 (18)] were

included as training sets. Batch effects were corrected using the

“comBat” function in the SVA package (version: 3.38.0). Next, we

normalized the combined datasets and adjusted for covariates using

the “Normalizebetweenarray” and “removeBatchEffect” functions in

the limma package (version: 3.46.0). To validate the conclustions, we

treated the GSE157103 (19) and GSE196822 (20) datasets as the

validation sets for COVID-19, and GSE37587 (21), GSE46480 (22)

datasets for IS which conformed to the above criteria. Table 1

summarizes the included datasets. We also collected clinical

information of COVID-19 patients from corresponding papers.

Due to the diversity in description on the severity of COVID-19,

we use the criteria whether patients were admitted into ICU to unify

the data and avoid ambiguity (Table S1.)
2.2 Identification of differentially expressed
genes and functional annotation

To identify differentially expressed genes (DEGs) in peripheral

blood samples from COVID-19/IS patients and controls, we

performed differential expression analysis using the limma

package (version: 3.46.0), controlling for age and sex (24). The

threshold for screening DEGs was |log2 FC (fold change)| > 0.5 and

false discovery rate (FDR) < 0.01. Common DEGs for COVID-19

and IS were then imported to functional annotation.

Enrichment analysis of Gene Ontology (GO) and Disease

Ontology (DO) was performed on common DEGs using the
Frontiers in Immunology 03
clusterprofiler package (version: 3.18.1) (25). Kyoto Encyclopedia of

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) and

gene set enrichment analysis (GSEA) were further carried out for

common DEGs. The threshold for significance of the above

enrichment analysis was set at FDR < 0.05. The background used

for biological functional enrichment analysis were genes expressed in

any samples of COVID-19 and IS in training process, respectively.
2.3 Hub genes and drug targets

Using immune-related genes (IRGs) downloaded from the

ImmPort database, we intersected common DEGs and IRGs to

generate common immune-related DEGs (IDEGs) (26). Hub genes

were identified from common IDEGs using LASSO logistic

regression algorithms with training datasets. The LASSO

algorithm was derived from the glmnet package (version: 4.1-1)

(27). LASSO logistic regression belongs to the shrinkage estimation,

and during the reduction process of regression coefficients, some

insignificant regression coefficients can be directly reduced to 0, that

is, to the function of variable screening. We used this method on the

expression matrix of DEGs of COVID and IS, respectively.

Drug and Drug_link datasets (Release Version: 5.1.9) were

downloaded from the DrugBank database (https://go.drugbank.com/

releases/latest) (28). The intersection of the common IDEGs and drug

target genes (DTGs) was then used to generate genes targeted by drugs

and potential drugs that might be promising for effective therapeutic to

disease. Validation datasets were further used to examine the

robustness of hub genes. Depending on hub genes’ expression,

models using various data-modeling methods (random forest (RF),

support vector machine (SVM), logistic regression (LR), and linear
TABLE 1 All data sets used in this study contain a total of 1191 samples, among which there were 597 cases and 594 controls.

Data
sets
(GEO ID)

Data Sample
type References Category Phenotype GPL

Case Control

GSE16561 39 24
peripheral
blood

(Barr et al., 2010; O'Connell et al., 2016; O'Connell et al., 2017)
(13–15)

Train
Ischemic
Stroke

GPL570

GSE58294 69 23
peripheral
blood

(Stamova et al., 2014) (16) Train
Ischemic
Stroke

GPL570

GSE37587 68 0
peripheral
blood

(Barr et al., 2015) (21) Test
Ischemic
Stroke

GPL6883

GSE46480 0 98
peripheral
blood

(Issa et al., 2016) (22) Test Control GPL570

GSE171110 44 10
peripheral
blood

(Lévy et al., 2022) (23) Train COVID 19 GPL16791

GSE198449 237 404
peripheral
blood

(Schanoski et al., 2022) (18) Train COVID 19 GPL24676

GSE157103 100 26
peripheral
blood

(Overmyer et al., 2021) (19) Test COVID 19 GPL24676

GSE196822 40 9
peripheral
blood

(Banerjee et al., 2022) (20) Test COVID 19 GPL20301
fro
All samples were collected in the peripheral blood tissue. Control means people without COVID-19 exposure or IS, and COVID-19 exposure was defined as exposure to an individual positive for
COVID-19 confirmed by RT-PCR.
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discriminant analysis (LDA)) were constructed to confirm

classification performance.
2.4 Gene-pathway interactions and
miRNA-mRNA network

To systematically explore potential biological functions between

the key genes, common IDEGs were imported into the Cytoscape

software v3.9.1 (https://cytoscape.org/) to construct the genes and

pathways interaction network by ClueGO plug-in (29, 30). The

threshold for significance of the above pathways analysis was set at

P value < 0.01.

For these common IDEGs, miRNA target prediction was

performed through Human microRNA Disease Database

(HMDD, Version: 3.3) (31), TissueAtlas database (Current

release: July 2022) (32), and Encyclopedia of RNA Interactomes

(ENCORI, Version: 3.2) (33). By combined using HMDD and

TissueAtlas database, we selected microRNA associated with

ischemia stroke/viral infection and expressed in human blood

tissue with curated experiment-supported evidence. The ENCORI

website was applied to predict whether these selected miRNAs

could target common IDEGs. Cytoscape software was used to

visualize the miRNA-mRNA regulatory network.

25 Transcription factors analysis

Common IDEGs were imported into Cytospace for network

analysis of transcription factors (TFs). RcisTarget package was used

to acquire TFs and gene targets information, and adjusted P-value <

0.05 was considered as significant (34). Subsequently, we verified the

expression levels of these TFs in training datasets of COVID-19 and IS.

26 Immune cell infiltration evaluation

CIBERSORT tool (version: 0.1.0) was used to generate immune cell

profiles for all samples by estimating relative subsets of immune RNA

transcripts (35). The CIBERSORT resulted in an expression matrix of

22 immune cells in all samples of the training dataset for COVID-19

and IS. We then used t-test to analyze the differences in immune cell

components between patients and healthy controls. “ImmuCellAI”

function from ImmuCellAI package (version: 0.1.0), which can

accurately evaluate the abundance of immune cells, especially on

multiple T-cell subpopulations (36), was applied for further analysis.
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Finally, Spearman’s correlation analysis was performed between

expression of common IDEGs and variation of immune cells. The

ggplot2 package (version: 3.3.3) and ggpubr package (version: 0.4.0)

were used to generate lollipop chart.
3 Results

3.1 Identification of common DEGs of
COVID-19 and IS

To identify common pathways and molecular biomarkers

shared by COVID-19 and IS on transcriptome, we initially

searched the Array Express and NCBI GEO databases for

expression data from whole peripheral blood of COVID-19/IS

patients and healthy controls. Eight independent studies met our

inclusion criteria (See Methods, Tables 1, 2).

First, we conducted an IS training dataset consisting of 108

patients and 47 matched controls by merging two IS datasets

(GSE16561 and GSE58294, Table 3) and training dataset for

COVID-19 was composed of 281 patients and 414 matched controls

by combing GSE171110 and GSE198449 (Table 3, Table S1). To

ensure data consistency, batch effects were controlled and the different

subsets were normalized. The evaluation results showed that data pre-

processing was effective and reliable (Figure S1). Next, differential

analysis of gene expression was performed by controlling age and sex,

which was significantly different between patients and healthy controls

(Tables 2, 3). Finally, 537 DEGs for IS and 1427 DEGs for COVID-19

were identified (See Methods, Figures 2A, B), and we found 140

common DEGs between COVID-19 and IS (Figure 2C, Table S2). To

examine that these common DEGs were with biologically meanings,

we randomly selected 537 and 1427 genes from the expressed gene sets

of IS and COVID-19 separately and take interaction between them.

We then repeated this operation for 1000 times and the random

sampling values were significantly lower than the true observed

number (T-test: P value <.001, Figure S2).
3.2 Functional enrichment analysis of
common DEGs underlines the
immune system

GO and DO enrichment analyses were performed to identify

the biological pathways and diseases associated with the shared
TABLE 2 Clinical characters of samples in the merged COVID training data set.

Total sample,
N(%)

COVID,
N = 281(39.6%),

N(%)

Control,
N = 414(60.4%),

N(%) tatistics/df P value

Gender (% female) 189 (27.2%) 96(34.2%) 93(22.5%) X2 9.6492/1 0.0019

Age,y,mean±SD 22.85±10.17 25.98±14.96 20.86±6.10 t -6.2493/693 < 0.001

Race (% white) 509(73.2%) 209(74.4%) 300(72.5%) X2 0.3127/1 0.5764
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DEGs. For biological processes in GO enrichment analysis, 26

pathways achieved statistical significance and 17 of them are

immune-related, including positive regulation of immune

response and cytokine production, adaptive immune response,
Frontiers in Immunology 05
humoral immune response and acute inflammatory response

(Figure 3A). While for cellular components in GO, secretory

granule lumen, cytoplasmic vesicle lumen, inflammasome

complex and primary lysosome were involved (Figure 3A). When

performing DO analysis, bronchial disease, hypersensitivity

reaction type I disease, asthma, thrombocytopenia and

arteriosclerosis were related to common DEGs (Figure S3).

GESA was further performed based on KEGG and Reactome

database to decipher biological pathways behind common DEGs. The

enriched molecular pathways were complement cascades, lipid and

atherosclerosis, Corona Virus Disease-19, interferon and B cell

receptor (BCR) signaling, neutrophil degranulation, defects of

contact activation system (CAS) and kallikrein/kinin system (KKS)

(Figures 3B, C). These results were consistent with those in GO

enrichment analysis, further confirming that immune system might

play essential roles in the connection between COVID-19 and IS.
3.3 Identification of hub genes and
drug targets

To further acquire which immune genes were significantly altered

and associated with the biological mechanism of COVID-19 and IS,

venn diagram analysis was performed between DEGs and IRGs, and

19 common genes were exacted (Figure 4A). We further applied the

LASSO regression analysis for these genes to screen the gene

expression signatures of COVID-19 and IS (Figures 4B, C), and

finally got five hub genes shared between two diseases (Figure 4D)

——NCR3 (natural cytotoxicity triggering receptor 3), OLR1

(oxidized low-density lipoprotein receptor 1), IL1R2 (interleukin 1

receptor type 2), IL18R1 (interleukin 18 receptor 1) and JAK2 (Janus

kinase 2). These hub genes can be potential biomarkers and may

provide new therapeutic targets. We further validated expression of

hub genes and the sensitivity and accuracy of these genes in diagnosis

with GSE37587, GSE46480, GSE157103, GSE196822 datasets for IS

and COVID-19 respectively. The gene expression showed

consistency in test datasets (Figure S4) and the AUC value verified

the high prediction ability which reached up to 0.96 of five hub genes

by various machine learning methods (Figure S5).

We further investigated whether there were drugs that could

mitigate the expression of essential immune genes (Figure S6A). By
A

B

C

FIGURE 2

(A, B) Volcano plot demonstrating an overview of the differential
expression of all genes in COVID-19 and IS. The threshold in the
volcano plot was -log10 (adjusted P-value) > 2 and |log2 (fold change)|
> 0.5; red dots indicate significant differential expressed genes. FDR was
used (Benjamini Hochberg’s) for P value adjustment. (C) Venn diagram
demonstrates the common DEGs of COVID-19 and IS.
TABLE 3 Clinical characters of samples in the merged IS training data set.

Total sample,
N(%)

Stroke
N = 108(69.7%),

N(%)

Control,
N = 47(30.3%),

N(%) Statistics/df P value

Gender (% female) 80(51.6%) 55(50.9%) 25(53.2%) X2 0.0673/1 0.7953

Age,y,mean±SD 66.7±8.60 72.6±6.17 58.9±3.83 t - 13.90302/135 < 0.001

Race (% white) 126(81.3%) 84(77.8%) 42(89.3%) X2 2.88932/1 0.0892

Hypertension 93(60.0%) 70(64.8%) 23(48.9%) X2 3.44037/1 0.0636

Diabetes 30(19.4%) 23(21.3%) 7(14.9%) X2 0.8601/1 0.3537

Dyslipidemia 52(33.5%) 36(33.3%) 16(34.0%) X2 0.00739/1 0.9333
fron
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searching for DTGs associated with IRGs shared between COVID-

19 and IS, we identified eight DEGs interacting with two known

databases of drug targets: JAK2, ORM1, RNASE2, TNFSF13B,

CYBB, EIF2AK2, CD79B and CAMP (Figure S6B). Among five

hub genes shared between two diseases, only JAK2 has drug target

information, which might suggest that JAK2 could play important

roles in the treatment of patients with COVID-19 accompanied

with IS.
3.4 Network of gene-pathway,
miRNA-mRNA interaction and
TF-mRNA relationship

To investigate the biological relationship of immune-related

genes, a network of common IDEGs and GO-BP interaction was

constructed using ClueGO Plug-in of Cytoscape software. Gene-

pathway network reflected that six immune-related biological

pathways interacted with these common IDEGs: IFN-g signaling,

cellular response to interleukin 6, antimicrobial peptides, cytokine

receptor activity, positive regulation of Th1 immune response and

CD22 mediated BCR regulation (Figure 5A). With HMDD,

TissueAtlas, and ENCORI database, five miRNAs were predicted to
Frontiers in Immunology 06
interact with the common IDEGs (Figure 5B). Based on the

RcisTarget package, we found six possible TFs regulating the

expression of these common IDEGs (Figure 6A), three TFs

differentially expressed in the peripheral blood of COVID-19 and

IS patients (Figures 6B, C). Mainly, IRF3 expression was down-

regulation in two diseases, while IRF2 and STAT2 were up-regulated.
3.5 Immune changes

To explore the profile of immune cell infiltration, we applied the

CIBERSORT classification algorithm to demonstrate changes in the

immune cells in COVID-19 and IS. We found that the proportions

of CD8+ T cells and naive B cells significantly decreased in both

COVID-19 and IS patients compared with healthy controls

(Figures 7A, B). We further applied ImmuCellAI to focus on the

abundance variation of T-cell subpopulations and found that CD8+

naive T cells and T helper 2 cell were obviously less enriched in

COVID-19 and IS patients (Figures 8A, B).

Correlation analysis showed that NCR3 was positively

associated with the change of CD8+ T cells and T helper 2 cell in

both COVID-19 and IS patients (r > 0.3, P < 0.001) which

indicating a close relationship between hub genes and the profile

of immune cell variation (Figures 7C, 8C).
A B

C

FIGURE 3

(A) GO enrichment analysis, where the horizontal axis represents the proportion of DEGs under the corresponding GO term. Top 10 pathways with
most significant adjusted P-value were shown and ordered by gene ratio. BP, biological process; CC, cellular component. (B, C) GSEA of the
common DEGs based on pathway database KEGG and REACTOME, where the horizontal axis represents the number of DEGs under the
corresponding GSEA terms. Enrichment analysis applied Benjamini-Hochberg false discovery rate (FDR)-corrected P value.
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4 Discussion

In this study, we analyzed the transcriptome profiles of COVID-

19 and IS patients using eight datasets from GEO consisting of 1191

samples to search for common mechanism and molecular

biomarkers in COVID-19 and IS. Results demonstrated that

immune-related genes and immune cells are crucial in the shared

pathogenesis between them. Hub genes, candidate drugs, targeting

microRNAs and transcription factors were further analyzed for

those immune-related genes shared between two diseases.

Through bioinformatic analyses, we revealed a total of 140

common DEGs shared by COVID-19 and IS. To illustrate the

unique biological interpretation of these common DEGs, two

datasets, which contain Rheumatoid Arthritis (RA) patients and

Sepsis patients separately, were included as the negative controls. As

shown in Figure. S7, the overlap ratio of COVID and IS (140/537) is

significantly larger than that (23/274) of COVID and RA (P value

<.001, k (2) test with Yates’ continuity correction) as well as that

(64/827) of COVID and Sepsis (P value <.001, k (2) test with Yates’

continuity correction). Pathways analysis showed that either the

overlapping genes between COVID-19 and Sepsis or between
Frontiers in Immunology 07
COVID-19 and RA did not enrich in the immune-related

pathways (Figure S8).

GO and DO enrichment and GSEA analysis were further

conducted for these common DEGs. For biological processes,

immune-related pathways were outlined, and brain injury in

COVID-19 is associated with dysregulated innate and adaptive

immune responses. According to the cellular component, the top

GO terms are cytoplasmic vesicle lumen, secretory granule lumen

and inflammasome complex. The role of NLRP3 inflammasome in

stroke was determined via various in vitro and in vivo research,

which the viroporins of SARS-CoV2 can activate (37, 38). As

expected, top 10 KEGG pathways include Corona Virus Disease-

19, lipid and atherosclerosis, complement and coagulation cascades,

NOD-like receptor, NF-kB and B cell receptor signaling.

Meanwhile, results from the Reactome pathway show the most

interacted gene pathways are neutrophil degranulation, interferon

a/b signaling, antigen activates BCR leading to generation of second

messengers and defects of contact CAS and KKS. Neutrophil

degranulation can facilitate a variety of proinflammatory effects,

such as cytokine release and fibrin and/or microthrombus

formation (39).
A

B C

D

FIGURE 4

(A) Venn diagram shows the common IDEGs obtained by the three
gene sets. (B, C) Construction of the key IDEGs classifier by the
LASSO logistic regression algorithm shows the process of dimension
reduction in COVID-19 and IS datasets, respectively. The horizontal
axis represents the complexity of models, and the vertical axis
represents the AUC value of models. (D) Five hub genes identified in
both COVID-19 and IS from common IDEGs using LASSO logistic
regression algorithms.
A

B

FIGURE 5

(A) The interaction network of GO terms in the common IDEGs
presented by the Cytoscape plug-in ClueGO. The most significant
term in each group is highlighted. (B) The miRNA-mRNA interaction
network comprises the common DEGs and corresponding miRNAs.
Yellow ellipses represent the hub gene; green triangles represent
the common IDEGs; purple diamonds represent the corresponding
miRNA targeting.
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For establishing immune-related relationships according to

COVID-19 and IS, 19 common immune-related DEGs (IDEGs)

were identified. The rest of the research study is continued with the

analysis of LASSO regression analysis, gene-pathway interactions,

TF/miRNA regulatory network and candidate drug detection.

To get more robust immune-related biomarkers in COVID-19

and IS, LASSO regression analysis was employed to develop gene

expression signatures for two diseases. From the 19 common

IDEGs, five hub genes were ultimately identified as gene

expression signatures to predict disease. Meta-analysis showed

that OLR1 is associated with atherosclerosis and contributes to

the susceptibility risk of ischemic stroke (40). Moreover, the

proportion of lectin-like OLR1-expressing immature neutrophils

is positively correlated with cytokine storm and thrombosis in

COVID-19 patients (41). From proteome and transcriptome

perspective, several independent cohort studies demonstrated the

differential expression of interleukins in COVID-19 and IS patients,

including IL1R2 and IL18R1 (42). JAK1/2 signaling pathway, whose

activation contributed to neuronal damage under cerebral ischemic
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conditions, was critically associated with SARS-CoV-2-induced

hypercytokinemia and inflammation (43, 44). The relationship

between NCR3 and COVID-19/IS is currently unclear, although

rs2857595 variants near NCR3 seem to be associated with increased

risk of noncardioembolic stroke (45).

We next search for the candidate drugs for COVID-19 and IS

based on the intersection across four gene sets, DEGs_COVID,

DEGs_IS, IRGs and DTGs. Here, we identified eight DEGs,

including JAK2, ORM1, RNASE2, TNFSF13B, CYBB, EIF2AK2,

CD79B and CAMP. More recently, increased interest in JAKi

strategies arose for the need of potential treatments for COVID-

19, which is implicated in the activation of CD4+ and CD8+ positive

T cells, NK cells and monocytes that cooperate with cytokine storm

generated by SARS-COV2 (46, 47). Two molecules are mainly

under focus of pharmaceutical industry, baricitinib and

ruxolitinib (23, 48). They are both type I inhibitors with rather

low half-life and exhibit IC50s of less than 10 nM for JAK2 (23).

Further multi-network analysis was constructed to identify the

most significant functional IDEGs and understand the biological

characteristics of the proteins. As a hub gene, JAK2 greatly

participated in gene-pathways and TFs/miRNA-mRNA networks.

In gene-pathways network, JAK2 interacted with IFN-g signaling

and cellular response to IL-6 pathways. Hsa-miR-320d and Hsa-

miR-320b interacted with JAK2 In miRNA-mRNA network. The

expression of all miR-320 family members was significantly

correlated with the severity and progression of SARS-CoV-2

infection, which also modulates cholesterol efflux and

atherosclerosis (49, 50). In silico and microarray analysis proved

the regulatory relationship between Hsa-miR-320 and JAK2 (51,

52). In TFs-mRNA network, JAK2 and STAT2 mediate the signal

transduction of more than 50 cytokines and growth factors in many

different cell types, which is critical for resisting infection and

enforcing barrier functions. JAK2/STAT2 pathway contributes to

homocysteine-accelerated macrophage inflammation, adding to the

risk for atherosclerosis (46).

Furthermore, we analyzed the distribution of immune cells in

COVID-19/IS patients and found that CD8+ T cells, CD8+ naive T

cells, Th2 cells and naive B cells were differentially distributed

between the patients and controls, indicating these immune cells are

more important in the common immunological foundation of two

diseases. CIBERSORT and ImmuCellAI classification algorithm

illuminated the similar decreasing trend in CD8+ T cells in

COVID-19 and IS patients. CD8+ T cells are critical for clearance

of many viral infections, due to their ability to kill infected cells (53).

However, the decreasing absolute number of lymphopenia was

continually observed in patients with COVID-19, especially a

severe reduction in the frequency of CD8+ T cells (53–55). T-cell

exhaustion is evidently the primary mechanism underlying immune

dysfunction during viral infection (56). Virus antigen-specific CD8+

T cells exhibit features of T-cell exhaustion and dysfunction (57),

consistent with our findings (Figure 8A). In addition, the decreasing

number of T and B lymphocytes in IS patients’ peripheral blood

seems to be related to the post-stroke immunosuppression

condition (9, 12, 58).
A

B

C

FIGURE 6

TFs regulatory network and their gene expression profiles in COVID-
19/IS. (A) Inferring TF regulatory networks. TFs were marked in
purple, and the common IDEGs were marked in green. (B, C) Gene
expression level of TFs in COVID-19 and IS datasets. The
comparison of gene expression between patients and controls was
applied with t-test. P-value < 0.05 was considered statistically
significant. COVID-19, Corona virus disease 2019; IS, ischemic
stroke. *:P < 0.05; **:P < 0.01; ***:P < 0.001; ****:P < 0.0001.
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Considering that immunity requires the coordinated efforts of

IRGs and immune cells, we analyzed the relationships from

common IDEGs to CD8+ T cells and Th2 cells. We found a

significantly positive correlation between NCR3 and CD8+ T cells

and Th2 cells, in both COVID-19 and IS patients. Researchers

identified a unique CD8+ T-cell cluster expressing innate-like NCR3

protein in healthy donors and patients with viral infection (59, 60).

This specific cell group provides a potential explanation for the

above correlation between NCR3 and CD8+ T cells. However, the

precise mechanism behind NCR3, CD8+ T cells and Th2 cells is not

yet clearly understood.

This study has the following limitations. Firstly, this study was

conducted based on bioinformatic and correlational analyses, and

differences in microarray platforms, blood collection, and RNA

extraction methods, statistical methods could produce potential

bias for the results. Besides, the datasets used in this study might

not be large enough to generate compelling results. More large
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cohorts of COVID-19 and IS patients are needed, and future

cellular or animal experiments are expected to prove accuracy of

the results. Therefore, the above findings should be taken with

carefulness. Nevertheless, this study provides new insights into the

shared pathogenesis behind COVID-19 and IS, suggesting the critical

role of immune changes for the onset and development of these two

diseases. Of course, in addition to the close relationship between

COIVD and IS, emerging evidence illustrated that immunological

response interlink COVID-19 with other diseases, such as HIV

infection, cardiovascular disease and periodontitis (61–64).

The blood–brain barrier (BBB), consisting of endothelial cells,

vascular smooth muscle cells or pericytes, basement membranes,

astrocyte end-feet processes, and neuronal projections, is viewed as

the dynamic neurovascular unit (NVU) (65). Recent in vivo and in

vitro research has demonstrated that inflammation and immune

response damaging the BBB are the main mechanisms behind the

initiation and progression of ischemic stroke. For example, numerous
A

B
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FIGURE 7

(A, B) Comparison of proportion of immune cells between COVID-19/IS and controls with t-test. Analyses were performed using CIBERSORT.
****:P < 0.0001 (C) Spearman Correlation Analysis between the gene expression of common IDEGs and CD8+ T cell proportion. The red dashed lines
represent +0.3 and -0.3. "ns" means P value > 0.05, representing no difference between the case and control.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1102281
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1102281
studies showed that thrombin could enter the inflammation-

damaged BBB, converting fibrin to fibrinogen, promoting

thrombosis (66). Thrombin also could bind with their receptors on

the endothelial cells, increasing the cytosolic Ca2+ concentration

further impairing the BBB (67). Our study indicated that

occurrence of post-COVID-19 ischemic stroke might be relevant to

inflammatory pathways and immune system, which confirmed with

current hypothesis of the importance of inflammation in IS.
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