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Over the last decade, the survival outcome of patients with multiple myeloma

(MM) has been substantially improved with the emergence of novel therapeutic

agents, such as proteasome inhibitors, immunomodulatory drugs, anti-CD38

monoclonal antibodies, selective inhibitors of nuclear export (SINEs), and T cell

redirecting bispecific antibodies. However, MM remains an incurable neoplastic

plasma cell disorder, and almost all MM patients inevitably relapse due to drug

resistance. Encouragingly, B cell maturation antigen (BCMA)-targeted chimeric

antigen receptor T (CAR-T) cell therapy has achieved impressive success in the

treatment of relapsed/refractory (R/R) MM and brought new hopes for R/R MM

patients in recent years. Due to antigen escape, the poor persistence of CAR-T

cells, and the complicated tumor microenvironment, a significant population of

MM patients still experience relapse after anti-BCMA CAR-T cell therapy.

Additionally, the high manufacturing costs and time-consuming manufacturing

processes caused by the personalized manufacturing procedures also limit the

broad clinical application of CAR-T cell therapy. Therefore, in this review, we

discuss current limitations of CAR-T cell therapy in MM, such as the resistance to

CAR-T cell therapy and the limited accessibility of CAR-T cell therapy, and

summarize some optimization strategies to overcome these challenges,

including optimizing CAR structure, such as utilizing dual-targeted/multi-

targeted CAR-T cells and armored CAR-T cells, optimizing manufacturing

processes, combing CAR-T cell therapy with existing or emerging therapeutic

approaches, and performing subsequent anti-myeloma therapy after CAR-T cell

therapy as salvage therapy or maintenance/consolidation therapy.

KEYWORDS

CAR-T cell therapy, antigen escape, immunosuppressive tumor microenvironment,
combinatorial therapy, CAR-T cell exhaustion, relapse
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1 Introduction

Multiple myeloma (MM) is a plasma cell malignancy

characterized by the clonal proliferation of malignant plasma cells

in the bone marrow, accompanied by the excessive production of

monSoclonal immunoglobulin protein (called M-protein) and

subsequent end-organ damage, and it accounts for approximately

10% of hematological malignancies. With the increasing

understanding of MM pathogenesis and the application of novel

therapeutic agents, such as proteasome inhibitors (bortezomib,

ixazomib, and carfi lzomib), immunomodulatory drugs

(thalidomide, lenalidomide, and pomalidomide), and monoclonal

antibodies (daratumumab, isatuximab, and elotuzumab), as well as

the selective inhibitors of nuclear export (selinexor), the survival

outcomes of MM patients have been greatly improved (1).

However, almost all MM patients eventually relapse, and

especially those relapsed or refractory (R/R) patients with

extramedullary disease (EMD) or high-risk cytogenetic

abnormalities, such as t(4;14), t(14;16), t(14;20), gain (1q), del

(17p), and TP53 mutation, as well as double/triple hit, usually

have a poor prognosis. In addition, clonal evolution of MM cells

under the selective pressure of treatment occurs frequently, which

could result in disease progression and resistance to conventional

therapy (2). Thus, novel therapeutic approaches are urgently

needed for the treatment of R/R MM.

In recent years, chimeric antigen receptor T (CAR-T) cell

therapy has emerged as a highly promising immunotherapy, and

it has profoundly changed the treatment landscape of hematological

malignancies. To generate CAR-T cells which could specifically

recognize tumor surface antigens, T cells from patients or healthy

donors are genetically modified with a specific tumor-targeted

receptor, which is known as chimeric antigen receptor (CAR).

The CAR structure contains a single chain variable fragment

(scFv), which results in specific recognition of tumor surface

antigens without MHC-restricted antigen presentation. Similar to

effector T cells, CAR-T cells could also mediate tumor killing in

several manners, including secretion of cytotoxic granules

containing perforin and granzymes, production of pro-

inflammatory cytokines like IFN-g and TNF-a, and activation of

Fas/Fas ligand (Fas/FasL) pathway. At present, B cell maturation

antigen (BCMA) is the most successful target used for CAR-T cell

therapy in MM, and anti-BCMA CAR-T cell therapy has achieved

unprecedented responses in R/R MM patients and brought new

hope for these R/R MM patients (3–7). In addition, R/R MM

patients with EMD could also benefit from anti-BCMA CAR-T

cell therapy, but these patients usually had a shorter progression-

free survival (PFS) and overall survival (OS) compared with non-

EMD patients (8, 9). To date, two anti-BCMA CAR-T cell products,

idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-

cel), have been approved by the US Food and Drug Administration

(FDA) for the treatment of R/R MM. As an increasing number of

CAR-T cell clinical trials are performed in recent years, CAR-T-

related adverse events have been gradually recognized and are

generally manageable, such as cytokine release syndrome, CAR-

T-cell-related encephalopathy syndrome, cytopenia, and infections.
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In particular, due to humoral immunodeficiency of MM patients

and subsequent B cell aplasia mediated by lymphodepleting

chemotherapy and anti-BCMA CAR-T cell therapy, these patients

are highly susceptible to infections (10, 11), especially bacterial

infections (12). Therefore, immunoglobulin supplementation and

prophylactic anti-infective treatment are extremely necessary for

these immune-compromised patients. Nevertheless, there still

remain several substantial challenges, such as the resistance to

anti-BCMA CAR-T cell therapy, and the limited accessibility of

CAR-T cell therapy. Thus, many research efforts are underway to

explore effective strategies.
2 Resistance to anti-BCMA CAR-T cell
therapy in multiple myeloma and
potential strategies

Despite the encouraging outcomes of anti-BCMA CAR-T cell

therapy in R/R MM, it usually exhibits short-term efficacy and

many MM patients still experience disease recurrence or

progression. The resistance mechanisms are closely related to the

interactions among anti-BCMA CAR-T cells, tumor cells and the

complicated tumor microenvironment, involving antigen escape

and CAR-T cell exhaustion. There are several potential strategies to

overcome the resistance to CAR-T cell therapy, including utilizing

dual-targeted CAR-T cells and armored CAR-T cells, inhibiting

intracellular exhaustion-related signals through small molecule

drugs and genetic modifications, and employing bridging therapy,

as well as selecting T cells collected in the early stages of disease for

CAR-T cell manufacturing.
2.1 Overcoming antigen escape

Currently, BCMA is the most intensively studied target for the

treatment of MM, including anti-BCMA CAR-T cell therapy and

bispecific antibodies targeting BCMA and CD3, such as teclistamab

(13, 14). However, a majority of MM patients still experience

relapse after anti-BCMA CAR-T cell therapy (5). One of the main

mechanisms is antigen downregulation or antigen loss under

therapeutic pressure (15–17). Thus, targeting different surface

antigens is an effective strategy to prevent antigen-negative

escape, and multiple alternative targets are continuously being

identified at present, including CD138, CD38, CD19, GPRC5D,

SLAMF7(CS1), APRIL, TACI, CD229, CD56, MUC1, NKG2D

ligands, integrin b7, Kappa light chain, FcRH5, CCR10, and

CD44v6 (Figure 1). Most of the above targets are still in the

preclinical stage (18–23), and only a few targets are explored in

clinical trials, such as CD138, CD38, CD19, GPRC5D, SLAMF7,

and integrin b7 (24–27) (NCT03778346). Among them, GPRC5D

is the most potential target for CAR-T cell therapy in R/R MM

patients at present (24, 28, 29). Recent, two phase 1 trials have

reported the encouraging efficacy of anti-GPRC5D CAR-T cell

therapy. In a phase 1 dose-escalation study, 17 R/R MM patients

received anti-GPRC5D CAR-T cell infusion at four dose levels and
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71% of them achieved a clinical responses (24). In another single-

center, phase 1 trial, 10 R/R MM patients were treated with anti-

GPRC5D CAR-T cells (OriCAR-017), and 100% of them showed

clinical responses and 60% of them achieved a stringent complete

response (sCR) (29). More importantly, these anti-GPRC5D CAR-

T cells were also effective in R/R MM patients who were refractory

to previous anti-BCMA CAR-T cell therapy (24, 29). However, due

to the relatively short median follow‐up time, the efficacy and safety

of anti-GPRC5D CAR-T cell therapy in R/R MM remain to be

evaluated in large-scale multicenter studies. In addition, at 2022

American Society of Hematology (ASH) annual meeting, the

preliminary results of a phase I clinical trial about a GPRC5D-

targeted CAR-T cell product BMS-986393 in R/RMM patients were

presented (NCT04674813). In this clinical trial, 10 patients who

hadn’t received prior anti-BCMA therapy all achieved remission,

and 7 patients who had failed in prior anti-BCMA therapy could

also benefit from anti-GPRC5D CAR-T-cell therapy (28).
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Moreover, BCMA/GPRC5D bispecific CAR-T cell therapy is

under active clinical exploration (NCT05431608). Additionally,

the clinical trials of SLAMF7-targeted and integrin b7-targeted
CAR-T cells are underway (NCT03778346). However, SLAMF7

and CCR10 are also expressed on activated T cells, which may result

in CAR-T cell fratricide (21, 23).

Dual-targeted CAR-T cell therapy are also observed in

preclinical and clinical studies, and they are available in a variety

of forms, including combined infusion of 2 single‐targeted CAR-T

cells, and application of bispecific CAR-T cells which incorporate

two distinct scFvs into two CARs separately or a single CAR

structure simultaneously, the latter also known as tandem CAR-T

cells. In several clinical trials, CD38 and CD19 were applied in

combination with BCMA to develop dual-targeted CAR-T cells for

the treatment of R/R MM (26, 27, 30–33) (Table 1). In a phase I

clinical trial, 23 R/R MM patients received BCMA/CD38 bispecific

CAR-T cells, and 87% of them achieved clinical a response and 52%
FIGURE 1

Potential therapeutic targets in multiple myeloma, including BCMA, CD138, CD38, CD19, GPRC5D, SLAMF7, APRIL, TACI, CD229, CD56, CD44v6,
integrin b7, MUC1, FcRH5, Kappa light chain, CCR10, and NKG2D ligands.
TABLE 1 Clinical trials of dual-targeted CAR-T cell therapy in MM.

Dual-targeted CAR-T
cell therapy

Dose of
CAR-T cells

No. of patients Median
follow-
up

Response Toxicities Reference

BCMA/CD38 bispecific CAR-T
cells

4.0 ×106/kg 23 R/R MM patients (39% of them with
EMD)

9 months ORR 87%,
sCR 52%
PR 33%

CRS (87%),
CRES (0%),
cytopenia
(96%),

infections
(22%)

Mei H et al.
(30)

BCMA/CD38 bispecific CAR-T
cells

median dose:
2.1 × 106/kg (range:
0.5-10.0 × 106/kg)

16 R/R MM patients (50% of them with
EMD)

11.5
months

ORR 88%,
CR 81%,
PR 6%

CRS (75%),
cytopenia
(100%),

HLH (6%),
infections
(38%)

Tang Y et al.
(31)

BCMA/CS1 bispecific CAR-T
cells

0.75 × 106/kg,
1.5 × 106/kg,
3.0 × 106/kg

16 R/R MM patients(19% of them with
EMD)

290 days ORR 100%,
sCR 31%
PR 13%

CRS (38%)
CRES (0%)

Li C et al.
(34)

(Continued)
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of them achieved complete response (CR) with a median follow-up

of 9.0 months (30). In another clinical trial, 16 patients with R/R

MM were treated with BCMA/CD38 bispecific CAR-T cells, and 14

of them had clinical response and 13 of them achieved CR after a

median follow-up of 11.5 months (31). In addition to BCMA/CD38

bispecific CAR-T cells, the combination of anti-CD38 and anti-

BCMA CAR-T cell therapy was also performed. In a phase 2, single-

arm, single-center clinical trial, 22 patients with R/R MM received

the combined infusion of the humanized anti-BCMA cells and the

murine anti-CD38 CAR-T cells, and 91% of patients had clinical

response and 55% of them achieved CR (25). In another single-arm

phase II trial, 21 patients were treated with the combined infusion of

anti-BCMA and anti-CD19 CAR-T cells, 20 of them achieved a
Frontiers in Immunology 04
clinical response and 3 of them achieved CR with a median follow-

up of 179 days (26). With a longer follow-up, the number of patients

enrolled in this trial was increased, and 62 R/R MM patients

received the combined infusion of anti-BCMA and anti-CD19

CAR-T cells (26, 27). In this clinical trial, 92% of patients had a

clinical response and 60% of them achieved CR with a median

follow-up of 21.3 months (27). In addition, a recent study has

explored the efficacy and safety of the combination of anti-CD19

and anti-BCMA CAR-T cell therapy in 10 newly diagnosed MM

patients with high-risk factors, and all patients achieved a clinical

response (32). In preclinical studies, BCMA/GPRC5D and BCMA/

CS1 bispecific CAR-T cells showed robust anti-tumor activities

against MM cells, and they could overcome BCMA-negative
TABLE 1 Continued

Dual-targeted CAR-T
cell therapy

Dose of
CAR-T cells

No. of patients Median
follow-
up

Response Toxicities Reference

Combined infusion of anti-
BCMA and anti-CD38 CAR-T

cells

2 × 106/kg,
2 × 106/kg,
respectively

22 R/R MM patients (14% of them with
EMD)

24 months ORR 91%,
CR 55%,

CRS
(100%),
CRES
(14%),

cytopenia
(100%)

infections
(17%)

Zhang H
et al. (25)

Combined infusion of anti-
BCMA and anti-CD19 CAR-T

cells

1 × 106/kg,
1 × 106/kg,
respectively

21 R/R MM patients 268 days ORR 95%,
CR 14%,
PR 14%
sCR 43%

CRS (90%),
cytopenia
(95%),
B cell
aplasia
(100%),
lung

infections
(5%)

Yan Z et al.
(26)

Combined infusion of anti-
BCMA and anti-CD19 CAR-T

cells

1 × 106/kg,
1 × 106/kg,
respectively

62 R/R MM patients (24% of them with
EMD)

21.3
months

ORR 92%,
CR 60%,
PR 21%

CRS (95%),
CRES
(11%),

cytopenia
(98%),
B cell
aplasia
(30%),

infections
(45%)

Wang Y
et al. (27)

Combined infusion of anti-
BCMA and anti-CD19 CAR-T

cells after auto-HSCT

5 × 107/kg,
1 × 107/kg,
respectively

10 high-risk NDMM patients 42 months ORR 100%,
CR 10%
sCR 90%

CRS
(100%),

CRES (0%),
cytopenia
(100%),
infections
(100%)

Shi X et al.
(35)

Combined infusion of anti-
BCMA and anti-CD19 CAR-T

cells

5 × 108 cells, 5 ×
108 cells,

respectively

10 MM patients with relapse (Phase A) and
20 high-risk MM patients (Phase B, as a

randomized controlled trial)

follow-up
ranging

from 248 to
966 days in
Phase B

ORR 23%,
CR 6%
PR 6%

CRS (90%),
CRES (3%),

Garfall AL
et al. (32)

Combined infusion of
anti-BCMA and anti-CD19

FasTCAR-T Cells

1 × 105/kg,
2 × 105/kg,
3 × 105/kg

13 high-risk NDMM patients 5.3 months ORR 95%
sCR 69%

CRS (23%)
CRES (0%)

Du J et al.
(33)
f

EMD, extramedullary disease; CRS, cytokine release syndrome; CRES, CAR-T-cell-related encephalopathy syndrome; HLH, hemophagocytic lymphohistiocytosis; auto-HSCT, autologous
hematopoietic stem cell transplantation; NDMM, newly diagnosed multiple myeloma.
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antigen escape (36, 37). Similarly, BCMA/CS1 bispecific CAR-T

cells were also effective in R/R MM patients and able to prevent

BCMA-negative relapse (34). Interestingly, some natural ligands are

able to bind to two or more surface antigens on MM cells, so these

CAR-T cells that are manufactured with the antigen-recognition

domains derived from these ligands exhibit the ability to recognize

several target antigens on malignant cells and achieve dual-antigen

or multiple-antigen targeting. Several ligand-based CAR-T cells

have been tested in preclinical studies and achieved satisfactory

outcomes at present. For example, APRIL-based CAR-T cells could

target both BCMA and TACI on MM cells (38), and BAFF ligand-

based CAR-T cells could specifically recognize three different

receptors on MM cells, including BAFF-R, BCMA, and TACI (39).

Besides targeting distinct antigens, increasing target antigen

density on MM cells also appears to be an appealing strategy.

Several studies have proved that g-secretase inhibitors and all-trans

retinoic acid (ATRA) could upregulate BCMA expression on MM

cells and facilitate their recognition by anti-BCMA CAR-T cells (40,

41). In addition, ATRA could promote CD38 expression on MM

cells (42).
2.2 Preventing CAR-T cell exhaustion

Short-term clinical remissions in R/R MM patients after anti-

BCMA CAR-T cell therapy are partially attributed to CAR-T cell

exhaustion, which is manifested as poor persistence and

dysfunction of CAR-T cells. At present, it is considered that

multiple factors are involved in CAR-T cell exhaustion, including

persistent antigen stimulation and immunosuppressive tumor

microenvironment, as well as the impaired function of T cells due

to previous anti-myeloma therapy (43, 44). There are several

potential strategies to ameliorate the dysfunction of CAR-T cells,

such as optimizing CAR-T cell structure, utilizing early memory T

cells (7, 45), and inhibiting intracellular exhaustion-related signals

through genetic modifications or inhibitors. In addition, given the

impaired cytotoxicity of T cells after multi-line anti-myeloma

therapy, CAR-T cells manufacturing with T cells collected early in

the disease course may be an effective strategy as well (43, 44).

2.2.1 Optimizing CAR-T cell structure
At present, CD28, 4-1BB, ICOS, and OX40 are the most

commonly used co-stimulatory molecules in CAR-T cell

manufacturing. CD28 co-stimulation triggers robust T cell

activation, so it could accelerate CAR-T cell exhaustion (46, 47).

In contrast, 4-1BB co-stimulation is able to facilitate the expansion

of stem cell memory T cells and ameliorate CAR-T cell exhaustion

(48). ICOS is a member of the CD28 family, and the combination of

ICOS and 4-1BB co-stimulation could remarkably increase the

persistence of CAR-T cells (49). As a member of the TNF-R

superfamily, OX40 exhibits the ability to promote T cell

proliferation and memory formation. A recent study has proved

that OX40-mediated BCMA-targeted CAR-T cells exhibited

stronger proliferation ability and more durable anti-tumor

activity under repeated BCMA stimulation compared with 4-1BB-

mediated BCMA-targeted CAR-T cells (50). In addition, the fully
Frontiers in Immunology 05
humanized CAR structure could reduce immunogenicity of anti-

BCMA CAR-T cells and avoid the immune-mediated rejection by

the host immune system. More importantly, a phase 1 clinical trial

has demonstrated that the R/R MM patients who had relapsed after

prior murine-derived anti-BCMA CAR-T cell therapy could also

achieve clinical responses from the fully humanized anti-BCMA

CAR-T cells (7).

2.2.2 Utilizing memory-phenotype CAR-T cells
Early memory T cells exhibit superior expansion and

persistence. Similarly, a recent study reported that utilizing naïve

or central memory T cells during CAR-T manufacturing processes

could not only ameliorate CAR-T cell exhaustion, but also reduce

the risk of severe cytokine release syndrome (51). In addition, it has

been recently demonstrated that JQ1, an inhibitor of bromodomain

and extra-terminal motif (BET) proteins, could maintain effector T

cells with properties of central memory T cells and also enhance the

persistence and function of adoptive CAR-T cells (52).

2.2.3 Inhibiting exhaustion-related signals
BATF is a key factor involved in up-regulating a subset of

exhaustion-related genes in CAR-T cells, and it has been

demonstrated that depletion of BATF could enhance the anti-

tumor activity of CAR-T cells and increase central memory CAR-

T cells (53). Similarly, depletion of the endogenous TGF-b receptor

II (TGFBR2) in CAR-T cells could not only prevent CAR-T cell

exhaustion but also promote the formation of central memory

CAR-T cells (54). Inhibiting intracellular calcium signaling and

PD-1 signaling has also been shown to effectively prevent CAR-T

cell exhaustion (55–57). In addition, the PI3K/AKT pathway is

involved in T cell proliferation and differentiation, and it plays an

important role in CAR-T cell exhaustion. At present, It has been

confirmed that the PI3K inhibitor could modulate the

differentiation of CAR-T cells and enhance the persistence of

CAR-T cells in vivo (58–60). Intriguingly, a recent study found

that the second generation tyrosine kinase inhibitor dasatinib could

reverse the exhausted phenotype of CAR-T cells through increasing

the expression of memory-associated genes, such as TCF7 and

CCR7, and decreasing the expression of immune checkpoint

molecule PD1 and exhaustion-related regulators, such as NR4A1,

BATF3, ATF4, and FOS (61). Similarly, panobinosta also seems to

have the potential to upregulate memory-associated genes and

downregulate exhaustion-related genes (62). Moreover, a recent

study demonstrated that SOX4 and ID3 are key exhaustion-related

regulators, so inhibiting SOX4 and ID3 expression could also

prevent CAR-T cell exhaustion (63).

2.2.4 Improving CAR-T cell effector function
The exhausted phenotype of CAR-T cells exhibit impaired anti-

tumor functionality. The anti-tumor activity of CAR-T cells can be

improved through genetic modifications, including adding

immune-stimulatory receptors and specifically deleting the genes

mediated CAR-T cell anergy. At present, numerous studies have

demonstrated that the armored CAR-T cells which secrete

cytokines or express pro-inflammatory ligands, such as IL-7, IL-
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12, IL-15, IL-18, and CD40L, are able to reshape the tumor

microenvironment (64–67). In addition, several studies have

shown that additional chimeric co-stimulatory receptors (CCRs)

could simultaneously enhance the killing effect of CAR-T cells and

their persistence (68, 69). Additionally, another study has

demonstrated that deletion of mediator complex subunit 12 and

cyclin C in CAR-T cells could improve the anti-tumor activity of

CAR-T cells (70, 71).

To improve the anti-tumor activity of CAR-T cells,

combinatorial therapy with CAR-T cells and small molecule

drugs, especially anti-myeloma agents, also seems to be a

promising strategy. In clinical, lenalidomide has been used for the

treatment of MM for a long time (72, 73). Interestingly,

combination therapy with lenalidomide and CAR-T cells is able

to achieve favorable outcomes and improve the cytotoxicity of

CAR-T cells (74), and a case report showed that anti-BCMA

CAR-T cells combined with lenalidomide were also effective in

MM patients refractory to prior anti-BCMA CAR-T cell therapy

(75). In addition, PD-1 blockade has been proven to enhance the

killing activity of CAR-T cells against MM cells as well (37).

However, CAR-T cell therapy in combination with small

molecule drugs is still at a preliminary stage, and many

combinational therapies are under investigation.

2.2.5 Overcoming immunosuppressive
tumor microenvironment

The bone marrow microenvironment of MM is complex, which

is involved in promoting tumor growth, immune escape and drug

resistance (76). There are multiple immunosuppressive cells

accumulated in MM bone marrow microenvironment, which
Frontiers in Immunology 06
exhibit tumor supportive properties, such as osteoclasts (OCs),

myeloid-derived suppressor cells (MDSCs), tumor-associated

macrophages (TAMs), regulatory T cells (Tregs), regulatory B

cells (Bregs), and tumor-associated neutrophils (TANs), as well as

bone marrow stromal cells (BMSCs) (77–83). On the one hand,

these cells crosstalk with MM cells and then promote the survival

and proliferation of MM cells (78, 79, 84) (Figure 2). On the other

hand, they impair the cytotoxicity of effector T cells through direct

cell-to-cell contact or the release of soluble factors and then

facilitate the evasion of MM cells from immune surveillance. OCs

are multinucleated cells derived from hematopoietic stem cells and

responsible for bone resorption, and they are significantly increased

in the bone marrow and secrete RANKL, which are involved in the

occurrence and development of myeloma bone disease. In addition,

they release APRIL, BAFF and IL-6, which could promote the

proliferation and survival of MM cells. More importantly, OCs also

act as antigen-presenting cells (APCs) resident in the bone marrow

and exert immunosuppressive functions through up-regulating the

expression of immune checkpoint molecules, such as PD-L1, CD38

and galectin 9 (79). In turn, MM cells produce IL-6 and RANKL,

which could enhance bone resorption activity of OCs. In MM

patients, TAMs which display M2-like properties apparently

infiltrate the bone marrow and exhibit robust activation of BAFF

pro-proliferative signaling (85), and they are involved in promoting

angiogenesis and tumor resistance (86, 87). In addition, massive

MDSCs were accumulated in bone marrow microenvironment of

MM patients (88). They could produce immunosuppressive

molecules IL-10 and TGF-b, and then promote the generation of

Treg cells and the immune escape of MM cells, as well as

angiogenesis (89). Neutrophils are one of the important cell types
FIGURE 2

The complexity of bone marrow microenvironment in MM. Multiple immunosuppressive cells are accumulated in bone marrow microenvironment
and exhibit tumor supportive properties, including osteoclasts (OCs)such as osteoclasts (OCs), myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Tregs), regulatory B cells(Bregs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and bone marrow stromal
cells (BMSCs). These cells interact with surrounding MM cells through direct cell-to-cell contact or producing soluble factors, and then promote the
proliferation, immune escape of MM cells as well as Drug resistance. Osteoclasts (OCs) are remarkably increased in the bone marrow
microenvironment of MM patients and involved in the occurrence and development of myeloma bone disease. In addition, they produce APRIL,
BAFF and IL-6 to promote MM cell proliferation and survival. Meanwhile, OCs act as antigen-presenting cells (APCs) in the bone marrow and exhibit
immunosuppressive properties through up-regulating the expression of immune checkpoint molecules, such as PD-L1, CD38 and galectin 9. In turn,
MM cells could promote bone resorption activity of OCs through the secretion of IL-6 and RANKL. Immunosuppressive Tregs and MDSCs, which
express several immune inhibitory molecules, such as PD1, TIM3, and CD38, are significantly increased in MM bone marrow microenvironment and
secrete TGF-b and IL-10 to promote the evasion of MM cells from immune surveillance. TAMs apparently infiltrate the bone marrow, and they
promote angiogenesis and induce immune escape and drug resistance of MM cells. In addition, TANs also play an immunosuppressive role in MM
bone marrow microenvironment through the release of neutrophil extracellular traps (NETs), which could contribute to tumor-associated
thrombosis and tumor metastasis. Moreover, BMSCs show an inflammatory phenotype in MM microenvironment. On the one hand, they secrete
several cytokines, such as APRIL, BAFF, IL-6, and RANKL; On the other hand, they induce the expression of anti-apoptotic proteins in MM cells,
eventually promoting MM cell proliferation and drug resistance. Additionally, plasmacytoid dendritic cells (pDCs), NK cells, and NKT cells exhibit the
decreased anti-myeloma activities in bone marrow microenvironment.
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in the bone marrow and known as the first line of defense against

pathogens. They can form neutrophil extracellular traps (NETs)

which play an important in defending against pathogens. However,

NETs derived from TANs play an immunosuppressive role in MM

bone marrow microenvironment (90, 91). A recent study has shown

that MM cells are able to induce NET formation in a PAD4-

depenedent manner, which is involved in promoting tumor-

associated thrombosis and tumor metastasis (91). Furthermore,

BMSCs exhibit an inflammatory phenotype with the activation of

NF-kB signaling in MM microenvironment (92). They not only

secrete several cytokines, such as APRIL, BAFF, IL-6, and RANKL,

which play an important role in promoting MM cell proliferation,

but also induce the expression of anti-apoptotic proteins in MM

cells, including survivin and Mcl-1. Immunosuppressive Tregs and

Bregs are also remarkably increased in MM bone marrow

microenvironment, and they maintain immune tolerance through

the secretion of immunosuppressive cytokines such as TGF-b and

IL-10, as well as the expression of immune inhibitory molecules,

such as PD1, TIM3, and CD38 (93). Moreover, NK cells exhibit an

exhausted phenotype, mainly manifested as the decreased anti-

myeloma activity with the downregulated expression of multiple

activating receptors and cytolytic molecules, such as NKG2D,

SLAMF7, CD69, and GZMA (94–96), and plasmacytoid dendritic

cells (pDCs) are dysfunctional with an upregulated expression of

PD-L1 (84). Besides, NKT cells are decreased in R/R MM

patients (97).

Moreover, MM microenvironment, including MM cells,

immunosuppressive cells, and BMSCs, as well as multiple soluble

cytokines, interact with CAR-T cells, which could result in CAR-T

cell dysfunction and inhibit engraftment of CAR-T cells, eventually

promoting extrinsic resistance of MM cells after CAR-T cell infusion

(85, 93, 98) (Figure 3). On the one hand, tumor cells and

immunosuppressive cells in bone marrow microenvironment

induce CAR-T cell exhaustion through direct cell-to-cell contact,
Frontiers in Immunology 07
such as PD-1/PDL-1 pathway and Fas/FasL pathway. On the other

hand, immunosuppressive cells could also release immune inhibitory

factors IL-10 and TGF-b to impair the cytotoxicity of CAR-T cells

and promote the generation of Treg cells. In addition, BMSCs could

protect MM cells against CAR-T Cells through upregulation of anti-

apoptosis proteins in MM cells (99). Therefore, overcoming

immunosuppressive tumor microenvironment may represent an

promising therapeutic strategy. At present, the armored CAR-T

cells which could release immune-activating cytokines in situ are

developed to overcome hostile immunosuppressive tumor

microenvironment (64–67). Due to CD38 expression on a variety

of immune regulatory cells in MM bone marrow microenvironment,

such as Tregs and MDSCs, anti-CD38 CAR-T cells also have a slight

cytotoxicity against CD38 positive immune regulatory cells (100).

CAR-T cell therapy combined with oncolytic viruses also appears to

be a potential strategy to overcome immunosuppressive tumor

microenvironment (101). Besides, CAR-T cell therapy in

combination with FL118, an inhibitor of antiapoptotic proteins, has

been proven to be able to overcome resistance induced by

BMSCs (99).
3 Strategies to improve accessibility of
CAR-T cell therapy

3.1 Developing universal
CAR-T cell products

At present, all commercial CAR-T cell products are

manufactured using autologous T lymphocytes. The personalized

manufacturing processes approximately take 3-4 weeks and also

result in high manufacturing costs. In particular, a portion of R/R

MM patients suffer from rapid disease progression during CAR-T cell

manufacturing, so they are unable to receive autologous CAR-T cell
FIGURE 3

The interactions among CAR-T cells, tumor cells and immunosuppressive tumor microenvironment. On the one hand, tumor cells and
immunosuppressive cells in bone marrow microenvironment induce CAR-T cell exhaustion through direct cell-to-cell contact, such as PD-1/PDL-1
pathway and Fas/FasL pathway. Immunosuppressive cells could also release immune inhibitory cytokines such as IL-10 and TGF-b to impact the
cytotoxicity of CAR-T cells and promote the generation of Treg cells. In addition, BMSCs could protect MM cells against CAR-T cells through the
up-regulation of anti-apoptosis proteins in MM cells.
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therapy in a timely fashion or even lose the opportunity to receive

CAR-T cell therapy. The relatively longer manufacturing time and

the higher manufacturing costs of autologous CAR-T cell products

limit their accessibility, so the readily available “off the shelf “

allogeneic CAR-T cell products are currently being explored to

overcome these limitations, such as universal CAR-T (UCAR-T)

cells and CAR-gd T cells (102). Because UCAR-T cells are derived

from healthy donors, they exhibit several advantages, such as superior

cytotoxicity and no malignant cell contamination. Moreover, due to

the large-scale production of these UCAR-T cells, manufacturing

costs are remarkably decreased. Unfortunately, these allogeneic

UCAR-T cells might result in graft versus host disease (GVHD)

and rejection by the host immune system (102). In a recent phase I

clinical trial, 43 R/R MM patients were treated with allogeneic anti-

BCMA CAR-T cells, and 55.8% of them showed a clinical response

and 25% of them achieved a sCR with the median follow-up 10.2

months (103). More importantly, these allogeneic CAR-T cells were

successfully administered with a median time from patient

enrollment to CAR-T cell infusion of 5 days, which remarkably

shortened the waiting time for CAR-T cell infusion. However, the

overall response rate (ORR) of these allogeneic CAR-T cells is

significantly lower than that of two FDA-approved anti-BCMA

CAR-T cell products. In addition, gd T cells can be utilized to

generate UCAR-T cells. They are a small group of effector T cells

with the expression of T cell receptors and natural killer receptors

(NKRs). In particular, NKRs expressed on gd T cells mediate tumor

cell recognition in an MHC-independent manner (104–106). Thus,

CAR-gd T cells could simultaneously mediate both innate and

adaptive anti-tumor immune responses via NKRs and CARs (107,

108). More importantly, gd T cells did not induce GVHD in

allogeneic hematopoietic stem cell transplantation (109).

Furthermore, compared with CAR-T cells, CAR-gd T cells

significantly decrease cytokine production and show preferable

efficacy. Currently, due to the widespread sources of NK cells and

no induction of GVHD, CAR-NK cell therapy has also been regarded

as a promising adoptive cell therapy and is being explored for the

treatment of R/R MM in preclinical studies (110–112).
3.2 Bridging therapies

To prevent rapid disease progression during the manufacturing

period and reduce baseline tumor burden, bridging therapies prior to

CAR-T cell therapy are crucial. Bridging therapies are usually

individualized according to prior treatment and disease

characteristics of every patient. In general, bridging therapies with

previously effective therapeutic agents can be considered, such as

dexamethasone, daratumumab, carfilzomib, bortezomib, and

pomalidomide (113). There are several bridging therapy options,

such as chemotherapies, targeted therapies, autologous hematopoietic

stem cell transplantation (auto-HSCT), and localized radiotherapy, as

well as localized cryoablation. Given that BCMA-targeted agents may
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result in the decreased BCMA expression and then impact anti-

BCMA CAR-T cell efficacy, they are often excluded from bridging

therapies. Auto-HSCT is standard therapy for transplant-eligible MM

patients, and it could also serve as an effective bridging therapy prior

to CAR-T cell therapy (114). A recent study has demonstrated that

auto-HSCT in combination with CAR-T cell therapy achieved higher

ORR, PFS, and OS compared with CAR-T cell therapy alone,

indicating that bridging auto-HSCT is able to promote durable and

deep remission (115). Another clinical trial has compared the efficacy

of the combination of auto-HSCT and CAR-T cell therapy with auto-

HSCT alone, and it showed that the combination group had higher

CR rate and 3-year PFS than the auto-HSCT group, with lower 3 year

relapse rate (116). The above studies suggest that the combination of

auto-HSCT and CAR-T cell therapy could exert a synergistic effect in

remission induction (114, 116–118). In addition, localized

radiotherapy and cryoablation are effective bridging therapies for

R/R MM patients with bulky mass. Localized radiotherapy and

cryoablation in combination with anti-BCMA CAR-T cell therapy

may result in synergistic anti-tumor effect (119, 120). On the one

hand, radiotherapy and cryoablation could directly destroy tumor

cells; On the other hand, they could sensitize CAR-T cells and activate

endogenous effector T cells through the abscopal effect, which may be

associated with the upregulation of intratumoral chemokines and

cytokines and the release of neo-antigens (119–121). In particular,

radiotherapy could also activate CAR-T cells through immunogenic

cell death (122).
3.3 Employing rapid CAR-T cell
manufacturing platform

Rapid CAR-T cell manufacturing can also shorten the interval

between patient enrollment to CAR-T cell infusion. Encouragingly, it

has been reported that the FasT CAR-T cells, which were manufactured

the next day and underwent approximately 7 days of quality control

testing, showed favorable efficacy in B-cell acute lymphoblastic leukemia

in preclinical and clinical studies (123, 124). Due to the remarkably

shortened manufacturing time, they are more suitable for patients with

progressive disease and able to decrease patients’ clinical hospital stays,

eventually improving the accessibility of CAR-T cell therapy. In

addition, due to the short-term culture in vitro, FasT CAR-T cells

show a less exhausted phenotype and superior killing activities

compared with conventional CAR-T cells (123, 124). The 2022 ASH

meeting announced a phase I study of BCMA/CD19 dual-targeted FasT

CAR-T cells (GC012F) in NDMM patients (NCT04935580), and these

FasT CAR-T cells were prepared in 22 to 36 hours (33). In addition,

another ongoing study about BCMA Nex T CAR-T cell therapy BMS-

986354 in R/R MM patients were also mentioned in the 2022 ASH

meeting (NCT04394650). In this phase I clinical trial, these CAR-T cells

were manufactured within 5 to 6 days using the NEX-T process and

showed potent killing potency (125). However, the efficacy of these

CAR-T cells remains to be determined in more studies.
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3.4 Utilizing non-viral transfection

In addition, non-viral transfection could also reduce the

manufacturing costs and increase the accessibility of CAR-T cell

therapy. Transduction of CAR genes into T cells is a vital step in

CAR-T cell manufacturing processes. Currently, CAR transfection

is frequently achieved by viral vectors, such as gammaretroviral and

lentiviral vectors. However, the production of viral vectors usually

takes two to three weeks and requires good manufacturing practice

(cGMP)-grade facilities and trained operators, which makes CAR-T

cell manufacturing time-consuming and expensive. In addition,

transduced sequences via viral vectors are limited. Therefore, virus-

free genetic modification methods are being actively explored. At

present, transposon systems, including piggyBac (PB) and Sleeping

Beauty (SB) systems, have showed stable gene transfer efficiency in

CAR-T cell manufacturing in preclinical and clinical studies (126–

129). Due to the decreased complexity of manufacturing processes

and the better cargo capacity, transposon systems reduce the

manufacturing costs and are more suitable for multi-targeted

CAR-T cell manufacturing compared with viral vectors.

Furthermore, transposon systems can be utilized on an automated

process platform to generate clinical therapeutic doses of CAR-T

cells, which will further promote the scale-up manufacturing of

CAR-T cells and increase R/R patient access to CAR-T cell therapy

(128, 130). In addition, transposon-based CAR-T cells exhibit early

memory T cell phenotype (128). Encouragingly, a recent study

demonstrated that CRISPR-Cas9-mediated non-viral specifically

targeted CAR-T cells were safe and effective in patients with R/R

non-Hodgkin lymphoma (NHL) (56), indicating that CRISPR-Cas9

is a new tool for precise genome editing in CAR-T cell

manufacturing and will facilitate the development of more gene-

specific targeted CAR-T cells in the future (56, 131).
3.5 Initiating CAR-T cell therapy in
earlier lines of treatment for high-risk
MM patients

High-risk newly diagnosed MM (NDMM) patients usually have

poor prognosis with standard first-line therapy, so there is a

significant unmet need in additional therapeutic options for these

high-risk MM patients. It seems that CAR-T cell therapy may

provide a potential solution and serve as first-line therapy for these

high-risk NDMM patients. The 2022 ASH meeting reported an

ongoing multicenter study about BCMA/CD19 dual-targeted FasT

CAR-T cells in NDMM patients (NCT04935580). In this clinical

trial, 13 high-risk NDMM patients were treated with BCMA/CD19

dual-targeted FasT CAR-T cells, and 100% of them achieved a

clinical response and 69% of them achieved a sCR after a median

follow-up 5.3 months (33). These results revealed that CAR-T cell

therapy in earlier lines of treatment is safe and may induce deep

responses in high-risk MM patients, eventually increasing their

accessibility for high-risk MM patients.
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4 Subsequent anti-myeloma therapy
after CAR-T therapy

At present, relapses occur frequently after anti-BCMA CAR-T

cell therapy, especially in high-risk MM patients (132–134).

However, currently there is a lack of recommended salvage

treatment for R/R MM patients after relapse on CAR-T cell

therapy. Therefore, there is an urgent need to explore suitable

subsequent therapy for R/R MM patients who have been refractory

to anti-BCMA CAR-T cell therapy. In addition to treatment with

optimized CAR-T therapy and previous chemotherapy regimens, as

well as auto-HSCT (134, 135), novel anti-myeloma agents provide

additional salvage options for R/R MM patients who have relapsed

after anti-BCMA CAR-T cell therapy, including selinexor,

carfilzomib, pomalidomide, monoclonal antibodies, and T cell

redirecting bispecific antibodies (132–134, 136). Furthermore,

several studies showed that the R/R MM patients who had

experienced relapse after anti-BCMA CAR-T cell therapy could

also benefit from carfilzomib-based therapy, venetoclax-based

therapy, and selinexor-based therapy (132–134, 136). In addition,

T cell redirecting bispecific antibodies, such as Cevostamab and

Talquetamab, have also proved to be feasible salvage treatment after

anti-BCMA CAR-T cell therapy and able to induce durable

responses (137–139). Moreover, a phospholipid-drug complex

Iopofosine I-131 could also achieve clinical responses in R/R MM

patients who had failed in prior anti-BCMA therapy (140).

In addition, there are few recommendations for maintenance/

consolidation therapy after CAR-T cell infusion, but it seems that

maintenance treatment after CAR-T therapy may provide potential

clinical benefits for high-risk MM patients. Recent studies have

demonstrated that maintenance therapy with lenalidomide and

pomalidomide is able to facilitate CAR-T cell re-expansion in high-risk

MM patients (32, 35). Moreover, in a phase I study, the efficacy and

safety of selinexor in R/R MM patients with EMD after the fully

humanized anti-BCMACAR-T therapy is being tested (NCT05201118).
5 Conclusion

In recent years, anti-BCMA CAR-T cell therapy has achieved

impressive outcomes in in R/R MM and its side effects are generally

controllable, but there are still several challenges to be addressed. For

example, relapse continues to occur after anti-BCMA CAR-T

cell therapy, and high manufacturing costs and the longer

manufacturing cycle of autologous CAR-T cell products limit their

accessibility. Thus, further improvement is required. At present,

potential mechanisms and therapeutic strategies are being explored,

such as identification of novel therapeutic targets, optimization of

CAR structure and genetic modification methods, application of

dual-targeted CAR-T cell therapy, and combination of CAR-T cell

therapy with other approaches. However, due to the resistance to

CAR-T cell therapy and persistent high-risk factors, subsequent anti-

myeloma therapy is also of great clinical significance.
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