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Sepsis is one of the major causes of death in the hospital worldwide. The pathology

of sepsis is tightly associated with dysregulation of innate immune responses. The

contribution of macrophages, neutrophils, and dendritic cells to sepsis is well

documented, whereas the role of natural killer (NK) cells, which are critical innate

lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells

has been reported as a risk factor leading to severe organ damage or death. In

sharp contrast, some other studies revealed that triggering NK cell activity

contributes to alleviating sepsis. In all, although there are several reports on NK

cells in sepsis, whether they exert detrimental or protective effects remains

unclear. Here, we will review the available experimental and clinical studies

about the opposing roles of NK cells in sepsis, and we will discuss the prospects

for NK cell-based immunotherapeutic strategies for sepsis.
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1 Introduction

Sepsis is a life-threatening multiple-organ dysfunction syndrome caused by localized or

systemic infections, which is one of the major causes of death to patients in the hospital

worldwide (1–3). It has been estimated that approximately 750,000 people suffer from sepsis

every year in the United States and an estimated 20-30% patients die from it (4, 5). However,

there is no specific, standardized treatment strategy for sepsis (6). Numerous studies have

shown that dysregulation of innate immune responses is a major contributing factor to the

incidence and development of sepsis (7, 8). For example, studies on monocytes, macrophages,

neutrophils, and dendritic cells have provided insight into their roles in both the

inflammatory and immunosuppressive phases of sepsis (9–14). Natural killer (NK) cells,

which were discovered in the early 1970’s (15, 16), are a heterogeneous group of innate

lymphocytes with the capacity to regulate both innate and adaptive immune responses. They

are best known for their roles in fighting infections and tumors, mainly relying on their

cytotoxicity and immune regulatory properties (17).

Recent studies have implicated NK cells in the pathological process of sepsis, suggesting

that they might be employed as prognostic biomarkers or therapeutic targets (2, 18).
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However, seemingly contradictory conclusions about NK cells playing

beneficial or harmful roles in sepsis have been obtained (19). Hence,

we will review these reports to discuss whether NK cells are friends or

foes in sepsis, and we will further discuss the prospects of NK cell-

based immunotherapy for sepsis.
2 The immunological characteristics of
sepsis

Sepsis has previously been used to describe severe disease caused

by infection (20). However, this definition cannot accurately describe

its complex pathological processes. Recently, a new definition has

been published, stating that sepsis refers to a life-threatening,

multiple-organ failure syndrome, caused by dysregulated responses
Frontiers in Immunology 02
to infection (21, 22). It is generally believed that immunological

abnormalities are the pathological basis of sepsis (23), which is tightly

associated with microvascular injury, abnormal coagulation,

hemodynamic instability, multiple organ damage and other

conditions (24). The immunological abnormities exhibit distinct

d i s e a s e s t a g e - sp e c ifi c cha r a c t e r i s t i c s du r ing s ep s i s :

hyperinflammation at the initial stage and immunosuppression at

the late stage (25). A diagram illustrating this process is shown

in Figure 1.

After invading the body, pathogens will encounter the first line of

defense composed of innate immune cells, activating PAMP

(pathogen-associated molecular pattern)- or DAMP (damage-

associated molecular pattern)-associated signaling pathways in these

cells (26, 27). Once activated, these cells generate large amounts of

inflammatory cytokines, such as IL-1b, IL-6, IL-12, TNF-a and IFN-g
FIGURE 1

The immune changes during the pathological process of sepsis. The immunological abnormity exhibits two distinct stages accompanying with the sepsis
development: hyperinflammation and immunosuppression. During the hyperinflammatory phase at early, the increase of pro-inflammatory cytokines
(e.g., IL-1b/6/12, IFN-g, and TNF-a) leads to cytokine storm, resulting in the vascular system damage (e.g., endothelial cell damage), the abnormal
coagulation, finally multi-organ failure and death. Subsequently, the death of immune cells, the increase of negative costimulatory molecules (e.g., PD-1
and PD-L1) or anti-inflammatory cytokines (e.g., IL-4 and IL-10) induces immunosuppression, which leads to uncontrolled secondary infection and
death.
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(28, 29). These host responses are not limited to the infectious focus.

The cytokines may trigger additional immune cells at distant sites to

secrete inflammatory cytokines, and this cascading amplification

reaction may finally result in systemically uncontrolled over-

inflammation, which is termed a “cytokine storm” (30, 31). The

massively increased cytokine levels may potentially enhance the

elimination of pathogens by innate immune cells. However, they

also lead to a series of pathological changes, such as endothelial cell

damage, leukocyte infiltration, abnormal activation of the coagulation

system and other abnormalities, resulting in multi-organ failure and

even death (32–34). Consequently, the direct cause of death is not the

invasive pathogens themselves, but the over-activated immune

reactions. Therefore, the focus of clinical treatment at this

inflammatory stage of sepsis is on ameliorating the uncontrolled

inflammation (35).

The hyperinflammation at the early stage of sepsis will lead to

immunosuppression during the late stage of sepsis: on the one hand,

the cytokine storm directly induces cell death in various immune cells;

on the other hand, the functions of some effector cells will be

exhausted after their excessive activation (36, 37). Moreover,

upregulation of some negative costimulatory molecules and anti-

inflammatory cytokines has also been observed during this stage, and

includes programmed cell death 1 (PD-1) (38), programmed cell

death ligand 1 (PD-L1) (39), T-cell immunoglobulin and mucin

domain-containing protein-3 (TIM-3) (40), T cell Ig and ITIM

domain (TIGIT) (41), IL-4 (36), IL-10 (42, 43) and TGF-b (44, 45).

These factors are mainly related to exhaustion of immune cells or

inhibition of their effector functions (38, 46–48). As a result, the body

presents with a continuously immunosuppressive state, nearly losing

its capacity to clear pathogens (49). This will cause an extremely high

risk for secondary infections, such as those mediated by opportunistic

pathogens or iatrogenic infections caused by interventional therapy,

which eventually leads to death of sepsis patients (50). For example,

Huang et al. observed that the expression of TIM-3 on CD4 T cells in

patients with sepsis-induced immunosuppression was significantly

elevated, which impaired anti-infective responses and positively

correlated with mortality (51). Hou et al. also found that, in a

lipopolysaccharide (LPS)-induced murine sepsis model, TIM-3

expression on NK cells negatively regulated the production of IFN-

g, which caused death (40). Therefore, reestablishing immune

functions is critical to reduce mortality risk of sepsis patients

during the late immunosuppressive stage (52, 53).
3 NK cells play a role in antimicrobial
responses

NK cells, a group of large granular lymphocytes derived from the

bone marrow, are essential components of the innate immune

response and can directly kill tumors and other target cells without

prior activation (54–56). In humans, about 5-15% of lymphocytes are

defined as NK cells in peripheral blood, and tissue-specific

subpopulations are found in the spleen, liver, and lung (57–61).

Generally, human NK cells can be divided into two subpopulations
Frontiers in Immunology 03
by the expression of CD56 and CD16 on the cell membrane (62, 63).

About 90% of all NK cells in human peripheral blood are

CD56dimCD16bright, whereas only 10% are CD56brightCD16-/dim

(64). Distinct human NK cell subpopulations found in different

tissues significantly differ in cytotoxicity and cytokine secreting

capacity (65, 66). The two main subpopulations possess distinct

functions: CD56dimCD16bright NK cells exhibit higher cytotoxicity

and express increased levels of killer immunoglobulin-like receptors

(KIR) or CD57 receptors; CD56brightCD16-/dim NK cells can secrete

more cytokines and possess greater proliferative capacity (67, 68).

NK cells can be activated in several ways. Most importantly, the

balance between signals from the inhibitory or activating receptors

expressed on the cell surface plays a critical role in regulating their

responses (69, 70). The activating receptors mainly include NCRs

(NKp30, NKp44, and NKp46), KIR-2Ds, KIR-3Ds, NKG2D, CD226,

2B4, and NKG2C, whereas the inhibitory receptors mainly include

NKG2A, TIGIT, KIR-2DL, and KIR-3DL (71). The biased expression

of these receptors or their ligands calibrates the activation status of

NK cells. For example, a clinical study reported that, in human

immunodeficiency virus (HIV)-infected patients, a subpopulation of

human NK cells that expresses NKG2C but not NKG2A has a

stronger ability to secrete IFN-g compared with other NK cells (72).

Another typical way of NK activation is via their pathogen

recognition receptors (PRRs), which bind with PAMPs on bacteria

(73). For example, a previous study reported that high-mobility group

box-1 (HMGB-1) up-regulated the levels of TLR-2/4, which belongs

to the group of classical PRRs (74), on murine NK cells, leading to

their activation in rotavirus-induced murine biliary atresia (75).

Additionally, NK cells can also be activated by several cytokines,

including type 1 interferon, IL-2, IL-12, IL-15, IL-18, IL-21, and IL-27

(76–80). For instance, IL-12 binding to IL-12Rb1/2 stimulates NK

cells through signal transducer and activator of transcription 4

(STAT4) phosphorylation, leading to abundant IFN-g and TNF-a
production (81).

During infection, activated NK cells perform their activity mainly

in two ways: cytotoxicity and immune regulation. First, NK cells can

directly lyse bacteria-infected cells with their cytotoxicity: on the one

hand, they can induce target cell apoptosis depending on the binding

of FAS-L to FAS death receptors (82); on the other hand, they directly

kill targets by secreting cytotoxic proteins, such as perforin, granzyme

and a-defensins (83–85). Specifically, some studies have reported that

these cytotoxic proteins could disrupt the membrane of some

bacteria, such as Mycobacterium, Salmonella typhimurium, Bacillus

anthracis, Escherichia coli, and Staphylococcus aureus (86–89), thus

causing their death. In addition to cytotoxicity, activated NK cells also

secrete several cytokines to undertake the roles of immune regulation

(90). IFN-g, which is the major cytokine released by NK cells, was

reported to play a critical role in fighting microbial infections (91). It

modulates the activation of other immune cells, such as macrophages

or dendritic cells, enabling them to perform comprehensive anti-

bacterial responses (92, 93). Moreover, IL-32, previously named as

NK cell transcript 4 (NK4), can be produced by NK cells when

activated by IL-2 (94, 95). It also stimulates inflammatory responses

by inducing monocytes or macrophages to secrete various cytokines,

including TNF-a, IL-1b, IL-6 or IL-8 (96). Thus, IL-32 has been
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reported to exacerbate sepsis in the cecal-ligation and puncture (CLP)

mouse model, via propagating vascular inflammation (97).

In addition to their positive regulatory roles, NK cells also possess

the ability to limit antimicrobial responses. A recent study uncovered

that NK cell-derived IFN-g worsened macrophage phagocytosis of

zymosan in mice and increased the susceptibility to secondary

Candida infection during post-sepsis immunosuppression (98).

However, whether this phenomenon exists in sepsis caused by other

pathogens needs further study. Furthermore, activated NK cells also

secrete IL-10, which is a well-known immunosuppressive cytokine

(99–101). In fact, NK cells are the main source of IL-10 in systemic

infection caused by some pathogens, such as Yersinia pestis, Listeria
Frontiers in Immunology 04
monocytogenes or Toxoplasma gondii (99). Interestingly, the NK cell-

derived IL-10 appears to play dual roles in different types of

infections. For example, in Listeria monocytogenes infection, the NK

cell-derived IL-10 shows detrimental effects on host resistance against

the invasive pathogen (102), whereas it can protect the host from

murine cytomegalovirus infection or CLP-induced sepsis by reducing

systemic inflammation (103, 104). The authors consider that the

beneficial or detrimental roles of IL-10 might depend on whether the

major cause of host death is pathogen overload or excessive

inflammation during infection.

Summarily, the patterns of NK cell activation and their roles in

antimicrobial responses are illustrated in Figure 2.
FIGURE 2

NK cell activation and their roles in the anti-infection responses. NK cells are mainly activated in three ways: 1) The activation of NK cells is governed by a
balance between signals delivered through activated and inhibitory receptors. When the activating signal dominates, NK cells will be activated, and vice
versa. 2) Activation of NK cells can also be achieved by stimulation with cytokines (e.g., IL-12 and IL-15). 3) NK cells are activated by pathogen-associated
molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Activated NK cells lysis infected cells and release pathogens via death receptor
ligand/death receptor (e.g., FAS-L/FAS) and secreting cytotoxic proteins (e.g., perforin and granzyme). Meanwhile, activated NK cells promote the
activation of macrophage-mediated microbial killing by the secretion of cytokines (e.g., IFN-g, IL-32). In contrast, activated NK cells also possess the
ability to limit the anti-infection responses. On one hand, NK cell-derived IFN-g especially worsened macrophage phagocytosis of zymosan.; on the
other hand, the activated NK cells also secrete IL-10, which can generally inhibit the anti-infection responses of monocytes, antigen-presenting cells
(APCs), macrophages, neutrophils, eosinophils or T cells.
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4 NK cells act as risk factors in sepsis

Accumulating studies have shown that NK cells play a

contributing role in the inflammatory responses caused by infection

(105, 106). In this context, they are considered a risk factor for

aggravating the septic process during the hyperinflammation stage

(107). At the early stage of sepsis, NK cells will be activated through

the ways discussed above, secreting abundant cytokines, such as IFN-

g, TNF-a or IL-32, which can trigger dramatic responses in

macrophages or dendritic cells (54, 96). Mutually, the activated

macrophages and dendritic cells secrete IL-2, IL-12 or IL-18 to

subsequently further activate NK cells, forming a positive feedback

loop (108, 109). This loop amplifies the pro-inflammatory responses,

resulting in a cytokine storm and finally causing multiple organ

failure (54). In addition, the cytotoxic proteins secreted from

activated NK cells, including perforin and granzyme, are also

reported to directly mediate tissue necrosis and damage (54)

(Figure 3). Therefore, several studies have shown that antagonizing
Frontiers in Immunology 05
murine NK cells during sepsis significantly ameliorates multiorgan

damage caused by inflammation and enhanced tolerance in mice. For

example, in sepsis mouse models caused by CLP surgery,

Streptococcus pneumoniae, Escherichia coli or Streptococcus pyogenes

infection, NK cell clearance using anti-asialoGM1 and anti-NK1.1

antibodies can reduce systemic inflammation, stabilize acid-base

balance in the circulation, improve organ damage, reverse

physiological disorders and prolong overall survival (110–116).

Moreover, in a murine polytrauma model, which is a major

instigator of sepsis, murine NK cell depletion also attenuated

inflammatory responses and improved the outcomes (117).

IL-15 is an essential cytokine to maintain NK cell development

and maturation, which can also strongly activate NK cells at high

concentrations (118). It has been reported that excessive IL-15

stimulation leads to pathological inflammatory responses similar

to sepsis, resulting in the death of mice due to massive NK cell

proliferation and IFN-g production (119). Furthermore, IL-15

knockout mice, characterized by NK cell loss, also showed
FIGURE 3

The pathological roles of NK cell at the hyperinflammation and immunosuppression stage of sepsis. During sepsis hyperinflammation, NK cells activation
is dysregulated and NK cells secrete abundant cytokines, including IFN-g, TNF-a, IL-32 and so on. These cytokines subsequently facilitate secretion of
more cytokines (e.g., IL-12, IL-15, IL-1, IL-6, and so on) by dendritic cells and macrophages, establishing a positive feedback loop and amplifying cytokine
storm. Furthermore, cytotoxic proteins (e.g., perforin, granzyme) secreted by NK cells are increased and cause tissue necrosis. As a result, the cytokine
storm and tissue necrosis eventually lead to multiple organ failure and death. In contrast, the secretions of cytokines (e.g., IFN-g, TNF-a, IL-32, and so
on) and cytotoxic proteins (e.g., perforin, granzyme) of NK cells are impaired at the immunosuppression stage of sepsis, which contributes to the
immunoparalysis, causing secondary infection and even death.
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tolerance to sepsis due to CLP surgery (120). When bacterial

infection occurs, NK cells may rapidly migrate to the infection

site and promote inflammation (121, 122). It has been reported that

murine NK cells expressing CXCR3 can rapidly migrate to the

abdominal cavity within 4-6 h following severe abdominal infection

(123). These CXCR3-positive NK cells are similar to the human

CD56bright subpopulation in their ability to secrete more

proinflammatory cytokines and express more activation makers

(124). Blocking CXCR3 or its ligand, CXCL10, can significantly

reduce inflammation during sepsis in mice and increase their

survival rate (125). In addition to the organ damage caused by

massive inflammatory cytokine secretion, NK cell-mediated

cytotoxicity is also detrimental in sepsis. For example, mice

deficient in perforin or in granzymes A/M exhibit increased

tolerance to sepsis caused by LPS (126).

Additionally, significant changes in the number, phenotypes, and

functions of NK cells in sepsis patients have been observed in several

clinical studies. David Andaluz-Ojeda et al. showed that NK cell levels

were significantly increased in patients who died from sepsis and the cell

counts at day 1 were independently associated with increased risk of

death at 28 days (hazard ratio = 3.34, 95% CI = 1.29 to 8.64; P = 0.013).

Analysis of survival curves provided evidence that human NK cell levels

at day 1 (> 83 cells/mm³) were associated with early mortality (127). Palo

et al. also found that sepsis patients with the highest NK cell numbers

exhibit the lowest survival probability (128).

In all, during the hyperinflammation stage, the disturbance of

inflammatory factors leads to abnormal NK cell activation, which can

trigger a cytokine storm through a positive feedback loop, resulting in

severe organ damage (92, 109). Thus, neutralizing or inhibiting NK cell-

derived pro-inflammatory cytokines (e.g., IFN-g) or cytotoxic proteins

(e.g., perforin, granzyme) can alleviate systemic inflammatory responses

and protect against organ damage. Furthermore, using anti-

inflammatory cytokines, such as IL-10, to treat sepsis is also worth

considering. We have summarized the evidence showing the detrimental
Frontiers in Immunology 06
roles of NK cells from both animal and human sepsis in Table 1. These

findings implicate NK cells as risk factors during sepsis.
5 The protective roles of NK cells in
sepsis

Conversely, some other studies have provided evidence for a

protective role of NK cells in a variety of microbial infections. For

instance, murine NK cells are essential in coordinating host responses

against sepsis caused by Staphylococcus aureus infection (129, 130).

This may be due to their interactions with the anti-inflammatory

mechanisms of the host. Moreover, once the ability of NK cells to

secrete IFN-g is impaired, progressive immune disorders might be

induced. There is evidence showing that neutralization of IL-10 with

antibodies in mice improves the ability of NK cells to secrete IFN-g,
resulting in improved survival (131). Notably, in the Citrobacter

rodentium infection model, murine NK cells not only directly lyse

the bacteria but also recruit other intrinsic immune cells and activate

their antibacterial functions by secreting cytokines (132). Similarly,

during Pseudomonas aeruginosa infection, NK cells can recruit

neutrophils to the lungs, alleviating infection and improving animal

survival (133). In mice infected with pulmonary nontuberculous

mycobacteria, the bacterial load and mortality rate are increased by

NK cell clearance (134). Interestingly, it has also been reported that

IL-15 treatment after CLP surgery can reduce immune cell apoptosis,

improve immune disorders, and increase mouse survival (135, 136).

A protective role of NK cells in sepsis has also been documented

in several clinical studies. Some researchers reported a significant

increase in the number of human peripheral blood NK cells, their

expression of active biomarkers, and their ability to secrete granzyme

A/B, IFN-g or IL-12P40 (117, 137–139), which were considered to

provide a survival benefit for septic patients. Bourboulis et al. showed

that sepsis patients with increased levels of NK cells (>20% of all
TABLE 1 Summary of the detrimental roles of NK cells in sepsis.

Disease Animal/
Human Supporting evidence Reference

CLP
Animal Using anti-asialoGM1 and anti-NK1.1 antibodies to clear NK cells in vivo enhanced tolerance in

mice
(110–113)

E. coli infection
Animal NK cell-depleted and NK cell-deficient mice exhibited 80% survival after E. coli infection, whereas

control mice all died within 12 h.
(114)

S. pyogenes infection Animal NK cell-deficient mutant mice were more resistant to S. pyogenes than control mice (115)

S. pneumonia infection
Animal NK depletion by antibodies reduced systemic inflammation, stabilized acid-base balance in

circulation, and significantly improved the survival of mice
(116)

Murine polytrauma
Animal Depleting NK cells resulted in attenuated inflammatory responses and an overall improvement in

outcome
(117)

CLP Animal IL-15-deficient mice (lacking NK cells) exhibited improved survival, attenuated hypothermia, and
reduced proinflammatory cytokine production during sepsis

(120)

Patients within the first 1 d, 3 d, 10 d of
sepsis (50 patients)

Human Analysis of survival curves provided evidence that NK cell levels at day 1 (> 83 cells/mm³) were
associated with early mortality

(127)

Patients with sepsis during the first 28 d
in the ICU (52 patients)

Human Patients with the highest NK cell number may have the lowest probability to survive (128)
f

CLP, Cecal-ligation and puncture; E. coli, Escherichia coli; S. pyogenes, Streptococcus pyogenes; S. pneumonia, Streptococcus pneumoniae.
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lymphocytes) survived longer than those patients with lower levels of

NK cells (< or =20% of all lymphocytes) (140). Boomer et al. reported

that NK cells in peripheral blood of sepsis patients were significantly

reduced within 24 h, which may predispose some patients to

nosocomial infections and poor outcomes (141). Consistently,

Holub et al. found that human NK cells were decreased within the

first 48 h of sepsis, especially in patients with Gram-negative bacterial

infection, resulting in increased risk of septic complications (142).

Moreover, single-cell RNA-sequencing (scRNA-seq) analysis revealed

that various cytotoxic genes of NK cells were downregulated in

patients with late sepsis (n=4), which might be associated with the

re-occurrence of severe infections (143).

Under the conditions described in this section, replenishing

sub j e c t s w i t h f un c t i ona l NK ce l l s may h ind e r t h e

immunosuppressive stage of sepsis. Furthermore, blocking

inhibitory receptors, activating NK cells by cytokines (e.g., IL-15,

IL-2) or neutralizing suppressive cytokines (e.g., IL-4, IL-10) may also

be beneficial. In summary, the evidence supporting the protective

roles of NK cells in both animal and clinical studies are shown

in Table 2.

Taken together, the roles of NK cells in sepsis remain

controversial. Furthermore, animal and clinical studies have

revealed dual roles of NK cell activity on sepsis progression. The

impact on disease mainly depends on the pathological stage and the

initial infection focus. Although the functional changes of NK cells

and their influence on pathological progresses have been explored in

previous studies, they mainly focused on the early stages after sepsis.

During the sepsis process lasting several months from occurrence to

recovery, the impact of continuous changes in NK cell numbers and

characteristics remains unclear.
6 NK cells in COVID-19 infection

In late 2019, coronavirus disease 2019 (COVID-19) emerged and

rapidly spread throughout the world (144, 145). As of December

2022, the COVID-19 pandemic has resulted in approximately
Frontiers in Immunology 07
641,915,931 confirmed cases, including 6,622,760 deaths worldwide

(https://covid19.who.int/ ). A meta-analysis revealed that the overall

pooled sepsis prevalence estimates among 218,184 COVID-19

patients, irrespective of ICU or non-ICU admission, were 51.6%

(95% CI, 47.6-55.5, I2 = 100%) (146). Sepsis was one of the major

causes of death for COVID-19 patients. During acute COVID-19

infection, the number of the CD56bright and CD56dim human NK cells

dropped dramatically in the circulation (147, 148). However, this

drop was likely related to the homing of human NK cells from the

circulation to the lung because NK cells were increased in

bronchoalveolar lavage (BAL) (149, 150). Moreover, a clinical trial

discovered that a high frequency of NK cells was significantly

associated with asymptomatic COVID-19 infection (151). In

addition to lower circulating counts, NK cell dysfunction was also

observed. NK cell hyperactivation driven by IL-6, IL-15 and IL-18 has

been considered as one of the features of COVID-19 (152–154).

Furthermore, Maucourant et al. used high-dimensional flow

cytometry to reveal that NK cells in COVID-19 patients were at a

higher activation state containing high levels of cytotoxic proteins,

such as perforin (155). However, prolonged hyperactivation usually

leads to impaired NK cell function. Yao et al. reported that genes

involved in NK cell cytotoxicity were suppressed in severely ill

COVID-19 patients (156). Moreover, some studies also reported

that NK cell activity was impaired via over expression of the

inhibitory receptor NKG2A in COVID-19 patients (157, 158).

Due to their lower circulating counts and dysfunction, NK cell

adoptive transfer or reconstitution could be a possible treatment for

COVID-19 patients. In fact, some innovate clinical trials using human

NK cells to treat COVID-19 patients are active (ClinicalTrials.gov#

NCT04280224, NCT04578210). Additionally, a clinical trial to

determine the safety and efficacy of NK cells derived from human

placental hematopoietic stem cells in patients with moderate COVID-

19 is also ongoing (ClinicalTrials.gov# NCT04365101). Finally, an

NKG2D chimeric antigen receptor (CAR)-NK cell-based trial may

provide a safe and effective cell therapy for COVID-19

(ClinicalTrials.gov# NCT04324996). These studies are summarized

in Table 3.
TABLE 2 Summary of the protective roles of NK cells in sepsis.

Disease Animal/
Human Supporting evidence Reference

S. aureus infection Animal NK cell-depleted mice (using anti-NK1.1 antibodies) developed more frequent and severe arthritis (129, 130)

C. rodentium infection
Animal Depletion of NK cells led to higher bacterial load and developed disseminated systemic infection,

associated with reduced immune cell recruitment and lower cytokines
(132)

P. aeruginosa infection Animal NK cells can recruit neutrophils to the lungs, alleviate infection and improve the survival of mice (133)

NTM infection Animal NK1.1 cell depletion increased bacterial load and mortality in mouse model (134)

Patients within 12 h of the advent of
severe sepsis (49 patients)

Human
An increase in circulating NK cells increased the survival rate of patients

(140)

Patients within 24 h of the onset of
sepsis (24 patients)

Human The number of NK cells in the blood of patients was decreased, which may be necessary for
predisposing some patients to nosocomial infection and poor outcome

(141)

Patients within 48 h of sepsis (40
patients)

Human NK cells numbers steadily decreased within 48 hours after admission, associated with an increased
risk of septic complications

(142)

Patients with sepsis during 14-21 d (4
patients)

Human Various cytotoxic genes of NK cells were downregulated in patients with late sepsis, which might be
associated with the re-occurrence of severe infections

(143)
f

S. aureus, Staphylococcus aureus; C. rodentium, Citrobacter rodentium; P. aeruginosa, Pseudomonas aeruginosa; NTM, Nontuberculous mycobacteria.-
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7 The prospects of NK cell-based
immunotherapy for sepsis

Recently, NK cells have gained great attention in the field of

immunotherapy, especially in cancer treatment. The anti-tumor

activities of infused NK cells have been demonstrated widely in

mouse models of glioblastoma, ovarian cancer, and metastatic

colorectal cancer (165–167). For example, Veluchamy et al. showed

that adoptive transfer of NK cells into mice with metastatic colorectal

cancer inhibited tumor growth in vivo and prolonged survival time

(168). There has an explosion of NK cell-based cancer

immunotherapies in clinical trials on acute myeloid leukemia

(AML), non-Hodgkin lymphoma (NHL), neuroblastoma, multiple

myeloma (MM) and other cancers (159–164). In addition, a few
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clinical trials using NK cells to treat patients with ovarian carcinomas,

hematological cancer, B cell lymphoma, and glioblastoma are ongoing

(ClinicalTrials.gov# NCT03539406, NCT03841110, NCT04023071,

NCT03383978). We have summarized these completed and

ongoing clinical trials in Table 3. Recently, a variety of NK cell-

based immunotherapies were developed to treat viral infections such

as COVID-19 (as discussed above) and HIV (ClinicalTrials.gov#

NCT03899480, NCT03346499). Although these treatments have not

yet achieved the same degree of success as clinical T cell-based

therapies, the abundant pre-clinical or clinical studies with NK cell-

based immunotherapies have led to increasing enthusiasm in

exploring their potential to treat other diseases, including sepsis.

A variety of tissue sources for deriving NK cells for

immunotherapy have been developed, including autologous and
TABLE 3 Summary of the clinical trials on NK cell-based immunotherapy.

Disease
type

Patient
number

Cell source Supporting evidence Phase Reference
or identifier

COVID-19 30 − − I
(recruiting)

NCT04280224

COVID-19 58 Allogeneic − I/II
(recruiting)

NCT04578210

COVID-19 86 Human placental
hematopoietic stem

cell

− I/II (Active,
not
recruiting)

NCT04365101

COVID-19 90 CAR − I/II
(recruiting)

NCT04324996

AML 21 Haploidentical All patients but 1 had absolute neutrophil and platelet count recovery within 45 d
after NK cell infusion

II
(completed)

(159)

AML 10 UCB In vivo, hematopoietic stem and progenitor cell-NK cell maturation was observed,
indicated by the rapid acquisition of CD16 and most activating receptors

− (160)

NHL 16 Haploidentical Three responding patients with extensive bulky disease had robust tumor
regressions

II
(completed)

(161)

Neuroblastoma 35 Haploidentical Ten of thirty-five patients had complete or partial responses and had improved
progression free survival

I
(completed)

(162)

MM 8 Allogeneic After fresh NK cell infusion, dramatic in vivo expansion was observed and
circulating NK cells retained the ability to kill myeloma cells

− (163)

NHL and CLL 11 CAR 8 patients had an objective response, including 7 patients who had a complete
response

I/II (Active,
not
recruiting)

(164)

Ovarian
carcinomas

12 UCB − I
(recruiting)

NCT03539406

Hematological
cancer

37 iPSCs − I (Active,
not
recruiting)

NCT03841110

B cell
lymphoma

234 iPSCs − I
(recruiting)

NCT04023071

Glioblastoma 42 CAR − I
(recruiting)

NCT03383978

HIV 9 Haploidentical − I
(completed)

NCT03899480

HIV 4 Haploidentical − I
(completed)

NCT03346499
Identifier from ClinicalTrials.gov. COVID-19, Coronavirus disease 2019; AML, Acute myeloid leukemia; NHL, Non-Hodgkin lymphoma; MM, Multiple myeloma; CLL, Chronic lymphocytic
leukemia; HIV, Human immunodeficiency virus; CAR, Chimeric antigen receptors; UCB, Umbilical cord blood; iPSCs, Induced pluripotent stem cells.
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allogeneic NK cells (169). Autologous NK cell infusion using the

patient′s own blood as a source was the first focus in adoptive NK cell

therapy, which is associated with low risk of graft-versus-host disease

(169). However, this approach usually leads to exhausted NK cell

functions (170). Furthermore, patients must receive an extensive

preparative treatment regimen before infusion, which may cause

serious negative side effects (171). For allogeneic NK cells, the

requirement for a healthy donor as source of NK cells and

expanding them to clinically relevant doses is the most critical step

(172). Therefore, umbilical cord blood (UCB) (173) and induced

pluripotent stem cells (iPSCs) have been considered as optimal

sources (174). UCB NK cells are younger and more proliferative

(175), can be manufactured at multiple doses (176), and possess high

cytotoxicity to lyse target cells (177). However, UCB NK cells are

relatively unstable due to common delays in blood collection and

heterogeneity of leukocytes from different donors (169). Stem cells

represent a potentially unlimited source of NK cells for adoptive

immunotherapy, and iPSCs provide a universal cell source (174). NK

cells derived from iPSCs can be genetically modified and expanded to

a homogenous population on a large scale (178). Furthermore, NK

cells derived from iPSCs display increased cytotoxicity and greater

antitumor activity than UCB NK cells in models of leukemia (179).

However, more efficient strategies to generate NK cells from iPSCs are

still needed.

As discussed above, NK cells significantly impact the pathological

progression of sepsis. We postulate that NK cell-based

immunotherapies may be developed as an excellent therapeutic

option for sepsis, for the following reasons: 1. The adoptive transfer

of NK cells has been proven safe due to their short lifespan and the

low risk of triggering graft-versus-host reactions (180, 181); 2. NK

cells can kill targets without sensitization; therefore, developing NK

cells as “off-the-shelf” products has recently attracted great attention

in the field (182), which can overcome the challenging problem of the

narrow time window available for sepsis treatment; 3. The

pathological process of sepsis is characterized by distinct stages of

hyperinflammation and immunosuppression, and NK cells also have

dual roles in immune regulation. Therefore, we may envisage an “off-

the-shelf” NK cell product developed from editable iPSC-NK cells,

which can sense its immune microenvironment to program opposing

activities: in a hyperinflammatory environment, these NK cells may

be programmed to mainly exert anti-inflammatory properties,

whereas in an immunosuppressive environment, they are

programmed to promote immune activation. Although few studies

on NK cell-based immunotherapies for sepsis have been performed,

inspired by explorations on cancer and viral infection and with the

expanded knowledge on mechanisms of NK cell responses in sepsis,

we can make the bold prediction that the future of NK cell-based

immunotherapy for sepsis is bright.

In conclusion, developing NK cell-targeted immunotherapeutic

strategies for sepsis highly depends on the disease state. A dynamic

and more comprehensive understanding of the pathological process

of sepsis will be critically important. Therefore, we consider using

high-throughput sequencing technologies to dynamically monitor
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NK cell alterations during the early, middle, and late stages of

sepsis essential for an accurate and deep understanding of NK cells

in sepsis. Hopefully, with the growing understanding about NK cells

in sepsis, safer and more efficient immunotherapies for sepsis can

be developed.
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All about (NK cell-mediated) death in two acts and an unexpected encore: Initiation,
execution and activation of adaptive immunity. Front Immunol (2022) 13:896228.
doi: 10.3389/fimmu.2022.896228

85. Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, et al.
Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing
pool of granzyme b and perforin mrnas. Immunity (2007) 26(6):798–811. doi: 10.1016/
j.immuni.2007.04.010

86. Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C,
et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J
Immunol (Bal t imore Md 1950) (2000) 165(12) :7102–8. doi : 10 .4049/
jimmunol.165.12.7102

87. Endsley JJ, Torres AG, Gonzales CM, Kosykh VG, Motin VL, Peterson JW, et al.
Comparative antimicrobial activity of granulysin against bacterial biothreat agents. Open
Microbiol J (2009) 3:92–6. doi: 10.2174/1874285800903010092

88. Gonzales CM, Williams CB, Calderon VE, Huante MB, Moen ST, Popov VL, et al.
Antibacterial role for natural killer cells in host defense to bacillus anthracis. Infection
Immun (2012) 80(1):234–42. doi: 10.1128/iai.05439-11

89. Lu CC,Wu TS, Hsu YJ, Chang CJ, Lin CS, Chia JH, et al. NK cells kill mycobacteria
directly by releasing perforin and granulysin. J leukocyte Biol (2014) 96(6):1119–29.
doi: 10.1189/jlb.4A0713-363RR

90. Paolini R, Bernardini G, Molfetta R, Santoni A. NK cells and interferons. Cytokine
Growth factor Rev (2015) 26(2):113–20. doi: 10.1016/j.cytogfr.2014.11.003

91. Horowitz A, Stegmann KA, Riley EM. Activation of natural killer cells during
microbial infections. Front Immunol (2011) 2:88. doi: 10.3389/fimmu.2011.00088

92. Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid
Q. Innate lymphoid cells and natural killer cells in bacterial infections: Function,
dysregulation, and therapeutic targets. Front Cell infection Microbiol (2021) 11:733564.
doi: 10.3389/fcimb.2021.733564

93. Spörri R, Joller N, Albers U, Hilbi H, Oxenius A. Myd88-dependent IFN-gamma
production by NK cells is key for control of legionella pneumophila infection. J Immunol
(Baltimore Md 1950) (2006) 176(10):6162–71. doi: 10.4049/jimmunol.176.10.6162

94. Dahl CA, Schall RP, He HL, Cairns JS. Identification of a novel gene expressed in
activated natural killer cells and T cells. J Immunol (Baltimore Md 1950) (1992) 148
(2):597–603.

95. Park MH, Song MJ, Cho MC, Moon DC, Yoon DY, Han SB, et al. Interleukin-32
enhances cytotoxic effect of natural killer cells to cancer cells Via activation of death
receptor 3. Immunology (2012) 135(1):63–72. doi: 10.1111/j.1365-2567.2011.03513.x

96. Khawar B, Abbasi MH, Sheikh N. A panoramic spectrum of complex interplay
between the immune system and IL-32 during pathogenesis of various systemic infections
and inflammation. Eur J Med Res (2015) 20(1):7. doi: 10.1186/s40001-015-0083-y

97. Kobayashi H, Huang J, Ye F, Shyr Y, Blackwell TS, Lin PC. Interleukin-32beta
propagates vascular inflammation and exacerbates sepsis in a mouse model. PLoS One
(2010) 5(3):e9458. doi: 10.1371/journal.pone.0009458

98. Kim EY, Ner-Gaon H, Varon J, Cullen AM, Guo J, Choi J, et al. Post-sepsis
immunosuppression depends on NKT cell regulation of Mtor/IFN-g in NK cells. J Clin
Invest (2020) 130(6):3238–52. doi: 10.1172/jci128075

99. Perona-Wright G, Mohrs K, Szaba FM, Kummer LW, Madan R, Karp CL, et al.
Systemic but not local infections elicit immunosuppressive IL-10 production by natural
killer cells. Cell Host Microbe (2009) 6(6):503–12. doi: 10.1016/j.chom.2009.11.003

100. Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ, Wang MY, et al. The crosstalk
between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in
endometriosis by secreting IL-10 and TGF-b. Reprod (Cambridge England) (2017) 154
(6):815–25. doi: 10.1530/rep-17-0342

101. Jiang Y, Yang M, Sun X, Chen X, Ma M, Yin X, et al. IL-10(+) NK and TGF-b(+)
NK cells play negative regulatory roles in HIV infection. BMC Infect Dis (2018) 18(1):80.
doi: 10.1186/s12879-018-2991-2

102. Clark SE, Filak HC, Guthrie BS, Schmidt RL, Jamieson A, Merkel P, et al. Bacterial
manipulation of NK cell regulatory activity increases susceptibility to listeria
monocytogenes infection. PLoS Pathog (2016) 12(6):e1005708. doi: 10.1371/
journal.ppat.1005708

103. Ali AK, Komal AK, Almutairi SM, Lee SH. Natural killer cell-derived IL-10
prevents liver damage during sustained murine cytomegalovirus infection. Front
Immunol (2019) 10:2688. doi: 10.3389/fimmu.2019.02688

104. Jensen IJ, McGonagill PW, Butler NS, Harty JT, Griffith TS, Badovinac VP. NK
cell-derived IL-10 supports host survival during sepsis. J Immunol (Baltimore Md 1950)
(2021) 206(6):1171–80. doi: 10.4049/jimmunol.2001131

105. Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer
cells in liver inflammation. Semin immunopathology (2021) 43(4):519–33. doi: 10.1007/
s00281-021-00877-6
frontiersin.org

https://doi.org/10.1111/imm.12854
https://doi.org/10.3389/fimmu.2017.01143
https://doi.org/10.3389/fimmu.2019.00960
https://doi.org/10.1101/sqb.2013.78.020354
https://doi.org/10.1101/sqb.2013.78.020354
https://doi.org/10.7554/eLife.01659
https://doi.org/10.3389/fimmu.2012.00347
https://doi.org/10.1016/j.jaci.2013.07.006
https://doi.org/10.1016/j.jcma.2018.05.005
https://doi.org/10.1016/j.jcma.2018.05.005
https://doi.org/10.3389/fimmu.2021.640672
https://doi.org/10.1111/j.1365-2567.2008.03027.x
https://doi.org/10.1016/j.cellimm.2010.05.002
https://doi.org/10.3390/cells9030753
https://doi.org/10.1189/jlb.1RU0514-241R
https://doi.org/10.1177/17534259211001512
https://doi.org/10.1182/blood.v97.10.3146
https://doi.org/10.1038/s41423-019-0206-4
https://doi.org/10.1038/cmi.2014.91
https://doi.org/10.1155/2020/6437057
https://doi.org/10.1155/2020/6437057
https://doi.org/10.3389/fimmu.2017.01176
https://doi.org/10.3389/fimmu.2017.01176
https://doi.org/10.3390/ijms222413397
https://doi.org/10.1111/j.1600-065X.2008.00701.x
https://doi.org/10.1371/journal.ppat.1004011
https://doi.org/10.1371/journal.ppat.1004011
https://doi.org/10.4049/jimmunol.170.11.5464
https://doi.org/10.4049/jimmunol.170.11.5464
https://doi.org/10.1371/journal.pone.0148452
https://doi.org/10.1371/journal.pone.0148452
https://doi.org/10.1084/jem.20200839
https://doi.org/10.1084/jem.20200839
https://doi.org/10.1007/s00436-021-07204-w
https://doi.org/10.1186/s40425-019-0652-7
https://doi.org/10.1038/ni.2366
https://doi.org/10.1002/jlb.Mr0718-269r
https://doi.org/10.1189/jlb.0609382
https://doi.org/10.3389/fimmu.2022.896228
https://doi.org/10.1016/j.immuni.2007.04.010
https://doi.org/10.1016/j.immuni.2007.04.010
https://doi.org/10.4049/jimmunol.165.12.7102
https://doi.org/10.4049/jimmunol.165.12.7102
https://doi.org/10.2174/1874285800903010092
https://doi.org/10.1128/iai.05439-11
https://doi.org/10.1189/jlb.4A0713-363RR
https://doi.org/10.1016/j.cytogfr.2014.11.003
https://doi.org/10.3389/fimmu.2011.00088
https://doi.org/10.3389/fcimb.2021.733564
https://doi.org/10.4049/jimmunol.176.10.6162
https://doi.org/10.1111/j.1365-2567.2011.03513.x
https://doi.org/10.1186/s40001-015-0083-y
https://doi.org/10.1371/journal.pone.0009458
https://doi.org/10.1172/jci128075
https://doi.org/10.1016/j.chom.2009.11.003
https://doi.org/10.1530/rep-17-0342
https://doi.org/10.1186/s12879-018-2991-2
https://doi.org/10.1371/journal.ppat.1005708
https://doi.org/10.1371/journal.ppat.1005708
https://doi.org/10.3389/fimmu.2019.02688
https://doi.org/10.4049/jimmunol.2001131
https://doi.org/10.1007/s00281-021-00877-6
https://doi.org/10.1007/s00281-021-00877-6
https://doi.org/10.3389/fimmu.2023.1101918
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1101918
106. Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity.
Cytokine Growth factor Rev (2018) 42:37–46. doi: 10.1016/j.cytogfr.2018.08.001

107. Liu M, Liang S, Zhang C. Nk cells in autoimmune diseases: Protective or
pathogenic? Front Immunol (2021) 12:624687. doi: 10.3389/fimmu.2021.624687

108. Newman KC, Korbel DS, Hafalla JC, Riley EM. Cross-talk with myeloid accessory
cells regulates human natural killer cell interferon-gamma responses to malaria. PLoS
Pathog (2006) 2(12):e118. doi: 10.1371/journal.ppat.0020118

109. Nomura T, Kawamura I, Tsuchiya K, Kohda C, Baba H, Ito Y, et al. Essential role
of interleukin-12 (IL-12) and IL-18 for gamma interferon production induced by
listeriolysin O in mouse spleen cells. Infection Immun (2002) 70(3):1049–55.
doi: 10.1128/iai.70.3.1049-1055.2002

110. Enoh VT, Fairchild CD, Lin CY, Varma TK, Sherwood ER. Differential effect of
imipenem treatment on wild-type and NK cell-deficient CD8 knockout mice during acute
intra-abdominal injury. Am J Physiol Regulatory Integr Comp Physiol (2006) 290(3):
R685–93. doi: 10.1152/ajpregu.00678.2005

111. Sherwood ER, Enoh VT, Murphey ED, Lin CY. Mice depleted of CD8+ T and NK
cells are resistant to injury caused by cecal ligation and puncture. Lab investigation; J Tech
Methods Pathol (2004) 84(12):1655–65. doi: 10.1038/labinvest.3700184

112. Sherwood ER, Lin CY, Tao W, Hartmann CA, Dujon JE, French AJ, et al. Beta 2
microglobulin knockout mice are resistant to lethal intraabdominal sepsis. Am J Respir
Crit Care Med (2003) 167(12):1641–9. doi: 10.1164/rccm.200208-950OC

113. Tao W, Sherwood ER. Beta2-microglobulin knockout mice treated with anti-
Asialogm1 exhibit improved hemodynamics and cardiac contractile function during acute
intra-abdominal sepsis. Am J Physiol Regulatory Integr Comp Physiol (2004) 286(3):R569–
75. doi: 10.1152/ajpregu.00470.2003

114. Badgwell B, Parihar R, Magro C, Dierksheide J, Russo T, Carson WE3rd. Natural
killer cells contribute to the lethality of a murine model of escherichia coli infection.
Surgery (2002) 132(2):205–12. doi: 10.1067/msy.2002.125311

115. Goldmann O, Chhatwal GS, Medina E. Contribution of natural killer cells to the
pathogenesis of septic shock induced by streptococcus pyogenes in mice. J Infect Dis
(2005) 191(8):1280–6. doi: 10.1086/428501

116. Christaki E, Diza E, Giamarellos-Bourboulis EJ, Papadopoulou N, Pistiki A,
Droggiti DI, et al. NK and NKT cell depletion alters the outcome of experimental
pneumococcal pneumonia: Relationship with regulation of interferon-G production. J
Immunol Res (2015) 2015:532717. doi: 10.1155/2015/532717

117. Barkhausen T, Frerker C, Pütz C, Pape HC, Krettek C, van Griensven M.
Depletion of NK cells in a murine polytrauma model is associated with improved
outcome and a modulation of the inflammatory response. Shock (Augusta Ga) (2008)
30(4):401–10. doi: 10.1097/SHK.0b013e31816e2cda

118. Zhang S, Zhao J, Bai X, Handley M, Shan F. Biological effects of IL-15 on immune
cells and its potential for the treatment of cancer. Int Immunopharmacol (2021)
91:107318. doi: 10.1016/j.intimp.2020.107318

119. Guo Y, Luan L, Rabacal W, Bohannon JK, Fensterheim BA, Hernandez A, et al.
IL-15 superagonist-mediated immunotoxicity: Role of NK cells and IFN-g. J Immunol
(Baltimore Md 1950) (2015) 195(5):2353–64. doi: 10.4049/jimmunol.1500300

120. Guo Y, Luan L, Patil NK, Wang J, Bohannon JK, Rabacal W, et al. IL-15 enables
septic shock by maintaining NK cell integrity and function. J Immunol (Baltimore Md
1950) (2017) 198(3):1320–33. doi: 10.4049/jimmunol.1601486

121. Böning MAL, Trittel S, Riese P, van Ham M, Heyner M, Voss M, et al. Adap
promotes degranulation and migration of NK cells primed during in vivo listeria
monocytogenes infection in mice. Front Immunol (2019) 10:3144. doi: 10.3389/
fimmu.2019.03144

122. Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, et al. Molecular
mechanisms directing migration and retention of natural killer cells in human tissues.
Front Immunol (2018) 9:2324. doi: 10.3389/fimmu.2018.02324

123. Herzig DS, Driver BR, Fang G, Toliver-Kinsky TE, Shute EN, Sherwood ER.
Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock.
Am J Respir Crit Care Med (2012) 185(3):291–300. doi: 10.1164/rccm.201108-1560OC

124. Marquardt N, Wilk E, Pokoyski C, Schmidt RE, Jacobs R. Murine CXCR3
+CD27bright NK cells resemble the human CD56bright NK-cell population. Eur J
Immunol (2010) 40(5):1428–39. doi: 10.1002/eji.200940056

125. Herzig DS, Guo Y, Fang G, Toliver-Kinsky TE, Sherwood ER. Therapeutic
efficacy of CXCR3 blockade in an experimental model of severe sepsis. Crit Care
(2012) 16(5):R168. doi: 10.1186/cc11642

126. Anthony DA, Andrews DM, ChowM,Watt SV, House C, Akira S, et al. A role for
granzyme m in TLR4-driven inflammation and endotoxicosis. J Immunol (Baltimore Md
1950) (2010) 185(3):1794–803. doi: 10.4049/jimmunol.1000430

127. Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandıá F, et al. Early
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