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Background: Immunogenic cell death (ICD) is a form of cell death that elicits

immune responses against the antigens found in dead or dying tumor cells.

Growing evidence implies that ICD plays a significant role in triggering antitumor

immunity. The prognosis for glioma remains poor despite many biomarkers

being reported, and identifying ICD-related biomarkers is imminent for better-

personalized management in patients with lower-grade glioma (LGG).

Materials and methods:We identified ICD-related differentially expressed genes

(DEGs) by comparing gene expression profiles obtained across Genotype-Tissue

Expression (GTEx) and The Cancer Genome Atlas (TCGA) cohorts. On the

foundation of ICD-related DEGs, two ICD-related clusters were identified

through consensus clustering. Then, survival analysis, functional enrichment

analysis, somatic mutation analysis, and immune characteristics analysis were

performed in the two ICD-related subtypes. Additionally, we developed and

validated a risk assessment signature for LGG patients. Finally, we selected one

gene (EIF2AK3) from the above risk model for experimental validation.

Results: 32 ICD-related DEGs were screened, dividing the LGG samples from the

TCGA database into two distinct subtypes. The ICD-high subgroup showed

worse overall survival (OS), greater immune infiltration, more active immune

response process, and higher expression levels of HLA genes than the ICD-low

subgroup. Additionally, nine ICD-related DEGs were identified to build the

prognostic signature, which was highly correlated with the tumor-immune

microenvironment and could unambiguously be taken as an independent

prognostic factor and further verified in an external dataset. The experimental
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results indicated that EIF2AK3 expression was higher in tumors than

paracancerous tissues, and high-expression EIF2AK3 was enriched in WHO III

and IV gliomas by qPCR and IHC, and Knockdown of EIF2AK3 suppressed cell

viability and mobility in glioma cells.

Conclusion: We established novel ICD-related subtypes and risk signature for

LGG, which may be beneficial to improving clinical outcome prediction and

guiding individualized immunotherapy.
KEYWORDS

lower-grade glioma, immunogenic cell death, molecular subtypes, prognostic
signature, tumor immune microenvironment, immune infiltration
1 Introduction

Malignant gliomas, including lower-grade glioma (LGG, WHO

II and III) and glioblastoma (GBM, WHO IV), are the most

common and remain untreatable primary central nervous system

(CNS) neoplasms characterized by early and rapid infiltrative

growth, a high rate of postoperative recurrence, and high therapy

resistance (1, 2). Maximum safe surgical resection combined with

postoperative radiotherapy and chemotherapy is currently the

mainstay of treatment for malignant gliomas (3). Despite

advances in diagnosing and treating gliomas, there has been little

impact on the outcomes of patients with malignant gliomas (4, 5).

Recent studies have found that tumor immune response plays an

increasingly crucial role in the development of glioma (6–9),

suggesting that immunotherapy holds great promise in treating

glioma. With the continued growth of immunotherapies (10), such

as immune checkpoint therapy (ICT), tumor vaccines, and

immunomodulators, research to forecast and recognize accurate

immunotherapy biomarkers in gliomas biomarkers for

immunotherapy of glioma will become more prominent.

Immunogenic cell death (ICD), a specific pattern of cell death,

elicits an immune response against the corresponding antigens of

dead or dying neoplastic cells (11, 12). ICD can release a range of

immunostimulatory damage-associated molecular patterns

(DAMPs) from dead or dying neoplastic cells, such as high

mobility group protein B1 (HMGB1), extracellular ATP,

endogenous nucleic acids, and cytoplasmic calreticulin (13).

Immunotherapy that boosts the host immune system to fight

against tumors has revolutionized cancer treatment. In recent

years, a growing body of evidence has strongly suggested that

ICD can initiate a host anti-cancer immune response (14).

Although ICD in gliomas has been relatively evaluated in

preclinical models in the past few years, the evidence that gliomas

could benefit from ICD-based therapies is not suffi;ciently

compelling (15). Thus, further investigation in patients with

gliomas needs to conduct in clinical contexts to assess the

possibility of an ICD. Remarkably, searching for novel biomarkers
02
to sort molecular subsets in ICD immunotherapy and stratifying

responders and non-responders is highly desirable.

We extracted LGG patients’ mRNA expression profiles and

corresponding clinical characteristics from public databases in the

current work. We then built two ICD-related isoforms depending

on differentially expressed ICD-related genes between the LGG and

normal brain tissue samples from the TCGA and GTEx cohorts.

Meanwhile, an ICD-related prognostic signature for LGG was

generated by univariate Cox regression and the least absolute

shrinkage and selection operator (LASSO) Cox regression

analyses and then validated via the CGGA cohort. The

streamlined flow chart of the study methodology and design is

depicted in Figure 1. In this study, we aim to identify relevant

biomarkers as well as develop and validate a novel ICD-related

subtype and risk-predictive model to assess the predictive value of

tumor microenvironment and adverse prognosis and guide

individualized immunotherapy in gliomas.
2 Materials and methods

2.1 Collection and processing of data from
patients with LGG

Our research mainly encompassed LGG patient cohorts from

the TCGA and CGGA databases as well as the normal brain tissue

specimens from the GTEx database. The RNA sequencing profiles

(FPKM values) from TCGA (RRID : SCR_003193)-LGG (n = 529)

and GTEx (RRID : SCR_013042)-brain (n = 1152) cohorts were

acquired from the UCSC Xena database (https://xenabrowser.net/)

and were uniformly normalized into log2 (FPKM + 1). 509 somatic

mutation data files of LGG were also analyzed from the UCSC

database. The RNA sequencing data and accompanying clinical

information from the CGGA dataset (DataSet ID: mRNAseq_693)

were applied for external validation (16). The data about the gene

set of 34 ICD-related genes were acquired from the previously

published paper (Supplementary Table 1) (17).
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2.2 An integrated network of ICD-related
genes and screening for differentially
expressed ICD-related genes

Protein-protein association networks for ICD-related genes were

studied by the STRING tool (18). The Limma (RRID: SCR_010943)

package (https://bioconductor.org/packages/release/bioc/html/

limma.html) determined the differential expression of mRNAs. The

False Discovery Rate (FDR) adjusted p-value was used to lower the

chances of false-positive results. |Fold Change| > 1 and adjusted p-

value < 0.05 were adopted as the differential gene screening standard.

2.3 Consensus clustering
and survival analysis

A consensus clustering algorithm was applied to identify

potential molecular subgroups of the LGG patients in the TCGA

dataset in terms of differentially expressed ICD-related genes using

the ConcensusClusterPlus package in R software. The K-means

clustering method was employed for eight different cluster numbers

K that ranged between 2 and 9 to identify the optimal number of

clusters. This process was repeated 1000 times to guarantee stable

results. Cluster heatmap were created in R using the pheatmap

package. The Survival R package performed survival analysis to

evaluate the relevance between ICD-related subtypes, risk model,

and clinical outcomes.

2.4 Differential expression
analysis between ICD-related
subtypes and functional and pathway
enrichment analysis

Differential expression genes in ICD-related subtypes were

analyzed by the limma (RRID : SCR_010943) package (https://
Frontiers in Immunology 03
bioconductor.org/packages/release/bioc/html/limma.html), and the

cut-off of |Fold Change| > 2 and FDR < 0.05 was applied. Volcano

maps and heatmaps were conducted to visualize the differential

expression genes in ICD-related subtypes using the R packages

heatmap and ggplot2, respectively. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment were

analyzed using the clusterProfiler (RRID : SCR_016884) package

(https : / /b ioconductor .org/packages/re lease/bioc/html/

clusterProfiler.html) in R to probe probable bio functions and

signaling pathways between ICD-related subtypes (19). A

corrected p-value (q value) < 0.05 was regarded as a remarkable

enrichment for GO terms and KEGG pathways.
2.5 Gene set enrichment analysis

The gene set enrichment analysis (GSEA, RRID : SCR_003199)

was employed to ascertain the existence of statistically significant

variations in the expression of a suite of functionally related genes

between ICD-related subtypes (20, 21). The clusterProfiler R

package was employed to conduct the GSEA analysis, and a

bunch of predefined gene sets was acquired from the Molecular

Signatures Database (MSigDB) (http://software.broadinstitute.org/

gsea/msigdb).
2.6 Evaluating the somatic mutation in
ICD-related subgroups

Mutation Annotation Format (MAF) files for the somatic

mutations of the LGG patients were retrieved from the TCGA

official website. We employed the waterfall function in the maftools

R package to visualize and summarize the mutation landscape in

ICD-related subgroups from TCGA-LGG patients.
FIGURE 1

Procedures for designing and analyzing flowcharts in the present research.
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2.7 Evaluating the tumor immune
microenvironment between the two ICD-
related subgroups

The CIBERSORT deconvolution algorithm was implied to

estimate 22 types of human immune cells to elucidate the

immune infiltration landscape of LGG (22). The infiltration

volume of 22 categories of immune cells in 509 LGG samples was

calculated based on TCGA-LGG transcriptome data. The relative

proportions of 22 categories of tumor-infiltrating immune cells

between ICD-related subsets were compared. In the meantime, the

ESTIMATE algorithm was used to calculate the immune score,

tumor pur i ty , and st romal score wi th in the tumor

microenvironment. Based on TCGA-LGG transcriptome data, we

also analyzed different gene expression levels in human leukocyte

antigen (HLA) family genes and immune checkpoint-related genes

among ICD-related subclasses.
2.8 Constructing and validating the ICD-
related prognostic signature

We performed the differential expression analysis of ICD-related

genes between TCGA-LGG and normal brain tissue specimens from

the GTEx database by applying the R package ‘limma’ as previously

described and obtained 32 differentially expressed ICD-related genes.

Then a univariate COX regression analysis was conducted to filter the

genes significantly associated with OS (overall survival) of the TCGA-

LGG cohort depending on the differentially expressed ICD-related

genes. For the prognosis-related ICD-related genes, we performed

LASSO regression with tenfold cross-validation using R ‘glmnet’

package in R software and screened for the optimal gene

combinations for constructing the risk signature. Risk score value

for each sample was computed by the following formula: Risk score =

on
i=1coefficienti � expressioni: On the basis of the median risk scores,

patients were grouped into high-risk and low-risk subgroups in the

TCGA training and CGGA validation cohorts. The survival

evaluation of the ICD-related signature was completed with the

KM analysis using R with the survival package.
2.9 Collection of tumor specimens from
glioma patients

This research was approved by the Ethics Committee of

Xiangya Hospital in Central South University (Ethical approval

code: 202210232), and all patients subscribed to an informed

consent form. No subjects were excluded from our present

research . Seventy-two gl ioma spec imens and twelve

paracancerous tissues were acquired from the neurosurgery

department at Xiangya Hospital in Central South University from

January 2021 to August 2022. There were 45 male and 27 female

cases, aged 11 to 74 years old (median 52 years), including 19 cases
Frontiers in Immunology 04
of WHO grade II, 15 cases of WHO grade III, and 38 cases of WHO

grade IV. The patients did not receive any radio- or chemotherapy

before surgery. Subjects were not randomly grouped as this was not

considered relevant to this study, and we did not use a power

analysis to examine sample size because our research did not report

statistics between groups or within group variables. All tumor

specimens and seven pairs of cancer and paracancerous

specimens were analyzed by real-time PCR (RT-qPCR). In

addition, seventy glioma samples and twelve paraneoplastic

samples were subjected to immunohistochemical analysis.
2.10 RNA extraction and real-time PCR

We extracted total RNA from newly available glioma samples,

corresponding paracancerous tissues, and cultured glioma cells

using TRIzol (Invitrogen Life Technologies). Complementary

DNA (cDNA) was synthesized from 1 mg total RNA using the

Reverse Transcription Kit (Thermo Fisher Scientific). Real-time

PCR (RT-qPCR) was executed using Taq Pro Universal SYBR

qPCR Master Mix (Vazyme). Expression of the selected gene was

quantified relative to TUBB using the 2–DDCt method. qPCR

primer sequences applied in this work are listed below: EIF2AK3

forward primer 5-ACGATGAGACAGAGTTGCGAC-3, EIF2AK3

reverse primer 5-ATCCAAGGCAGCAATTCTCCC-3; TUBB

forward primer 5-TGGACTCTGTTCGCTCAGGT-3, TUBB

reverse primer 5-TGCCTCCTTCCGTACCACAT-3.
2.11 Tissue microarray,
immunohistochemistry, and scoring

As previously described (23), the tissue microarray, including

70 samples in distinct grade-level gliomas and 12 paracancerous

tissues, was constructed and applied to probe the expression

of EIF2AK3.

We fol lowed a protocol previously publ ished for

immunohistochemistry (IHC) (24). After routine dewaxed and

hydrating treatment, the glioma chip was exposed to antigenic

heat repair in citrate buffer (10 mM citric acid and pH 6.0). The

endogenous peroxidase was then blocked using 3% H2O2-

methanol. To block non-specific sites, goat serum that is not

immune was employed. After that, the slide was first incubated

with the primary antibody against EIF2AK3 (rabbit, 1:200,

Proteintech Cat# 20582-1-AP, RRID : AB_10695760) at 4°C for

an overnight period, followed by 2 hours at room temperature with

a secondary antibody in the dark. Then, the chip was washed and

treated with 3, 3’- diamino-benzedine (DAB) for around 5 minutes.

Hematoxylin was utilized to counterstain the segment. Finally, the

chip was flushed, dehydrated, mounted with a coverslip, and

examined under a microscope. As a negative control, PBS was

utilized instead of the primary EIF2AK3 antibody under the same

trial conditions.
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2.12 Cell-line culture and transfection

The LGG cell lines, including SHG44 (RRID : CVCL_6728) and

HS683 (RRID : CVCL_0844), and normal human astrocyte cell line

(HEB) were acquired from Xiangya Medical College (Central South

University, Changsha, Hunan, China) and were grown under

standard conditions in high glucose DMEM medium (Gibco;

Thermo Fisher Scientific) incorporating 10% fetal bovine serum

(QmSuero, Wuhan, China). siRNAs were transfected into glioma

cells via liposome transfection (Lipofectamine 2000; Invitrogen) for

48h prior to functional cell experiments. RNA siRNAs were

programmed and manufactured by Guangzhou RiboBio (RiboBio,

Guangzhou, China); We evaluated three siRNA sequences to find

the most effective one.

2.13 Cell viability and wound healing assays

Cell viability was detected with Cell Counting Kit-8 (CCK8;

NCM Biotech, Suzhou, China) according to the manufacturer’s

instructions. Briefly, 1×103 cells per well in 100 μL of complete

medium were seeded into a 96-well plate. After cultured for different

time points, 100 μL CCK8 solution was added into each well (CCK8:

medium = 1:10) after the supernatants were removed and incubated

for one and a half hours before analysis. Cell proliferation ability was

examined by measurement of the optical density at 450 nm.

We evaluated SHG44/HS683 cell mobility by using wound

healing assays. After 36 hours of transfection, a confluent

monolayer of glioma cells was formed by seeding each group at a

density of 5 × 105 cells/well in a 6-well culture plate. Using a sterile

200 μl pipette tip, monolayers were scratch wounded. The cells were

in fresh high glucose DMEM medium with serum-free for 24 hours

at 37°C. Under a phase-contrast microscope, scratch wounds were

observed, and images were captured at 0 and 24 hours. Three

replicates were performed for each assay.

2.14 Statistical analysis

All statistical analyses and graphs were performed using the R

software (version 4.1.2, RRID : SCR_001905) and GraphPad Prism

(version 7.0.0, RRID : SCR_002798). Log-rank tests were applied for

Kaplan-Meier survival analysis. The Student’s t-test or Mann-

Whitney U-test was employed to compare two groups. Kruskal-

Wallis tests were employed to compare multiple groups. The

statistical correlation was measured using Spearman’s or Pearson’s

tests. The discrepancy at P less than 0.05 was deemed meaningful.
3 Results

3.1 Screening differentially expressed ICD-
related genes and identification of two
ICD-related subgroups in LGG patients
from the TCGA cohort

Following a systematic literature survey, Abhishek et al. (17) have

previously summarized ICD-associated genes. To further reveal
Frontiers in Immunology 05
associations between these ICD-related genes, we subjected the

candidates to protein-protein interaction (PPI) network analysis via

the STRING database (Figure 2A). Our next step was to characterize

gene expression in ICD between glioma specimens and normal brain

tissue. In glioma, the majority of ICD-associated genes were up-

regulated, including BAX, IL17RA, MYD88, ENTPD1, IFNGR1,

ATG5, CALR, P2RX7, EIF2AK3, PIK3CA, IL1B, TNF, NLRP3,

NT5E, TLR4, CD4, LY96, and FOXP3 (Figure 2B).

The consensus clustering analysis was performed to investigate

the associations between the expression of the ICD-related genes

and glioma samples. The letter k represented the number of clusters.

We found the highest intra-group collinearity and lower inter-

group collinearity when k=2. The glioma samples in the TCGA

cohort were segregated into two categories on account of the

distinct expression patterns of ICD-related genes via k-means

clustering (Figures 2C, D). Overall, higher expression of the ICD-

related genes in cluster 1 indicates an ICD-high subtype. In

contrast, ICD-related genes in cluster 2 were downregulated,

indicating an ICD-low subtype (Figure 2E). In addition, survival

analysis revealed that the ICD-low subset manifested a more

extended survival period than the high ICD group, with a notable

discrepancy (Figure 2F).
3.2 Screening for differentially
expressed genes in two distinguishable
ICD-related subsets and determining
their biological functions

To address the characteristics of the ICD-low subset with a

promising prognosis compared to the ICD-high subset, we

determined the critical DEGs and corresponding signaling

pipelines within each subpopulation to uncover the underlying

molecular and cellular mechanisms that regulate their clinical

outcomes. Altogether, we found 307 dysregulated genes

(Figure 3A; Supplementary Table 2), and the heat map presented

the top 20 up-regulated and 20 down-regulated genes that are

differentially expressed between ICD-low and ICD-high subgroups

(Figure 3B). The KEGG enrichment analysis illustrated that the up-

regulated genes in the ICD-high subtype were involved in T cell

activation, receptor-ligand activity, positive regulation of cytokine

production, and the external side of plasma membrane. GO

functional enrichment analyses displayed the DEGs were chiefly

involved in cytokine-cytokine receptor interaction, Th1 and Th2

cell differentiation, and Th17 cell differentiation (Figure 3C). Our

result revealed the ICD-associated subsets were linked to the

immunological microenvironment, especially in the ICD-

high subset.

Additionally, to step up to explore the relevant signaling circuits

involved in activation in the ICD-high subset, we conducted the

GSEA via a comparison between the ICD-high and ICD-low subsets.

GSEA results suggested that up-regulated pathways were

fundamentally linked to immune system-related processes, such as

JAK-STAT signaling pathway, cytokine-cytokine receptor

interaction, and systemic lupus erythematosus pathway (Figures 3D).
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3.3 The landscape of somatic mutations
and tumor immune microenvironment in
two ICD-related subtypes

Next, the somatic mutation data of patients with LGG acquired

from the TCGA database were processed with VarScan software.

We found clear somatic mutation profiles between the two subsets,

and the gene mutation patterns between the two subgroups were
Frontiers in Immunology 06
not identical (Figures 4A, B). The most frequent mutated genes

common to both subgroups were IDH1, TP53, and ATRX; missense

mutation was the most common aberration. However, the relative

frequencies and several mutated genes of transcriptomic subtypes

were discovered to varied. IDH1 (54%), TP53 (47%), ATRX (36%),

and TTN (20%) occupied the top four positions with the greatest

possible mutation frequencies in the ICD-high group, and IDH1

(85%), TP53 (44%), ATRX (29%), and CIC (24%) in the ICD-low
B

C D

E F

A

FIGURE 2

Identification of the differentially expressed ICD-related genes and sub-clusters derived from these genes. (A) Protein-protein interactions (PPI)
among the differentially expressed ICD-related genes. (B) Heatmap visualization of expression levels in 32 differentially expressed ICD-associated
genes between lower-grade glioma (LGG) samples and normal brain tissue specimens, respectively, from the TCGA and GTEx databases. (C) In
accordance with the consensus clustering matrix (k =2), LGG patients were split into two sub-clusters. (D) Consensus clustering cumulative
distribution function (CDF) with k=2-10. (E) Heatmap depicts the expression levels of 34 ICD- associated genes between various subclasses. The
blue color denotes low expression, and the red means high expression. (F) Kaplan-Meier (KM) curves for patients’ overall survival (OS) between the
two clusters. *P < 0.05; ***P < 0.001.
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group, while IDH1 was fairly high mutated in the ICD-low group.

Interestingly, although the CIC, NOTCH1, FUBP1, MUC16, and

IDH2 genes were frequently mutated in ICD-low subtypes, there is

a distinct lack of mutations in ICD-high subtypes.

There is increasing evidence that ICD can strengthen adaptable

immune responses that are targeted against certain remaining

neoplastic cells and tissues. Next, our research analyzed the

di fferences between the two subtypes in the tumor

microenvironment. Noticeably, compared to the ICD-low

subgroup, the ICD-high subgroup had a higher immune score

and a lower degree of tumor purity (Figure 5A). CIBERSORT

algorithm with LM22, a signature matrix that distinguishes 22
Frontiers in Immunology 07
immune cell subtypes, was employed to determine the immune

cell fraction between the two ICD-related subsets (Figure 5B).

Patients in the ICD-high subset exhibited greater percentages of

activated CD4-positive Memory T-cells, CD8-positive T-cells, M1/

M2 macrophages, regulatory T-cells, and resting mast cells

(Figure 5C). Human leukocyte antigen (HLA) is believed to be

the most widely distributed molecule and is widely polymorphic.

HLA is primarily responsible for initiating cellular immune

responses. An increase in HLA genes was observed in the ICD-

high subtype (Figure 5D). Furthermore, immune checkpoints, such

as HAVCR2, CTLA4, PDCD1LG2, LAG3, CD274, and PDCD1,

were also upregulated in the ICD-high group (Figure 5E). In the
B

C

D

A

FIGURE 3

Functional and pathway enrichment identification of genes differentially expressed between ICD-high and ICD-low subsets. (A) Based on the TCGA
cohort, a volcano plot demonstrated differentially expressed genes (DEGs) in distinct ICD-associated subsets. (B) A heatmap shows the top 20 up-
regulated and down-regulated DEGs in the two subtypes. (C) Enrichment analyses of GO terms and KEGG pipelines for DEGs. (D) Gene set
enrichment analysis (GSEA) was performed further to screen the significant pathway between ICD-high and ICD-low subtypes.
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ICD-low subgroup, the tendency appears to be somewhat in the

other direction. These data might indicate that the ICD-high subset

was relevant to the immunological state of hot tumors, and the

ICD-low subset was connected to the immune status of cool tumors.
3.4 Development and validation of an ICD-
related prognostic signature

Before constructing the ICD-related gene prognostic model,

univariate Cox regression analysis was employed to locate ICD-
Frontiers in Immunology 08
correlated genes that were initially associated with survival, and 17

ICD-associated genes were correlated with the prognosis of LGG

patients (Figure 6A). The LASSO Cox regression analysis screened

nine ICD-linked genes according to the optimized l score and

structured them as a predictive risk model (Figure 6B). The risk

scores in the above ICD-related model were computed as follows:

Risk scores = (0.1732)*BAX + (0.0724)*CASP1 + (0.5688)*CASP8 +

(0.2872)*CD8A + (0.2824)*EIF2AK3 + (-0.0008)*IL1R1 + (0.3583)

*MYD88 + (-0.2717)*PRF1 + (-0.1969)*TNF.

According to the median value of risk scores in the TCGA

cohort as the cut-off value, patients with LGG in the TCGA and
B

A

FIGURE 4

Comparison of the top 10 most frequently mutated genes of two ICD subtypes. (A) ICD-high subtype. (B) ICD-low subtype.
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CGGA queues were classified into low- and high-risk subgroups,

respectively. Next, we surveyed the correlation between risk score

distribution and survival status. In the TCGA cohort, the mortality

risk of LGG patients increased, and the likelihood of their survival

decreased when risk scores rose (Figure 6C). Further, the KM
Frontiers in Immunology 09
survival analysis demonstrated that in the TCGA cohort, LGG

patients in the high-risk subgroup had reduced survival times or

lower chances of survival versus the low-risk subgroup (Figure 6D).

Similar results were obtained to further corroborate from the

CGGA cohort (Figure 6E).
B

C

D

E

A

FIGURE 5

Immune landscape between ICD-high and ICD-low subtypes. (A) The violin plots specifically showed the differences between the two subtypes
regarding the immune and tumor purity scores. (B) Comparative proportions of immune cell infiltration of immune cells between two ICD-
associated subtypes. Box plots present different immune cells (C) and differential expression of HLA genes (D) as well as multiple immune
checkpoints (E) between ICD-low and ICD-high subsets. *P < 0.05; **P < 0.01; ***P < 0.001.
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3.5 Tumor microenvironment
analysis and independent prognostic
value of the signature

The ICD-related risk score model and the tumor immune

microenvironment scores were analyzed for relevance in the

tumor immune microenvironment. The results revealed that the
Frontiers in Immunology 10
tumor immune microenvironment scores were in positive

correlation with ICD-related risk scores in both the TCGA and

CGGA queues (Figures 7A, B).

On the TCGA and CGGA queues, univariate and multivariable

Cox regression analyses were conducted to assess whether the ICD-

related risky predictive model could be recognized as a stand-alone

prognostic variable. The univariate Cox regression analysis
B

C D

E

A

FIGURE 6

Construction and verification of the ICD risk signature. (A) Univariate Cox regression models identified 17 ICD-related genes associated with overall
survival (OS). (B) Through LASSO Cox regression analysis, nine prognostic ICD-related genes were identified in the TCGA queue. (C) Distribution map
of the risk score, individual case survival information, and a clustering heatmap of mRNA expression profiles of the nine signature genes in the TCGA
cohort. (D) Kaplan-Meier (KM) curves for the OS of LGG patients in the low- and high-risk subclasses in the TCGA queue. (E) Likewise, the KM curves
for OS in the CGGA queue.
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presented the risk scores, grade, age, and IDH1 status could be

assumed to be prognostic variables in the TCGA queue (Figure 7C),

and risk scores, grade, and IDH1 status could be regarded as

prognostic variables in the CGGA queue (Figure 7D).

Multivariate Cox regression analysis disclosed the risk scores,

neoplasm grade, age, and IDH1 status could be served as stand-

alone prognostic elements for the TCGA team (Figure 7E), and risk

scores, neoplasm grade, and IDH1 status could be treated as stand-

alone prophetic elements for the CGGA team (Figure 7F).
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3.6 Verification of EIF2AK3 expression
glioma samples

To validate the expression of EIF2AK3 in glioma samples, we

detected a series of glioma samples from Xiangya Hospital. We first

measured the mRNA expression level of EIF2AK3 in glioma tissues

and corresponding para-carcinoma tissues in seven patients via RT-

qPCR. As depicted in Figure 8A, EIF2AK3 mRNA expression levels

were significantly higher in glioma tissues than in tissues adjacent to
B

C

D

E

F

A

FIGURE 7

Association between the tumor microenvironment and ICD risk signature and evaluation of risk scores and predictive power of clinical variables. The
relationship between the risk score and immune score, stromal score as well as ESTIMATE score in the TCGA queue (A) and the CGGA queue (B).
Forest diagram of Univariate analysis of the risk signature scores combined with well-known clinical risk variables for the TCGA-LGG queue (C) and
the CGGA-LGG queue (D). Forest diagram of Multivariate analysis of the risk signature scores combined with well-known clinical risk variables for
the TCGA-LGG queue (E) and the CGGA-LGG queue (F).
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carcinomas (P < 0.05). Then, we detected EIF2AK3 mRNA

expression in 72 glioma samples of different grades. The results

showed that WHO IV and WHO III gliomas had significantly

higher EIF2AK3 mRNA expression thanWHO II (Figure 8B). Next,

we used tissue microarrays containing 12 cancerous and 70 diffuse

glioma samples to measure EIF2AK3 expression in gliomas via IHC

staining. We found the expression of EIF2AK3 protein was

significantly higher in WHO grades III (P < 0.05) and IV gliomas

(P < 0.001) compared to WHO II gliomas (P < 0.05); However, the

difference in EIF2AK3 protein expression between WHO II glioma

and para-carcinoma tissues were not significant (Figure 8C).
3.7 EIF2AK3 is engaged in the proliferation
and migration of glioma cells

EIF2AK3 expression levels were measured in LGG cell lines

(SHG44 and HS683) and normal human astrocytes (HEB), and the

results showed that EIF2AK3 expression was significantly higher in

the LGG cell lines compared to the normal astrocyte HEB cell line

(Figure 9A). Figure 9B indicated that EIF2AK3 expression was

effectively and stably downregulated via RNA interference. Since

EIF2AK3-si-1 was the most effective siRNA sequence (Figure 9B),

subsequent functional experiments were conducted with EIF2AK3-

si-1. The growth curves acquired from the CCK8 proliferation assay

presented that EIF2AK3 knockdown dramatically inhibited cell

proliferation in SHG44 and HS683 cell lines (Figures 9C, D).

Likewise, the wound healing assay showed that EIF2AK3

knockdown significantly hampered the migration ability of
Frontiers in Immunology 12
SHG44 and HS683 cell lines in comparison to the negative

control group (Figure 9E).
4 Discussion

ICD, a type of regulated cell death (RCD), is adequate to trigger

an adapted immune response in an immunologically active

environment (14, 25). ICD is spreading rapidly in the area of

fighting cancer treatment. It also has been shown that some anti-

cancer therapies can lead to some form of immunogenic cell death

in gliomas (15, 26). These procedures are implicated in changes in

gene expression, including modifications in ICD-related genes.

Although IDH1 mutation, 1p/19q co-deletion status (27), and

several other predictive signatures associated with inflammation

(28), ferroptosis, cuproptosis, necroptosis, and N6-methyladenine

methylation (29) have been identified in gliomas, these ingredients

are not enough to overpower the quandary of treatment and

prognosis in glioma. It remains unclear, however, whether ICD-

based genomic biomarkers are related to clinical outcomes in

gliomas. Consequently, identifying ICD-related biomarkers for

distinguishing glioma patients could be advantageous.

Our study found that the differentially expressed ICD-related

genes can categorize LGG patients into two subclasses, which

manifested remarkable variations in potential mechanisms,

somatic mutations, and immunity. ICD-high subclass was linked

to unfavorable clinical outcomes and immune-hot phenotype.

Besides, A risky predictive signature integrating nine ICD-related

genes was established in the TCGA queue and verified in the CGGA
B

C

A

FIGURE 8

Validation of the EIF2AK3 expression in glioma tissues and non-tumor tissue analyzed through RT-qPCR and IHC. (A) The mRNA expression level of
EIF2AK3 in diffuse glioma with glioma and para-carcinoma tissues via RT-qPCR. (B) The mRNA expression level of EIF2AK3 in different grades of
glioma samples via RT-qPCR. (C) The protein expression level of EIF2AK3 in diffuse glioma specimens with different grades has been analyzed via
IHC staining. ns, P > 0.05; *P < 0.05; ***P < 0.001.
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queue, segregating the glioma patients into low- and high-risk

subgroups. This risk prediction model presented a high-level

forecasting ability for short-term survival as well as tumor

microenvironment and might act as an indicator of independent

prognosis for glioma patients.

Over the past few decades, the immuno-oncological

microenvironment has gradually become a hot spot in cancer

research (30). The tumor microenvironment is the central battlefield

for tumor cell-immune cell interactions (31). The lack of efficacy of

immunotherapy in the clinical management of patients with glioma is

partially explained by the immunosuppressive traits triggered by

glioma-infiltrating immune cells (32). The immuno-inhibitory

microenvironment is a leading contributor to immunotherapeutic

tolerance in glioma (33). Glioma therapy induces ICD, which

remodels the tumor immune microenvironment (34, 35) and

activates the immune system against carcinoma in immunocompetent
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patients. Therefore, we identified two ICD subclasses of patients through

consensus clustering. Our finding that the ICD-high subclass was

correlated to more active tumor immune status compared to the

ICD-low subclass is congruent with previous studies. However, the

ICD-high subclass exhibited a poor prognosis. Neoplastic cells may

escape ICDs by modulating long-term dysregulation of cellular

proteostasis processes, such as the PERK-eiF2a axis leading to the

retention of DAMPs, thus compromising the skilled relationship

between the immune system and dying carcinoma cells (15, 36).

Immune cells in the neoplastic microenvironment impact the process

of neoplasm progressivity. For instance, the granulocyte colony-

stimulating factor secreted by mutated IDH1 glioma could enhance

the efficacy of immunotherapy for patients with LGG by

reprogramming the tumor microenvironment and promoting the

generation of non-immunosuppressive myeloid cells (32). But, there is

still no understanding of how immune signaling affects ICD-associated
B
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A

FIGURE 9

Interference of EIF2AK3 inhibits viability and mobility of glioma cells. (A) RT-qPCR presented the relative expression of EIF2AK3 in HEB, SHG44, and
HS683 cell lines. (B) RT-qPCR analysis was conducted to evaluate the interference efficiency of EIF2AK3-specific short interfering RNAs (siRNAs) in
SHG44 and HS638 cells; EIF2AK3-si-1 was the most effective interfering sequence and thus applied for subsequent functional experiments.
(C, D) The effects of EIF2AK3 knockdown on the proliferation of SHG44 and HS683 cells were investigated via CCK8 assays. (E) Scratch experiments
revealed that EIF2AK3 knockdown inhibited migration ability in SHG44 and HS683 cell lines. *P < 0.05; **P < 0.01; ***P < 0.001.
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gene expression in gliomas (37). These observations need to be

further elucidated.

In our study, we examined ICD-related genes already

summarized by Abhishek et al. The present study constructed the

prognostic signature, and nine ICD-related genes (BAX, CASP1,

CASP8, CD8A, EIF2AK3, IL1R1, MYD88, PRF1, and TNF) were

ascertained for incorporation into the risk score model for OS. The

current research found a significant increase in Caspase-1

expression in glioma tissue and cell lines, mediating pyroptosis

(an inflammatory form of cell death) (38). Caspase-1 had an

essential position in glioma growth, mobility, aggression,

epithelial-mesenchymal transition, and anti-apoptosis (39).

Caspase-8 is a crucial player in extrinsic apoptosis, with

downregulated activity in cancer. However, recent studies

reported that Caspase-8 expression was retained, and high-level

expression of Caspase-8 may be associated with a worsening

prognosis in glioblastomas (40, 41). The CD8 antigen is a cell

surface glycoprotein discovered on the majority of cytotoxic T

lymphocytes and is responsible for mediating effective cell-cell

interactions within the immune system. T lymphocyte infiltration

has been detected in gliomas. Nevertheless, in certain

circumstances, GBM may experience immune flight through not

rendering neoplastic antigens or MHC-1, thereby blocking

recognition by CD8-positive T-cells (42, 43). EIF2AK3, best

known as PERK, was reported to promote glioma cell viability,

migration, and anti-apoptosis in vitro (44, 45). Our in vitro

experiments also confirmed that the expression level of EIF2AK3

elevated with an increase in tumor grade, and EIF2AK3 enhances

the abilities of tumor cell proliferation and migration.

A previous study showed that higher expression levels of IL1R1

proteins were detected in GBM samples than in normal specimens by

immunohistochemical experiments, which may have a meaningful

impact on the prognosis of neoplasms (46). MYD88 expression was

closely tied to the OS and WHO classification of glioma patients,

participating in the virulent loop of neoplastic cell evolution and M2

macrophage polarization (47). PRF1, which served as a definite

marker of the killing ability of immune cells, is associated with

better survival inmultiple cancers, such as bladder cancer, melanoma,

and head and neck squamous cell carcinoma (48, 49). Tumor

necrosis factor (TNF) matters in immune regulation and

controlling tumor growth (50). Nakagawa J et al. discovered that

TNF expressed by cancer-relevant macrophages could clear glioma

(51). The above finding implied that the ICD-associated risk

predictive model for OS could independently forecast the clinical

outcomes of glioma patients and had a promising prospect for

application based on the validation set.

5 Conclusion

In summary, we structured the ICD-relational signature for OS

to independently anticipate the prognosis of LGG patients and

deliver potential treatment targets. Our study accentuates the link

between ICD subtypes and differences in the immune tumor

microenvironment in LGG. These results may be beneficial for

immunotherapy-based intervene for LGG patients, but more in-

depth studies are still needed to validate our findings.
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