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cholesterol biosynthesis in
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Aicardi-Goutières syndrome (AGS1-9) is a genetically determined

encephalopathy that falls under the type I interferonopathy disease class,

characterized by excessive type I interferon (IFN-I) activity, coupled with

upregulation of IFN-stimulated genes (ISGs), which can be explained by the

vital role these proteins play in self-non-self-discrimination. To date, few mouse

models fully replicate the vast clinical phenotypes observed in AGS patients.

Therefore, we investigated the use of zebrafish as an alternative species for

generating a clinically relevant model of AGS. Using CRISPR-cas9 technology,

we generated a stable mutant zebrafish line recapitulating AGS5, which arises

from recessive mutations in SAMHD1. The resulting homozygous mutant

zebrafish larvae possess a number of neurological phenotypes, exemplified by

variable, but increased expression of several ISGs in the head region, a significant

increase in brain cell death, microcephaly and locomotion deficits. A link

between IFN-I signaling and cholesterol biosynthesis has been highlighted by

others, but not previously implicated in the type I interferonopathies. Through

assessment of neurovascular integrity and qPCR analysis we identified a

significant dysregulation of cholesterol biosynthesis in the zebrafish model.

Furthermore, dysregulation of cholesterol biosynthesis gene expression was

also observed through RNA sequencing analysis of AGS patient whole blood.

From this novel finding, we hypothesize that cholesterol dysregulationmay play a
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role in AGS disease pathophysiology. Further experimentation will lend critical

insight into the molecular pathophysiology of AGS and the potential links

involving aberrant type I IFN signaling and cholesterol dysregulation.
KEYWORDS

Aicardi Goutières syndrome, cholesterol, zebrafish disease models, type I
interferonopathy, SAMHD1
Introduction

Aicardi-Goutières syndrome (AGS) is a rare, type I interferonopathy

that primarily presents as a severe childhood-onset neurological disease. To

date, nine genetic subtypes have been identified that can be caused by

mutations in TREX1 (AGS1), the three non-allelic components of

RNASEH2 (RNASEH2A-C; AGS2-4), SAMHD1 (AGS5), ADAR1

(AGS6), IFIH1 (AGS7), LSM11 (AGS8) or RNU7-1 (AGS9) (1–6).

Mutations in these genes lead to abnormal processing, sensing or

metabolism of self-nucleic acids and subsequent activation of type I

interferon (IFN-I) signaling and enhanced expression of interferon

stimulated genes (ISGs). AGS patients exhibit a spectrum of neurological

(and non-neurological) phenotypes, which can vary in severity, and most

frequently include brain atrophy, intracranial calcification, microcephaly,

white matter lesions, motor dysfunction and intellectual disability (7–9).

Given the significant auto-inflammatory component of the disease, these

phenotypes are thought to manifest due to a neurotoxic consequence of

excessive IFN-I signaling, but to date this hypothesis remains unproven.

Furthermore, AGS symptoms can present in a heterogeneous fashion, with

additional neurological phenotypes observed in specific genetic subtypes,

includingADAR1-related bilateral striatal necrosis (10, 11),ADAR1, IFIH1

and RNASEH2B-related spastic paraplegia (12) and SAMHD1-related

cerebrovasculopathy and stroke (13–16).

Given AGS is a rare disease, the availability of patient-derived

material for experimental investigation is limited. As such, animal

models of AGS are utilized to help study disease mechanisms and for

pre-clinical drug discovery. However, to date, few animal models of AGS

successfully recapitulate both the inflammatory and neurological

phenotypes associated with the disease (17). Previously, we have

shown that morpholino-mediated knockdown of samhd1 in zebrafish

embryos recapitulates aspects of the IFN-I and stroke phenotypes

observed in AGS5 (18). In the present study, we expand on this work

and characterize a novel CRISPR-Cas9 induced stable samhd1 mutant

zebrafish line. The aim of this work was to further demonstrate the

translational utility of zebrafish disease modelling for studying AGS and

to make novel mechanistic observations associated with the disease.
Materials and methods

Zebrafish husbandry

Adult zebrafish husbandry was approved by The University of

Manchester Animal Welfare and Ethical Review Board, and all
02
experiments were performed in accordance with U.K Home Office

regulations (PPL: P132EB6D7). The zebrafish used in this study

were raised and maintained at The University of Manchester

Biological Services Unit, under standard conditions, with adults

housed in mixed sex tanks with a recirculating water supply

maintained at 28°C under a 14/10 hour light/dark cycle, as

previously described (19). Fertilized eggs were collected following

natural spawning, and incubated at 28°C in fresh E3 medium. The

embryos were staged according to standard guidelines (20). After

termination of the experiment, all embryos were killed prior to

protected status [5 days post fertilization (dpf)] using a lethal dose

of Tricaine Methanesulfonate (MS222) and freezing at -20°C.
Generation of samhd1D23 mutant line

A guide RNA (gRNA) with no predicted off-target sequences was

designed for exon 4 of samhd1 using CHOPCHOP (21). gRNA

incorporating this target sequence was generated from a polymerase

chain reaction (PCR) amplification (Forward primer: 5’- TAA

TACGACTCACTATAGGCGTCACATTAAGCAGCTCGGGTTT

TAGAGC-3’; Reverse primer: 5’-AAAAGCACCGACTCGGT

GCCACTTTTTCAAG-3’) including the remaining sequence of S.

pyogenes chimeric single gRNA through in vitro transcription using a

HiScribe T7 Quick kit (New England Biolabs). Precipitation of the

gRNA and synthesis of Cas9 RNA was performed as previously

described (22). The resulting RNAs were mixed with 0.05% phenol

red, 120 mM KCl and 20mM HEPES, ph7.0, and ~1 nl of the mix was

injected into the yolk of wild type (WT) AB fertilized eggs at the one

cell stage to produce F0 crispants. To identify founders, F0 adults were

individually crossed with wild type (WT) AB animals and the resulting

embryos were assessed for indels using Hyp188I restriction analysis.

This process identified a founder animal harboring a 23bp deletion in

exon 4 (samhd1D23) that was predicted to lead to a frameshift.

Following confirmation of germline transmission, the F0 samhd1D23

was crossed again with WT AB fish to produce an F1 generation.

Following F1 heterozygous mutant incrosses, we ascertained that

homozygotes (samhd1D23/D23) were viable and capable of breeding.

Subsequent generations were genotyped following PCR and Sanger

sequencing of fin clip genomic DNA, using primers that flanked the

23bp deletion (forward primer 5’-GTGTTTAATGACCCCATCCA-3’;

reverse primer: 5’-CCTATGGAGTGCTCAAATCG-3’).

To generate the amino acid sequence, the zebrafish WT samhd1

transcript was obtained from Ensembl (23) and inputted into
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ExPASy for translation (24). For the samhd1D23/D23 sequence, the 23

bp deletion determined by Sanger sequencing was removed from

the WT transcript before translation. For this study, all experiments

were performed on an F4/F5 generation and comparisons were

made between age matched WT and homozygous mutants.
Quantitative PCR

Total RNA was extracted from pooled groups of whole larvae

(n=20) or dissected larval heads (n=30) at 5 days post-fertilization

(dpf) using a standard TRIzol (Invitrogen) method. Complementary

DNA (cDNA) was synthesized from 800ng RNA as previously

described (18). Quantitative PCR (qPCR) was performed on a

StepOne Plus Real Time PCR machine (Applied Biosystems). To

assess samhd1 expression in whole larvae, cDNA was combined with

power SYBR green mastermix (Applied Biosystems) and primers

(Eurofins Genomics) that flanked the 23bp deletion (Forward: 5’-

AGAACATCATCTGCCGCCGG-3’; Reverse: 5’-CCAGTTCCTTCG

CCCAGTCC-3’). Primers targeting the housekeeping gene hprt1

were used to normalize expression (Forward: 5 ’-GGAC

TTCATCCTCAAGAG-3’; Reverse: 5’-GTTCTAGCAGCGTC

TTCATCG-3’). To assess expression of ISGs (isg15 (18), isg12

(Dr03140917_g1) and stat1b (Dr03151121_m1)) and the

cholesterol biosynthesis gene hmgcrb (Dr03128326_m1) in

dissected larval heads, a Taqman (Life Technologies) protocol was

performed, as previously described (18).
Head size measurements

Anaesthetized WT and samhd1D23/D23 embryos were fixed

overnight in 4% paraformaldehyde (PFA; Alfa Aesar) at 2 dpf

before washing in 1% PBS-Tritonx. To image the samples, 80%

glycerol was added to the embryos which were placed into a nunc

glass base dish 12 mm. The samples were individually imaged in a

ventral orientation using a Leica M165FC light stereo microscope

with DFC7000T camera, and processed using LAS-X v3.3.3.16958

software (Leica). To assess for microcephaly, the distance between

the eyes was measured alongside full length of the embryo (mm).

The head/body ratio was determined from these two values, and

normalized to the average WT head/body ratio, to produce a

microcephaly index (ratio). Measurements were obtained using

Image J (version 1.52a). n=8 embryos per group, for each

biological replicate, repeated 3 independent times.
TUNEL staining

At 2 dpf, PFA fixedWT and samhd1D23/D23 embryos were stained

using the Click- iT Plus TUNEL assay kit (Invitrogen) following the

manufacturer guidelines. For imaging, samples were mounted in a

lateral position in 80% glycerol on a nunc glass base dish 12 mm

(Thermo Fisher) and imaged on a LeicaM205 FA Stereo fluorescence

microscope using a 5x/0.50 PlanAPO LWD objective, captured using

a DFC 365FX camera and processed using LAS AF v3.1.0.8587
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software (Leica). Images were analyzed using the manual cell

counting software on Image J (version 1.52a). Analyses were

performed on n= 6-8 embryos from 3 independent replicates.
Locomotion assay

Swimming was measured from 3 – 5 dpf inWT and samhd1D23/D23

larvae using DanioVision camera chamber and ethovision XT software

(Noldus, version 11), as previously described (25). Cumulative duration

of movement was measured in 3 independent replicates, with n=22-24

larvae per replicate.
Atorvastatin treatment and o-dianisidine
treatment

To assess for brain hemorrhages, WT and samhd1D23/D23

embryos (n=20 per group) were treated with atorvastatin (ATV;

Merck) at 32 hours post-fertilization (hpf), as described previously

(25). To visualize bleeds, ATV treated embryos were stained from

54 hpf using an o-dianisidine (Sigma) protocol (26). The percentage

of embryos with hemorrhages within each treatment/genotype

group was determined from 3 independent replicates.
Acquisition of AGS patient whole
blood samples

Whole blood from AGS patients with confirmed mutations in

TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1

or IFIH1 was taken to allow for whole genome RNA sequencing, as

described previously (27, 28). In addition, samples from non-AGS

patient age-matched controls were obtained. Briefly, AGS patients

were identified through either direct clinical contact with the

appropriate physicians, or through a referral process. The use of

patient materials has been approved from the Leeds (East) research

ethics committee (reference number: 07/Q1206/7) and South

Centre – Hampshire A research ethics committee (reference

number 17/SC/0026), whilst consent was also obtained from

parents of the affected patients.
AGS patient whole blood RNA sequencing

The Paxgene (PreAnalytix) whole blood RNA extraction

method for RNA sequencing has been described previously, and

the AGS patient RNA sequencing data-sets have been published

elsewhere (27–29). RNA concentration was assessed with a

spectrophotometer (FLUOstar Omega, Labtech), and 1 mg of

mRNA from each sample was diluted into 20 ml nuclease-free
water. Subsequently, the quality and integrity of the RNA samples

were assessed using a 2200 TapeStation (Agilent Technologies). A

poly-A enrichment library was then generated using the TruSeq®

Stranded mRNA assay (Illumina), according to the manufacturer’s

protocol, and 76 bp (+ indices) paired-end sequencing carried out
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on an Illumina HiSeq 4000. Raw sequencing output was

demultiplexed (allowing one mismatch) and the Binary Base Call

(BCL) sequence file format was converted to the text-based

sequencing data file format (FASTQ) using Illumina’s bcl2fastq

software, version 2.17.1.14. Low quality bases and adaptor

sequences were trimmed using Trimmomatic, and reads aligned

to the Genome Reference Consortium Human Build 37 (GRCh37)

genome using the two-pass mode of the Spliced Transcripts

Alignment to a Reference (STAR) aligner (v2.5.3a), as well as to

the transcriptome according to the GENCODE v19 human gene

annotation (downloaded from https://www.gencodegenes.org/

human/release_19.html). For each patient sample, the RNA-Seq

by Expectation Maximization (RSEM) software package (v1.3.0)

was used to calculate gene expression values, in transcripts per

million (TPM). Subsequently, fold change was determined from

TPM values, and then Log transformed (Log2).
Statistics

All data were analyzed using GraphPad Prism 8.1.2 (GraphPad

software Inc). All zebrafish experiments, except from ATV treatment

were analyzed using either an unpaired t test, or Mann Whitney test,

depending on normality, established by the Shapiro Wilks normality

test. ATV treatment was analyzed using a two-way ANOVA with

sidak’s multiple comparisons test. AGS patient RNA seq data was

analyzed using a one-way ANOVA with Dunnetts multiple

comparisons test, comparing each AGS gene with the control group.
Results

Generation of the samhd1D23 line

Following on from the samhd1 MO model, which successfully

recapitulated aspects of the AGS5 phenotype, a stable mutant

zebrafish line was subsequently generated to facilitate long term

studies (18). To generate a stable samhd1 loss of function model, a

gRNA was designed using the CHOPCHOP software, targeting exon

4 of the samhd1 gene (Figure 1A). A 23 bp deletion was confirmed by

Sanger sequencing and PCR in the F1 generation (Figures 1B, C). To

determine whether this mutation resulted in loss of transcript, RNA

was harvested from WT and samhd1D23/D23 larvae at 5 dpf for qPCR

analysis of the samhd1 gene, where the mutants exhibited almost a

complete loss in samhd1 expression compared toWT larvae (P<0.05)

(Figure 1D). Translation analysis of genomic sequences highlighted

that the samhd1D23 mutation introduces a premature stop codon

prior to the HD domain which is predicted to produce a truncated

amino acid sequence (Supplementary Figure 1).
Loss of samhd1 induces AGS-like
phenotypes in zebrafish larvae

One of the primary hematological hallmarks of AGS is the

excessive upregulation of IFN-I and the subsequent ISG signature,
Frontiers in Immunology 04
which is often used as a clinical diagnostic tool (7, 27, 30).

Therefore, in an attempt to phenocopy this observation, we

measured ISG expression in larval heads (Figure 2A). Variable

expression of isg12, isg15 and stat1b was observed in samhd1D23/D23

larvae compared to the WTs. However, although variable, the

samhd1D23/D23 larvae appeared to display increased expression of

each ISG, although this did not reach statistical significance.

Expression analysis of other ISGs displayed similar variability

(data not shown).

Severe neurological manifestations are another important clinical

feature of AGS, with patients presenting with a range of CNS

symptoms (7, 31). To characterize the initiation of neurological

phenotypes in the zebrafish model, we first measured head size, as

microcephaly is a common clinical manifestation of AGS (32–34). The

distance between the eyes after ventral imaging of fixed embryos at 2

dpf was used to measure microcephaly (Figure 2B). Full body length

was also measured to determine a head to body length ratio, also

referred to as a microcephaly index, normalized to the mean of theWT

group (Figure 2C). The microcephaly index was significantly reduced

by 15% in samhd1D23/D23 embryos (P<0.0001), thus indicating that loss

of samhd1 is associated with smaller head size in zebrafish (Figure 2D).

Previous studies have suggested that microcephaly can be

attributed to an increase in neuronal cell death (35). In an

attempt to assess this, TUNEL staining was used to identify

apoptotic cells in the head region. Manual counting of apoptotic

cells in the indicated region (Figure 2E) revealed a significant

increase in brain cell death in the samhd1D23/D23 embryos

(P<0.001) (Figure 2F).

Subsequently, we aimed to establish whether the microcephaly and

increased brain cell death in samhd1D23/D23 embryos also contributed to

functional defects. From a clinical perspective, a wide range of motor

disabilities are observed across all human AGS subtypes (7). Swimming

behavior can be readily assessed in zebrafish larvae as a readout for

motor dysfunction, as observed in other zebrafish models of disease

(25). We tracked swimming behavior in the larvae between 3 - 5 dpf.

No difference in movement was observed at either 3 dpf or 5 dpf (data

not shown), however, a ~50% reduction in cumulative duration of

movement was observed in the larvae at 4dpf (P<0.01), implying a

transient physical deficit exists in the samhd1D23/D23 model

(Figures 2G, H).
samhd1D23/D23 zebrafish exhibit
cerebral hemorrhages associated
with cholesterol dysregulation

We next tested for AGS5-related cerebrovasculopathy, as the

samhd1 MO model developed spontaneous cerebral hemorrhages

(18). At baseline conditions, only a small proportion (5%) of

samhd1D23/D23 embryos developed cerebral hemorrhages, whilst

no hemorrhages were observed in the WT embryos.

Pharmacological inhibition of the 3-hydroxy-3-methylglutaryl-

CoA reductase (hmgcr) pathway, using statins, has previously been

shown to induce brain specific hemorrhages in zebrafish (25, 26).

The hemorrhages arise due to a reduction in de novo cholesterol

biosynthesis, resulting in lowered cholesterol essential for
frontiersin.org
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neurovascular integrity (26). As only a small percentage of embryos

spontaneously hemorrhaged in the samhd1D23/D23 model at

baseline, we tested whether the mutants may be more susceptible

to brain hemorrhage following exposure to low concentrations of
Frontiers in Immunology 05
ATV. Following water bath incubation at ~30 hpf, ATV-induced

hemorrhages were consistently identified from ~52 hpf. The

incidence of hemorrhages increased in a dose-dependent manner

for both mutant and WT groups, however, there was a significant
A

B

DC

FIGURE 1

Generation of the samhd1D23/D23 line. (A) gRNA sequence (red) designed to target a site within exon 4 of the samhd1 gene to initiate a 23 bp deletion
in injected embryos. (B) Sanger sequencing of WT and samhd1D23/D23 mutants from fish derived from F1 generation incross. Green highlighted area
on WT sequencing represents the site of the 23 bp deletion, causing a frameshift on the mutant sequence. (C) Amplification of samhd1 transcripts
from mutant and WT zebrafish embryos using exon 4 specific primers, yielded a single PCR product with clearly visible reduction in band size, as a
result of 23 bp deletion. Length of samhd1 exon 4 is 161 bp in WT embryos, with the mutants producing a band of 138 bp. (D) qPCR analysis of
samhd1 gene expression in 5 dpf WT and samhd1D23/D23 larvae. Data analyzed using Mann Whitney U test and presented as median ± IQR
(*P=0.0286). n=20 larvae per group, per biological replicate, repeated 4 times.
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E F

G H

C

FIGURE 2

samhd1D23/D23 zebrafish exhibit neurological phenotypes. (A) Specific ISG expression (from taqman probes for isg12, isg15 and stat1b, normalized to the
housekeeper gene hprt1) measured in 5 dpf WT and samhd1D23/D23 larval heads, n=30 per biological replicate, repeated 5 times. (B-D) Microcephaly
phenotype identified by ventral measurements between the eyes (B) and full body length (C) (blue arrows) to generate a microcephaly index (ratio)
determined by distance between the eyes and body length (D). Data analyzed using unpaired t test (****P<0.0001) presented as mean ± SEM.
(E, F) Enhanced head cell death in samhd1D23/D23 embryos determined through TUNEL staining. White dotted line indicates area of interest for manual
cell counting, excluding the eyes, mouth and ears. White triangle denotes TUNEL positive cell used for analysis. n=6-8 embryos per group, with 3
biological replicates. Scale bar= 100 mm. Quantification of number of dead cells (F). Data analyzed using Mann Whitney U test (***P<0.001) presented as
median ± IQR. (G) Representative examples of locomotor tracks for 4 dpf samhd1D23/D23 and WT larvae. (H) Significant decrease in cumulative duration
of movement at 4 dpf. n=22-24 larvae per group, with three biological replicates. Data analyzed using a Mann Whitney U test (**P<0.001).
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increase in cerebral hemorrhage frequencies in the samhd1D23/D23

embryos at the lower doses of 0.25 mM (P<0.05) and 0.5 mM
(P<0.05) ATV: 17% versus 38% and 63% versus 87% respectively

(Figures 3A, B). We postulated that increased susceptibility to ATV-

induced cerebral hemorrhages may indicate a deficiency in hmgcr

expression in the homozygotes. Therefore, we measured hmgcr

transcript by qPCR in larval heads and identified a ~50% reduction

in samhd1D23/D23 larvae compared to WT (Figure 3C). Together,

these data suggest that the samhd1D23/D23 embryos possess a

genetically-induced susceptibility to cerebral hemorrhages that is

associated with dysregulated cholesterol biosynthesis.
RNA sequencing reveals dysregulation of
cholesterol biosynthesis gene expression
in AGS patient whole blood

AGS5 patients frequently present with cerebrovascular disease

(13–16). Furthermore, reductions in cholesterol have been associated

with increased risk of hemorrhagic stroke in the general population

(36–40). As such, we hypothesized that a reduction in cholesterol

biosynthesis gene expression could be specifically associated with

AGS5 and not observed across other AGS subtypes in which

cerebrovasculopathy is not reported. To test this hypothesis and to

validate the translational relevance of the samhd1D23/D23 zebrafish

observation, we assessed the expression of several genes encoding

enzymes involved in the multiple arms of the cholesterol biosynthesis

pathway (Supplementary Figure 2) in existing RNA sequencing data

obtained from AGS1-7 patient whole blood samples. This analysis

revealed an overall increase in the expression of 9 of the 14 cholesterol

biosynthesis genes measured (ACAT2, MVD, CYP51A, DHCR24,

MSMO1, NSDHL, HSD17B, EBP, SC5D), compared to an age

matched control group (Figure 4). This pattern was found across

all AGS subtypes, excluding AGS1 patients, where no differences were

observed. Although directionally inverse to the zebrafish model, these

observations implicate defective cholesterol biosynthesis in the

pathophysiology of AGS.
Discussion

Here, we provide further evidence that zebrafish disease

modelling represents a useful in vivo tool for studying AGS5,

building upon the knowledge gained from the samhd1 MO

zebrafish model previously described by our group (18).

Furthermore, this work has provided new insight into AGS

pathophysiology by implicating a potential role for defective

cholesterol biosynthesis in the samhd1D23/D23 zebrafish and

patient samples.

Loss of samhd1 produced a number of clinically relevant

phenotypes in the zebrafish model, Firstly, the ISG response in

larval heads was largely variable, and as such, we were unable to

confirm a consistent ISG phenotype. However, high expression

levels of ISGs were observed in a proportion of mutant larvae

suggesting the discrepancy we observe may be attributed to distinct

intra-larval variation. Indeed, heterogeneous ISG responses and
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symptom severity is also observed in the human condition (41).

Intra-larval variation may be apparent due to the non-sterile aquatic

environment the adult fish are housed in. Indeed, Rutherford and

colleagues have previously suggested zebrafish are subjected to

additional inflammagen exposure and other challenges from the

water, compared to a sterile mouse environment (17). Upregulation

of ISGs has been previously identified in a number of AGS animal

models, resulting in multi-organ inflammation. However, the brain

has remained largely unaffected, until relatively recently with the

advent of newer murine models for Rnaseh2b and Adar1mutations,

and now the samhd1D23/D23 zebrafish model described here (42–45).

Due to the variation in ISG expression, we were unable to

confirm that this upregulation is solely accountable for the presence

of other observed neurological phenotypes, such as microcephaly,

enhanced brain cell death and the locomotor deficits that were

observed in the mutants. Future studies will assess the effects of IFN

inhibition on these outcomes in this model. Interestingly, DNA

damage, rather than IFN signaling has recently been hypothesized

to be the cause of neural dysfunction in a neuro-progenitor

conditional Rnaseh2b-/- mouse model (42, 46). Further study is

required to determine whether DNA damage is the primary cause of

these phenotypes in the zebrafish model.

The samhd1 MO model gave rise to a spontaneous brain

hemorrhage phenotype, providing one of the first examples of a

sub-type specific phenotype identified in a pre-clinical AGS model

(18). For AGS5 this includes cerebral large artery disease,

manifesting as stenosis, aneurysms, moyamoya, ischemic and

hemorrhagic stroke (7, 13–15). As such, it has been hypothesized

these cerebrovascular phenotypes reveal an as yet uncharacterized

function of the SAMHD1 protein, relating to vascular homeostasis

(14, 18). Moreover, the cerebrovascular defects found in AGS5 may

be attributed to the spatial expression profile of SAMHD1. Whole

tissue microarray from human donors identified constitutive

expression of SAMHD1 within the vascular endothelium,

including the CNS. However, expression profiles should also be

established for the other AGS causative genes (47).

Whilst a small proportion of samhd1D23/D23 embryos did

hemorrhage under baseline conditions, this was at a largely

reduced frequency than observed in the previous samhd1

morphants (18). Therefore, we hypothesized that the stable

mutants may possess a more subtle defect within the

cerebrovasculature, which in isolation is insufficient to cause

spontaneous hemorrhages, but may instead lead to an increased

propensity to cerebral bleeds. To test this hypothesis, embryos were

treated with a range of doses of the hemorrhage inducing drug

ATV, where we observed a significant increase in hemorrhaging

rates at the lowest doses in samhd1D23/D23 fish (25, 26). Given that

ATV exerts its effects by targeting the cholesterol biosynthesis rate

limiting enzyme, hmgcr, and inhibiting downstream cholesterol and

lipid biosynthesis, this suggested the mutants may possess a baseline

deficiency within the cholesterol biosynthesis pathway. Gene

expression analysis of hmgcr highlighted a significant reduction in

the samhd1 mutants compared to the WTs, thus providing novel

evidence that a loss of samhd1 results in a genetic defect in

cholesterol biosynthesis. Indeed, the relationship between

increased cerebral hemorrhage rates and inhibition of cholesterol
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1100967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Withers et al. 10.3389/fimmu.2023.1100967
synthesis aligns with the clinical observation that reduced

cholesterol levels are associated with increased risk of

hemorrhagic stroke (36–40). Therefore, we hypothesized that this

observation may account specifically for the cerebrovascular disease

observed in AGS5 patients.
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Patient whole blood RNA-seq analysis revealed the cholesterol

biosynthesis gene dysregulation was not specific for SAMHD1-

related AGS, indicating this observation cannot be directly

attributed to the AGS5-related cerebrovasculopathy, as comparable

effects were observed within AGS2-4 and 6-7 genetic subtypes. We
A

B

C

FIGURE 3

samhd1D23/D23 zebrafish exhibit cerebrovascular defects associated with cholesterol dysregulation. (A) WT and samhd1 D23/D23 embryos were treated
with increasing concentrations (0.25-1.5 mM) of ATV added via water bath incubation and scored on the presence or absence of blood in the brain.
N=20 embryos treated per group, with the percentage of animals per group which developed hemorrhages determined, repeated three times. Data
analyzed using a two-way ANOVA with sidak’s multiple comparisons test (*P<0.05). (B) Representative images of embryos stained for o-dianisodine
with and without brain hemorrhage, denoted by red arrow. (C) qPCR analysis of hmgcr expression in the WT and mutant larvae heads at 5 dpf. Data
analyzed using unpaired t test (*P<0.05) and presented as mean ± SEM.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1100967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Withers et al. 10.3389/fimmu.2023.1100967
propose that cholesterol biosynthesis dysregulation may be more

broadly associated with aberrant IFN-I signaling, as highlighted by

others (48). Notably, there were directional differences in

dysregulated cholesterol gene expression identified between the

samhd1D23/D23 larvae (downregulation) and patients (upregulation).

We postulate these differences may reflect acute versus chronic

exposure to aberrant IFN-I signaling, whereby a compensatory

effect is initiated to counteract the inhibition of cholesterol

synthesis over time. Such compensation is more likely feasible in

patients over time, in comparison to the first five days of life in

zebrafish. Moreover, we have only focused on cholesterol

biosynthesis gene expression within the patients and zebrafish

model, which does not fully portray the complex relationship

between the antiviral response, initiated by IFN-I, and regulation

of cholesterol.

As such, further research is required to understand this

potential relationship between IFN-I signaling and cholesterol

biosynthesis dysregulation specifically in AGS patients. We

speculate that such a defect might contribute to certain

pathological features of AGS, including white matter loss. The

brain is cholesterol rich and a significant proportion is contained

within myelin. Therefore, under disease conditions, defects in

cholesterol may dysregulate myelin formation and lead to white

matter degeneration. Indeed, in a mouse model of cerebrovascular

disease, a high cholesterol diet was associated with white matter

defects and cognitive decline (49).

Moreover, we appreciate that peripheral measurements of

cholesterol biosynthesis gene expression do not directly represent

the cholesterol lipid levels within the brain and CNS, and as such,

future experimentation would involve taking plasma and CSF
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cholesterol measurements, whilst also investigating pathways

other than cholesterol biosynthesis, such as cholesterol efflux.

Whilst material is scarce, an interesting avenue for future studies

would be to focus on assessing brain cholesterol levels in AGS post

mortem tissue.

Irrespective of our focus on the periphery, previous literature has

identified direct correlative relationships between plasma cholesterol

levels and a number of different brain pathologies, including stroke

(both ischemic and hemorrhagic), intracranial calcifications, and

chronic neurodegenerative disorders (50, 51). Together, this

demonstrates the importance of this RNA sequencing result in an

attempt to understand aspects of the encephalopathic nature of AGS.

A limitation of the current study is that potential off-target

effects initiated by the sgRNAs in zebrafish have not been fully

assessed. Future studies could focus on using next generation

sequencing to identify potential off-target candidates to further

validate this model. Nevertheless, confirmation of cholesterol

biosynthesis defects in both zebrafish and AGS patients provides

confidence that this particular observation is likely bona fide.

To conclude, we have generated a stable mutant zebrafish model

of AGS5, which exhibited several clinically relevant phenotypes,

including neurological manifestations which have rarely been

replicated in other pre-clinical models of AGS, thus reinforcing the

usefulness of zebrafish as a pre-clinical species for type I

interferonopathy research. The zebrafish model highlighted a

potential novel association with AGS and dysregulation in

cholesterol biosynthesis, which will spark further investigation into

the role of cholesterol dysregulation in disease progression within

AGS, whilst also increasing our understanding of the complexities

surrounding IFN-I signaling and cholesterol homeostasis.
FIGURE 4

Transcriptional dysregulation of cholesterol biosynthesis genes in AGS patient blood. RNA from AGS1-7 patient whole blood was analyzed using the
RSEM software to determine the TPM of each cholesterol biosynthesis gene for the AGS patients. Data was then normalized to an age-matched
control group, and underwent a log2 transformation. The heat map scale on right hand side of figure indicates color changes representing 1-6 fold
changes in expression. Sample sizes for each AGS subtype: Control n=5, TREX1 n=8, RNaseH2B n=8, RNaseH2C n=6, RNaseH2A n= 3, SAMHD1
n=8, ADAR1 n=6 and IFIH1 n=2. Data analyzed using a one-way ANOVA with Dunnetts multiple comparison test, comparing each AGS gene with
the control group.
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