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Geneis Beijing Co., Ltd., Beijing, China, 4Key Laboratory of Rheumatology and Clinical Immunology,
Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases
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Background: Autism Spectrum Disorders (ASD) are defined as a group of

pervasive neurodevelopmental disorders, and the heterogeneity in the

symptomology and etiology of ASD has long been recognized. Altered

immune function and gut microbiota have been found in ASD populations.

Immune dysfunction has been hypothesized to involve in the pathophysiology of

a subtype of ASD.

Methods: A cohort of 105 ASD children were recruited and grouped based on

IFN-g levels derived from ex vivo stimulated gdT cells. Fecal samples were

collected and analyzed with a metagenomic approach. Comparison of autistic

symptoms and gut microbiota composition was made between subgroups.

Enriched KEGG orthologues markers and pathogen-host interactions based on

metagenome were also analyzed to reveal the differences in functional features.

Results: The autistic behavioral symptomsweremore severe for children in the IFN-

g-high group, especially in the body and object use, social and self-help, and

expressive language performance domains. LEfSe analysis of gut microbiota

revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae

andVerrucomicrobiaceae and underrepresentation ofBacteroides xylanisolvens and

Bifidobacterium longum in children with higher IFN-g level. Decreased metabolism

function of carbohydrate, amino acid and lipid in gut microbiota were found in the

IFN-g-high group. Additional functional profiles analyses revealed significant

differences in the abundances of genes encoding carbohydrate-active enzymes

between the two groups. And enriched phenotypes related to infection and

gastroenteritis and underrepresentation of one gut–brain module associated with

histamine degradation were also found in the IFN-g-High group. Results of

multivariate analyses revealed relatively good separation between the two groups.
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Conclusions: Levels of IFN-g derived from gdT cell could serve as one of the

potential candidate biomarkers to subtype ASD individuals to reduce the

heterogeneity associated with ASD and produce subgroups which are more

likely to share a more similar phenotype and etiology. A better understanding of

the associations among immune function, gut microbiota composition and

metabolism abnormalities in ASD would facilitate the development of

individualized biomedical treatment for this complex neurodevelopmental

disorder.
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Introduction

Autism spectrum disorders (ASDs) are defined as a group of

pervasive neurodevelopmental disorders characterized by persistent

deficits in social communication and social interaction, plus restricted,

repetitive patterns of behavior, interests, or activities (1). The exact

etiology of ASD is still unknown and accumulated results of recent

studies suggest that instead of a single causative factor, ASD may be

caused by the combined effects and interplay between genetic

heritability and complex environmental risk factors (2–5).

The heterogeneity in the symptomology and etiology of ASD has

long been recognized by clinicians and researchers (6–12). A deep

insight into this heterogeneity and using appropriate strategy to

identify ASD subtypes are crucial, since different subtypes may result

from different pathophysiology and respond differently to certain

therapies (6, 9, 11–13). Previous subtyping methods mainly used

behavioral characteristics and intellectual functioning as indicators

(6, 10, 14–16). In recent years, subtypingASD individuals according to

their co-occurring medical disorders or associated physiological

abnormalities has also emerged and got accumulated promising

results (12, 17–20).

It has been demonstrated that certain immune-mediated

conditions (such as allergies and some autoimmune diseases) were

more prevalent in ASD subjects (21–24). Immune dysfunction has

been hypothesized to involve in the pathophysiology of a subtype of

ASD (12, 20, 25). Compared to behavioral symptoms, immune

abnormalities are more objective since they can be measured using

clinical and laboratory characteristic, thus would be a potential ideal

subtyping indicator (25).Gammadelta (gd)T cells play important roles

in inflammatory and autoimmune diseases (26). They add to the

imbalanced pro- and anti-inflammatory reactions and recruit other

immune cells such as macrophages (27). IFN-g is one of the major

cytokines produced by gdT cells. Results from several previous studies

revealed elevated IFN-g levels in different tissues in some but not all

ASD subjects (28–31), indicating that IFN-g might participate in the

immune dysfunction associated with certain subtype of ASD.

The crosstalk between gut microbiota and host immune

function has been increasingly recognized in recent years (32–35).

Gut microbiota can interact with immune cells and modulate the
02
function of immune system, and inflammation, which is caused by

abnormal immune responses, can also influence the composition of

the gut microbiome (32, 34). Moreover, differences in the intestinal

microbial community have also been found in children with ASD as

compared to neurotypicals (17, 36–39). Since gut microbes can

communicate with the host brain through multiple ways, including

neuroactive compounds, toxin metabolites and immune

modulation, it is suggested that alterations of gut-immune-brain

axis play critical roles in ASD (38, 40–43). A better understanding of

the association and comprehensive interactions among gut

microbiota composition, immune characterization and behavioral

symptoms in ASD, and subtyping this heterogenous disorder based

on objective immunological characteristics into more homogeneous

subgroups will not only provide useful information on the

biological mechanisms underlying the pathogenesis of ASD, but

also facilitate the development of individualized therapy strategies

for ASD population (9, 18, 20).

In the present study, we recruited a cohort of 105 ASD children,

and levels of IFN-g derived from gd T cells were measured to cluster

children into subgroups. Comparison of autistic symptoms and gut

microbiota composition was made between subgroups. Enriched

KEGG orthologues markers and pathogen-host interactions based

on metagenome were also analyzed to reveal the differences in

functional features. Results of this study will provide additional

evidence to support the association of gut microbiota alterations

and immune dysfunction in ASD and suggest that IFN-g could

serve as a potential candidate biomarker to subtype ASD individuals

into subgroups which tend to share a more similar phenotype

and etiology.
Materials and methods

Participants

The study was approved by the Institutional Review Board of

Peking Union Medical College Hospital (IRB #ZS-824). Autistic

children were consecutively recruited from the Herun Clinic in

Beijing, China. The inclusion criteria for autistic children were (1):
frontiersin.org
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Being diagnosed with autism which was confirmed by experienced

psychiatrists according to the Diagnostic and Statistical Manual of

Mental Disorders Fifth Edition (DSM-V, 2013) criteria (2). Free of

antibiotic treatment, prebiotics and probiotics for at least 4 weeks

before sample collection (3). The children’s primary caregivers had

good reading and comprehension skills and were able to fill in the

relevant assessment scales (4). The children’s parents or legal

guardians volunteered to participate in this study and signed the

informed consent. Autistic children with symptoms of other

comorbid neurological or psychiatric disorders as confirmed by

experienced clinicians or psychiatrists were excluded from the

study. Detailed information on the purposes and procedures of

the study were explained to the children’s parents or legal

guardians. Written forms of full informed consent were obtained

before involving the children in the study.
Assessment of autistic symptoms

The following scales were used to assess autistic symptoms

in children:
Fron
1. Autism Behavior Checklist (ABC). A behavior checklist

consists of 57 items in 5 categories: sensory, relating, body

and object use, language, and social and self-help (44). The

scale utilizes an observer’s rating of the child’s behavior to

quantify behaviors typically associated with autism. The

children’s parents or primary caregivers were asked to fill

out the ABC questionnaire to preliminarily evaluate the

severity of ASD.

2. Autism Treatment Evaluation Checklist (ATEC). A checklist

designed to be completed by parents, teachers, or caretakers,

which could be used to monitor the general well-being of an

individual over time. It consists of 4 subscales: speech/

language communication, sociability, sensory/cognitive

awareness, and health/physical/behavior. The validity of

ATEC has been confirmed in several studies, and lower

scores indicated fewer problems (45).

3. Clinical Language Status Questionnaire (CLSQ). A clinical

language assessment questionnaire which was developed by

Frank H Duffy et al. CLSQ could be used to evaluate the

child’s current best expressive and receptive language

performance with good reliability, and higher scores

indicated better performances (46).
Detection of IFN-g expression in gd T cells

Twomilliliters of fasting venous blood samples were collected into

chilled heparin tubes by trained nurses between 8:00 and 10:30 a.m.

The samples were then diluted with equal volume of PBS, and the

peripheral blood mononuclear cells (PBMCs) were separated by Ficoll

(Tianjin Hao Yang Biological Technology Company) centrifugation.

Isolated PBMCs were cultured in 24 well plates with complete

medium (RPMI 1640 medium (Hyclone) with fetal bovine serum
tiers in Immunology 03
(10%, Gibco), penicillin and streptomycin (100 u/ml)) and stimulated

with 50ng/ml phorbol 12-myristate 13-acetate (PMA) (50ng/ml,

Sigma) and 1µg/ml lonomycin (1ug/ml, Sigma) overnight. Brefeldin

A (BFA) (Golgiplug,BD)was added inonehour after addingPMAand

Ionomycin to block the secretion of the cytokines.

The stimulated PBMCs were washed twice with PBS, centrifuged

and then resuspended. Subsequently, CD3-PE conjugated antibody

(BDPharmingen), TCRgd-FITC conjugated antibody (Biolegend)was

added to the cells. After 30minutes of incubation at 4°C avoiding light,

the cells were washed twice with PBS. The cells were then

permeabilized for staining of intercellular cytokine with Cytoperm/

Cytofix Fixation/Permeabilization Kit (BD). Subsequently, cells were

incubatedwithAPC-conjugated IFN-g antibody (BDPharmingen) for

an hour. Then the cells were washed and resuspended with PBS,

followed by flow cytometry assessment. Flow cytometry was

performed on BD Accuri C6 flow cytometer, and the following data

analysis was conducted with CFlow Plus 1.0.164.15.
Fecal sample collection and
DNA extraction

Children’s fresh fecal samples were obtained at home or Herun

Clinic, immediately transferred into 1.5 ml sterile Eppendorf tubes

(Axygen), and frozen into dry ice. All samples were stored at -80°C

until analysis.DNAwas extracted fromfecal samples using theMO-BIO

PowerSoilDNAIsolationMini-Kit (Carlsbad) according to theprotocol.

DNA quality was assessed and controlled using gel electrophoresis.
Metagenomic library construction
and sequencing

The sequencing library construction and template preparation

was performed using the NEBNext UltraTM DNA Library Prep Kit

(New England Biolabs) following manufacturer’s instructions

(input DNA >100 ng). Each sample was barcoded and equal

quantities of barcoded libraries were used for sequencing. The

quality and quantity of the libraries were assessed using the

Agilent 2100 High Sensitivity DNA Kit (Agilent Technologies)

and the ABI 7500 Real Time PCR System (Applied Biosystems)

before Illumina sequencing. Illumina HiSeq 2500 and Hiseq X Ten

sequencing systems were used for paired-end 150bp sequencing.

Data with adaptor contamination and low-quality reads were

discarded from the raw data. We acquired ~223Gb high-quality

data for the 38 samples with an average of ~5.9Gb per sample.
Data analysis

Taxonomic assignment of the main bacteria and the relative

species abundances were calculated using MetaPhlAn (version

1.7.7) (47). Biodiversity of the samples was processed with Vegan

(version 2.4-6) in R package. The top 100 most abundance clades in

each sample were selected to calculate the “Bray-Curtis” distance

and the similarity between samples (Figure S3). The linear
frontiersin.org
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discriminant effect size (LEfSe) analysis was performed to find

features (taxa) differentially represented between groups (48).

The Short Oligonucleotide Analysis Package(SOAP2, version

2.21) (49) was used to do the alignment and retain the unique

mapped reads to do the downstream analysis. The relative

abundance of these (super)contigs or genomes was calculated

based on the number of aligned reads normalized by the (super)

contig’s or genome’s size. The integrated non-redundant gene

catalog database about the human gut microbiome was used to

do the function analysis (50) with the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database, the Carbohydrate-Active Enzymes

database (CAZy), the Pathogen–Host Interactions database (PHI-

base) and the Gut-Brain Modules (GBMs) as described in

previously published articles (51–53).

Other statistical analyses were performed using Statistical Package

for the Social Science version 19.0 (SPSS Inc., Chicago, Illinois) and

GraphPad Prism version 5.0 (GraphPad Software Inc., San Diego, CA).

Continuous data were checked for normal distribution using the

Shapiro-Wilk test first. Unpaired t test or non-parametric test (for

those data that were not normally distributed) was used for

comparison between groups. The Spearman or Pearson correlation

test was applied to explore the correlation among autistic symptoms,

gutmicrobiota, and functional categorization. The principal component

analysis (PCA), orthogonal partial least-squares discriminate analysis

(OPLS-DA)and themultivariate receiver operator curve (ROC) analysis

were carried out using themethods as described in the protocol (54). For

all tests, a value of p<0.05 (two-tailed) was considered statistically

significant. False discovery rates (FDR) were controlled at 0.05 for

multiple testing using the Benjamini and Hochberg method.
Results

Characteristics of the enrolled participants

A total of 105 individualsmet the inclusion criteria were recruited,

and the top and bottom quarter of the participants were selected for
Frontiers in Immunology 04
questionnaires and fecalmicrobiota analyses based on their IFN-g level
derived from gdT cells. Since some of the participants were outpatients

whocanonly spare a little timewithour team, and someof the children

may not defecate within these few days, not all of them have time to

complete the behavioral symptoms assessment or have their fecal

sample successfully collected. Those who completed all the

questionnaires and fecal sample collection for metagenomic array

constitute the final study samples in the present study.

Demographics of the participants were summarized in Table 1.

The two groups were well matched for chronological age and sex

composition. The incidences of gastrointestinal symptoms such as

diarrhea and constipation showed no statistical difference between

groups. As expected, levels of IFN-g derived from gdT cell were

much higher in autistic children in the IFN-g-High group as

compared to the IFN-g-Low group.
Differences in the severity of autistic
behavioral symptoms between groups

Preliminary analysis of IFN-g levels vs ASD severity indicated in

recent clinical records (graded as mild, moderate or severe) suggests

a rather skewed distribution (Figure S1).

Significant differences in ABC metrics for severity of autistic

behavioral symptoms were found between the IFN-g-High and

IFN-g-Low groups. Children in the IFN-g-High group had

significantly higher ABC total scores (Median: 72.0, interquartile

range (IQR): 59.5~84.0) than those in the IFN-g-Low group (48.0,

IQR 45.0~67.0, p<0.01) (Figure 1A).

The post hoc analyses were conducted on the subscales scores

(Table 2), and scores of two subscales in ABC (Body and object use,

Social and self-help) demonstrated statistical differences between

the two groups (Figures 1B, C), indicating that the related

symptoms of those children in the IFN-g-High group were much

severe than those in the IFN-g-Low groups.

There was no statistical difference in ATEC total scores between

groups (88.5, IQR 70.5~104.8 in IFN-g-High group vs. 82.0, IQR
TABLE 1 Characteristics of the enrolled participants.

IFN-g-Low IFN-g-High p

n 17 21

Age(y) [mean ± SEM(range)] 4.78 ± 0.36 (3.15-8.47) 4.74 ± 0.36 (3.02-8.54) 0.949

Gender

Male (%) 14 (82.35%) 19 (90.48%) 0.640

Female (%) 3 (17.65%) 2 (9.52%)

GI symptoms

Diarrhea (%) 1 (5.88%) 3 (14.29%) 0.613

Constipation (%) 8 (47.06%) 6 (28.57%) 0.318

Diarrhea & Constipation# (%) 3 (17.65%) 5 (23.81%) 0.697

IFN-g [mean ± SEM(range)] 0.80 ± 0.10 (0.09-1.32) 5.73 ± 0.48 (3.83-11.88) <0.001
frontie
# The term “Diarrhea & Constipation” indicates children with alternative symptoms of diarrhea and constipation.
Data are presented as mean ± standard error of mean (SEM) for Age and IFN-g.
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61.5~93.5 in IFN-g-Low group, p>0.05). However, the post hoc

analyses of the subscales scores (Table 2) showed that scores of the

Speech/Language/Communication subscale in ATEC demonstrated

statistical difference (Figure 2A), indicating the language function

was much more impaired in the IFN-g-High group.

In order to further evaluate the children’s expressive and

receptive language performance respectively, the Clinical

Language Status Questionnaire (CLSQ) was applied. As is shown

in Figure 2B, children in the IFN-g-High group got lower expressive

language performance scores (5, IQR1~6) than those in the IFN-g-
Low group (7, IQR 5~8, p<0.05). However, scores of receptive

language performance showed no difference between the two

groups (Figure 2C).
Differences in the fecal microbiota
composition between groups

There was no significant difference in the alpha-diversity of the

fecal microbiota between the two groups (Figure S2). The Bray–Curtis
Frontiers in Immunology 05
dissimilarity revealed no significant difference between the two groups

(Figure S3, PERMANOVA, r2 = 0.0276, p= 0.398). The LEfSe method

wasused todetermine the taxa atdifferent taxonomic levelswhichwere

enriched in the IFN-g-High and IFN-g-Low groups (Figure 3). Results

of the LEfSe analysis revealed underrepresentation of Bacteroides

xylanisolvens and Bifidobacterium longum in the IFN-g-High group

(p<0.01, Wilcoxon rank-sum test; LDA>3.0). Overrepresentation of

several phylotypes were also found in the IFN-g-High group, and

Selenomonadales, Negatiyicutes and Veillonellaceae were the top 3

enriched phylotypes with LDA<-4.0.
Differences in functional profiles from the
metagenomic data between groups

From the metagenomic data, the KEGG orthologues markers

that were different between the IFN-g-Low and IFN-g-High groups

were analyzed. The relative abundance of the KEGG orthologues

markers related to amino acid metabolism, carbohydrate

metabolism and lipid metabolism were found to be decreased in
A B C

FIGURE 1

Differences of ABC total and subscales scores between the IFN-g-Low and IFN-g-High groups. (A) ABC total scores; (B) Scores of ABC subscale III:
Body and object use; (C) Scores of ABC subscale V: Social and self-help. The horizontal line and the box indicate the median and the interquartile
range (IQR), and the whisker spans the minimum to maximum. *p<0.05, **p<0.01.
TABLE 2 Comparison of ABC and ATEC subscales scores between groups.

Group
Z p

IFN-r-Low IFN-r- High

ABC subscales

I. Sensory 12.0(7.0,18.0) 16.0(10.0,18.0) 1.263 0.207

II. Relating 11.0(8.0,16.5) 16.0(11.0,19.0) 1.503 0.133

III. Body and object use 8.0(4.0,10.0) 13.0(6.5,20.0) 2.061 0.039*

IV. Language 12.0(9.0,15.0) 14.0(10.0,19.0) 0.943 0.346

V. Social and self-help 11.0(8.5,14.0) 14.0(11.0,17.0) 2.179 0.029*

ATEC subscales

I. Speech/Language/Communication 12.0(6.0,15.5) 20.5(12.0,23.5) 2.261 0.024*

II. Sociability 22.0(18.5,30.0) 23.0(18.0,28.5) 0.28 0.78

III. Sensory/Cognitive Awareness 19.0(13.5,25.0) 20.0(17.0,26.0) 0.883 0.377

IV. Health/Physical/Behavior 28.0(19.5,30.5) 23.0(20.0,36.5) 0.353 0.724
frontie
ABC, Autism Behavior Checklist; ATEC, Autism Treatment Evaluation Checklist.
Data are presented as median (P25, P75). *p<0.05.
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the IFN-g-High group as compared to the IFN-g-Low group with

values of p<0.05 (Figure 4). And the reported differences remained

significant after applying the FDR.

Inorder to further explore thepossiblemechanismsunderlying the

differences relating carbohydrate metabolism between groups, the

abundances of genes encoding carbohydrate-active enzymes

(CAZymes) in the fecal microbiome were quantified. CAZymes were

annotated by their family as defined in the CAZy database. Significant

differencesafter applying theFDRin the abundancesof genes encoding

six CAZymes families were found between the two groups. For

children in the IFN-g-High group, the relative abundances of genes

encoding GlycosylTransferase Family 56 (GT56), Polysaccharide

Lyase Family 13 (PL13) and Polysaccharide Lyase Family 8 (PL8)

was lower, while the relative abundances of genes encoding

Carbohydrate Esterase Family 10 (CE10), Glycoside Hydrolase

Family 95 (GH95) and GlycosylTransferase Family 28 (GT28) was

higher as compared to those in the IFN-g-Low group (Figure 5).

The PHI-base phenotypes related to infection (Pathogen gene:

purT, Host species: Homo sapiens) and gastroenteritis (Pathogen

gene: flhF, Host species: Homo sapiens) were found to be

significantly enriched in the IFN-g-High group (Figures 6A, B).

Additionally, underrepresentation of one gut–brain module
Frontiers in Immunology 06
(MGB010) associated with histamine degradation was also found

in the IFN-g-High group (Figure 6C).

The correlation analysis

The Spearman correlation analysis was applied to explore the

relationship among IFN-g, autistic behavioral symptoms, gut

microbiota and functional modules which were significant in

univariate analysis. As is shown in the matrix in Figure 7, the relative

abundance of Bacteroides xylanisolvens, which was enriched in the

IFN-g-Low group, was negatively correlated with IFN-g level (rho=-
0.434, p<0.05), ABC total and subscales (Body and object use, Social

and self-help) scores (all p<0.05), and the relative abundance of

GlycosylTransferase Family 28 (GT28) (rho=-0.535, p<0.05), and

positively correlated with CLSQ expressive language performance

scores (rho=0.353, p<0.01). Additionally, the relative abundance of

GlycosylTransferase Family 28 (GT28) was negatively correlated with

ABC language scores (rho=-0.326, p<0.05), while the relative

abundance of Polysaccharide Lyase Family 8 (PL8) was positively

correlatedwithABC language score (rho=0.303, p<0.05).Among these

above correlations, only the correlation between the relative

abundance of Bacteroides xylanisolvens and CLSQ expressive
A B C

FIGURE 2

Comparison of language function scores between the IFN-g-Low and IFN-g-High groups. (A) Scores of ATEC subscale I: Speech/Language/
Communication; (B) Scores of CLSQ expressive language performance; (C) Scores of CLSQ receptive language performance. The horizontal line and
the box indicate the median and the interquartile range (IQR), and the whisker spans the minimum to maximum. *p<0.05.
A B

FIGURE 3

Cladograms generated by LEfSe and LDA scores for bacterial taxa differentially abundant between groups. (A) Cladograms indicating differences in
the bacterial taxa between the IFN-g-Low and IFN-g-High group. Green and red nodes indicate taxa that were enriched in the IFN-g-Low group and
the IFN-g-High group, respectively. (B) LDA scores for differentially abundant bacterial taxa. Only taxa having a p<0.01 and LDA>2 are shown. Positive
LDA scores indicate the taxa enriched in the IFN-g-Low (IFN-g-L) group (green), while negative LDA scores indicate the taxa enriched in the IFN-g-
High (IFN-g-H) group (red), respectively.
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language performance scores remained significant after applying

the FDR.

Multivariate analysis and potential
discriminating features analysis

Since univariate approaches ignore the correlations among variables

as demonstrated in Figure 7, multivariate analyses were applied because

these methods simultaneously take all variables into consideration. The

principal component analysis (PCA) scores plot revealed that samples in

the IFN-g-Low group were more concentrated as compared to the
Frontiers in Immunology 07
scattered pattern of the IFN-g-High group (Figure 8A). And as is shown
in Figure 8B, the scores plot constructed using orthogonal partial least-

squares discriminate analysis (OPLS-DA) revealed relatively good

separation between the IFN-g-Low and IFN-g-High groups (Q2 =

0.469, p<0.05; R2Y=0.726, p<0.05).

The algorithm of the random forests was used to perform

potential discriminating features analysis. The Monte-Carlo cross

validation (MCCV) was applied to identify models with good

performance. In each MCCV, two thirds (2/3) of the samples are

used to evaluate the feature importance. The top 2, 3, 5, 10…

important features are then used to build classification models
A B

D E F

C

FIGURE 5

Differences of the abundances of genes encoding carbohydrate-active enzymes (CAZymes) in the fecal microbiome between the IFN-g-Low and
IFN-g-High groups. The values of the points represent the relative abundances of genes encoding (A) GlycosylTransferase Family 56 (GT56), (B)
Polysaccharide Lyase Family 13 (PL13) and (C) Polysaccharide Lyase Family 8 (PL8), (D) Carbohydrate Esterase Family 10 (CE10), (E) Glycoside
Hydrolase Family 95 (GH95) and (F) GlycosylTransferase Family 28 (GT28). The horizontal line and the box indicate the median and the interquartile
range (IQR), and the whisker spans the minimum to maximum. *p<0.05, **p<0.01.
A B C

FIGURE 4

Differences of enriched KEGG orthologues markers between the IFN-g-Low and IFN-g-High groups. The values of the points represent the relative
abundances of the KEGG orthologues markers related to (A) carbohydrate metabolism, (B) amino acid metabolism and (C) lipid metabolism. The
horizontal line and the box indicate the median and the interquartile range (IQR), and the whisker spans the minimum to maximum. *p<0.05.
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which is validated on the 1/3 the samples that were left out. The

procedure were repeated multiple times to calculate the

performance and confidence interval (CI) of each model. Based

on the cross validation, the multivariate models using 10 variables

achieved an AUC of 0.835 (Figure 8C). The top 10 significant

discriminating features ranked based on their frequencies of being

selected during cross validation are listed in Figure 8D.

Discussion

In the present study, a cohort of 105 ASD children were

recruited and ranked based on their IFN-g levels derived from
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gdT cells. The top 25% and bottom 25% of the participants were

selected which constituted the final two groups, respectively. Our

results demonstrated that autistic behavioral symptoms of children

in the IFN-g-high group were more severe, especially in the body

and object use, social and self-help, and expressive language

performance domains. The LEfSe analysis of gut microbiota

revealed some bacterial taxa differentially abundant between

groups. Decreased metabolism function of carbohydrate, amino

acid and lipid in gut microbiota were found in the IFN-g-high
group. Additional functional profiles analyses also revealed

significant differences in the abundances of genes encoding

carbohydrate-active enzymes between groups. And enriched
A B C

FIGURE 6

Differences of the abundances of genes related to pathogen-host interactions and gut–brain modules in the fecal microbiome between the IFN-g-
Low and IFN-g-High groups. The values of the points represent the relative abundances of genes related to (A) infection (Pathogen gene: purT, Host
species: Homo sapiens), (B) gastroenteritis (Pathogen gene: flhF, Host species: Homo sapiens) and (C) gut–brain module MGB010 associated with
histamine degradation. The horizontal line and the box indicate the median and the interquartile range (IQR), and the whisker spans the minimum to
maximum. *p<0.05, **p<0.01.
FIGURE 7

The Spearman correlation matrix among IFN-g, autistic behavioral symptoms, gut microbiota and functional modules which were significant in
autistic children. Color intensity reflects Spearman correlation coefficient. *p<0.05, **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1100816
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1100816
phenotypes related to infection and gastroenteritis and

underrepresentation of one gut–brain module associated with

histamine degradation were also found in the IFN-g-High group.

Results of multivariate analyses revealed relatively good separation

between the two groups and suggest that IFN-g could serve as a

potential candidate biomarker to subtype ASD individuals into

more homogeneous subtypes.

Currently, the diagnosis of ASD is still made mainly based on

behavioral symptoms (1). And the concept of spectrum suggests

that individuals with ASD may present with diverse sets of

symptoms that vary widely from one individual to another (1,

55). The symptom diversity may be caused by many different

factors, and this heterogeneity brings about great difficulty for

researchers to elucidate the anticipated etiology or risk factors for

ASD, because it would not be expected that a same etiological factor

would explain two vastly different phenotypes (56, 57). It has now

been well recognized that researchers should subtype these

individuals within the spectrum to reduce the diversity and use a

more homogeneous subtype to study the biological mechanism and

explore effective treatment strategies (58). Previous subtyping

strategies are mostly defined by some particular symptom

characteristics, such as social behavior or language ability (6, 7, 9,

10). Another feasible approach is using biomedical features to
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stratify samples to reduce heterogeneity and produce subgroups

which are more likely to share a more similar phenotype and

etiology (11, 12, 59). Compared to the behavioral symptom

characteristics, using biomedical features as subtyping indicators

has some advantages, because they are more objective and easily to

measure, more directly to indicate the possible mechanisms

underlying the associated heterogeneity, and could also provide

useful information to further explore the potential targets to

facilitate the development of individualized biomedical therapy

strategies for certain ASD subtypes.

Immunological involvement in the pathophysiology of certain

subtypes of ASD has long been hypothesized and accumulated

results from both clinical and animal research have identified the

associations between immunologic function abnormalities and ASD

(12, 21–24, 60–62). Moreover, clinical trials using immune-

modulating or anti-inflammatory drugs in individuals with ASD

also yield promising results, and the treatment responses were

especially better for those with immunological or gastrointestinal

disturbances (12, 63–66). Results of these previous studies suggest

that biological characteristics relating to immune function may

serve as potential biomarkers to reduce the heterogeneity in ASD

and to improve the prediction of response to certain biomedical

treatments (12).
A B
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FIGURE 8

Scores plot of multivariate analysis and potential discriminating features analysis using random forests algorithm. (A) Principal component analysis
(PCA) scores plot and (B) Orthogonal partial least-squares discriminate analysis (OPLS-DA) scores plot of ASD children in the IFN-g-Low (green) and
IFN-g-High (red) groups. Each point represents the score of a single individual. The shaded areas indicate the 95% confidence ellipse regions for
each group. (C) ROC curves from different multivariate models using different number of features. (D) The top 10 significant discriminating features
ranked based on their frequencies of being selected during cross validation.
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In the present study, we choose IFN-g derived from gdT cells as

subtyping biomarkers, because gdT cell intrinsically combines

innate immunity and adaptive immunity and plays important

roles in inflammatory and autoimmune diseases, which were

found to be more prevalent in ASD individuals (21–24, 67). And

results of previous studies also indicated IFN-g might play a role in

the progression and exacerbation of autistic symptoms (28–31).

Changes of INF-g levels have been found in blood samples and

brain tissues of ASD subjects, and animal studies also confirmed

upregulation of INF-g in animals with autistic-like behaviors (31,

68, 69). It has been demonstrated that plasma levels of INF-g
correlated positively with plasma nitric oxide measures in ASD

group and the higher NO production in ASD children may be

secondary to IFN-g mediated up-regulation of the inducible nitric

oxide synthase (iNOS) (70). INF-gmay interact with gut microbiota

and PBMCs taken from ASD subjects produced elevated levels of

IFN-g against common dietary proteins (71). High levels of INF-g
were also associated with a reduction in glucocorticoid receptor

(72), which might result in excessive circulation of glucocorticoid,

and the excessive glucocorticoid are well-known as neurotoxins

(73). Although the direct solid evidence is still lacking, these

findings support the hypothesis that INF-g may play a role in the

pathologic mechanism of ASD.

However, results of the INF-g levels in ASD from the previous

studies were not always consistent. Both higher and lower levels of

INF-g have been found in blood samples and PBMCs of ASD [see

the summarized results in the excellent systematic reviews (74, 75)].

In our clinical practice, we also find that a great heterogenicity exists

in the INF-g levels in ASD. Levels of INF-g are very high in a portion
of ASD children, and their behavioral symptoms seems to be

different from other ASD children. So, we hypothesized that

within the heterogeneous broad spectrum of ASD, those ASD

children with high INF-g levels may represent a subgroup whose

autistic symptoms and gut microbiota composition may be different

from others. And the results of the present study turned out to

support our initial hypothesis.

When comparing the autistic behavioral symptoms between the

two subgroups selected based on levels of IFN-g derived from gdT
cells, children with higher levels of IFN-g got significantly higher

scores in ABC, especially for the body and object use subscale and the

social and self-help subscale. Additionally, children in this group also

got higher scores in the speech/language/communication subscale in

ATEC. Since there were some discrepancies as assessed by ABC and

ATEC questionnaires in the language domain, and the expressive and

receptive language abilities were evaluated with different weights but

calculated as a whole in these two questionnaires (44, 45), the CLSQ

was used to further assess children’s expressive and receptive

language performance respectively (46). The results revealed that

only the expressive language performance was significantly impaired

in the IFN-g-High group. All these results suggest that autistic

behavioral symptoms were different between the IFN-g-High and

IFN-g-Low groups, and children with higher levels of IFN-g may

suffer from more severe symptoms of ASD.

Since there exist intense interactions between gut microbiota

and immune function, and alterations of gut-immune-brain axis

has been suggested to act critical roles in the pathogenesis of ASD
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(32–35, 41, 42), differences in gut microbiota composition between

the two groups were also analyzed. The most significant

characteristic difference between the two subgroups is that

Negativicutes, Selenomonadales and Veillonellaceae were more

enriched in the IFN-g-High group, with the LDA score less than

-4. Different abundances of these three bacterial taxa were also

found between autistic and neurotypical subjects in several other

independent studies (23, 76, 77). Indeed, the family Veillonellaceae

belongs to the order Selenomonadales within the class Negativicutes,

and they are all members of the phylum Firmicutes (78). Species of

Firmicutes could upregulate IFN-g production and significant

increased ratio of Firmicutes/Bacteroidetes has been reported

associated with not only with ASD (77, 79), but also with other

conditions that were found to be more prevalent within ASD

subjects, such as obesity and diabetes (24, 80, 81).

The relative abundances of the species of Akkermansia

muciniphila, Pyramidobacter piscolens, and Anaerotruncus

colihominis were also found to be more enriched in the faces of

ASD children in the IFN-g-High group.Akkermansia muciniphila is a

mucin-degrading bacterium, which has been suggested to play a role

in inflammation and gut permeability (82, 83). Lower relative

abundances of Akkermansia muciniphila has been found in feces of

autistic children, which might reflect an indirect evidence of a thinner

gastrointestinal mucus barrier in ASD children (83). Interestingly,

there are also studies that found Akkermansia was present at higher

relative abundances in feces of ASD individuals (76, 84), or even at

very high levels (up to 59%) in several autistic individuals (23).

Results from these previous studies suggest that great diversity in the

abundances of Akkermansia muciniphila may exist among different

ASD individuals. In the present study, we found that within the

spectrum of autism, there do exist significant differences in the

relative abundances of Akkermansia muciniphila between ASD

children in the IFN-g-High and the IFN-g-Low groups.

Pyramidobacter piscolens is one of the members of the phylum

Synergistetes. It was first isolated from human oral cavity (85) and

is related to oral dysbiosis, which may result in periodontal diseases

and abscess (86). Oral dysbiosis and these oral health conditions are

also found to be more common in ASD children (87). Further studies

revealed that Pyramidobacter piscolens could also be cultured from

small intestine abscess, and it is now considered that Pyramidobacter

piscolens is part of the commensal human microflora which plays a

functional role but may also act as opportunistic pathogens (88).

Additionally, Pyramidobacter piscolens is one of the core species

which can regulate lipid deposition (89) and may influence blood

glucose metabolism (90). Anaerotruncus colihominis belongs to

phylum Firmicutes. It is a short-chain fatty acids (SCFA) producing

species which is presumed to be anti-inflammatory and is related to

autoimmunity (91–94). The abundance of Anaerotruncus colihominis

was found to be negatively associated with cognitive function scores

in patients with Alzheimer’s disease (95). Significant lower

abundances of Anaerotruncus colihominis has also been found in

patients with rheumatoid arthritis (RA) (94), and a number of clinical

and basic studies have demonstrated roles of IFN-g in the

pathogenesis of RA (96). It has also been reported that

Anaerotruncus colihominis possesses the ability to produce acetic

and butyric acids (91), which could have a role in regulating gut
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epithelial barrier function and play possible roles in ASD (97, 98).

Although both of the Pyramidobacter piscolens and Anaerotruncus

colihominis play functional roles in the metabolism of bioactive

compounds which is perturbed in ASD, studies of the direct roles

of the two species in the pathophysiology of ASD is rare. Our results

demonstrated that there were significant differences in the relative

abundances of Pyramidobacter piscolens and Anaerotruncus

colihominis between ASD children in the IFN-g-High and the IFN-

g-Low groups, and the biological significance of these findings

warrants further research.

The results of the LEfSe analysis also revealed underrepresentation

of Bacteroides xylanisolvens and Bifidobacterium longum in the IFN-g-
High group. These two bacterial species are both non-pathogenic and

process many probiotic qualities (99–101). Bacteroides xylanisolvens

belongs to the second most abundant genus Bacteroides in the human

intestine and they can break down many sugars including dietary fiber

and xylan (102, 103). It has been demonstrated that some strains of

Bacteroides could modulate the function of innate immune system

(104) and have the potential to relieve some behavioral and

physiological abnormalities associated with ASD (105, 106).

Bifidobacterium longum is considered to be one of the earliest

colonizers of the gastrointestinal tract in infants (107). The

domination of Bifidobacterium in infant’s gastrointestinal tract could

hinder pathogenic organisms’ colonization through antimicrobial

activity and competitive exclusion manners (108). Bifidobacterium

longum could also serve as a scavenger because it metabolizes a large

variety of substrates including bile salts, human milk oligosaccharide

and some other complex oligosaccharides (107, 109, 110). The efficacy

of Bifidobacterium longum in regulating immune (including its ability

to suppress the expression of IFN-g in vivo) and central nervous system
functions and alleviating psychiatric disorder-related behaviors

including ASD and obsessive-compulsive disorder has also been

demonstrated (100, 101, 111). It is worth mentioning that

Bacteroides and Bifidobacterium species were also found to be

depleted in ASD children in other independent cohort studies (76,

83, 112, 113). Associations between gut microbiota and ASD certainly

warrant further studies to elucidate a causation role in the pathogenesis

of ASD. However, the consistency of these results across different

ethnic groups using different sequencing and assay methods, together

with their efficacy in alleviating autistic symptoms, strongly suggest that

the loss of representation of these bacterial taxa is very robust and may

be tightly associated with the pathophysiology of ASD.

For the predicted KEGG pathway analysis results, we found

that the IFN-g-High group was less enriched in pathways related

to amino acid metabolism, carbohydrate metabolism and lipid

metabolism. As key partners involved in the maintenance of

human physiology and health, gut microbes influence greatly on

host metabolism and help balance important vital functions such

as food digestion and nutrient bioavailability for the host (114).

The relatively depleted pathway orthologues markers related to

metabolism of amino acid, lipid and carbohydrate in the IFN-g-
High group suggested that children in this subgroup may have

higher risks of suffering from more sever metabolic dysfunction.

Indeed, a great quantity of work has shown that children with

ASD have perturbed metabolism as compared to neurotypical

children (112, 115–123). For the amino acid metabolism, altered
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amino acid profile has been found in blood plasma (116, 117),

urine (118, 119) and fecal (112) samples collected from ASD

individuals. And it was postulated that gut microbial metabolism

of phenylalanine and tyrosine may be involved in the pathogenesis

of autism (120). Impaired carbohydrate digestion (121) and lipid

metabolism (122) were also found in ASD individuals. The

abundance of affected bacterial phylotypes in the intestines or

duodenum of ASD individuals was found to be associated with

expression levels of disaccharidases and transporters, which is

important for carbohydrate digestion and transport (121, 123).

Since Bacteroides spp. and Bifidobacterium spp. are specialized as

primary and secondary degraders in the metabolism of complex

carbohydrates (124), the depleted species of Bacteroides and

Bifidobacterium in the IFN-g-High group may impact the

carbohydrate metabolism capability. Additionally, as is

demonstrated in this study, the abundances of genes encoding

six families of carbohydrate-active enzymes in the fecal

microbiome were significantly different between the IFN-g-High

and IFN-g-Low groups, this may partly explain the possible

mechanisms underlying the differences relating carbohydrate

metabolism between the two groups. Furthermore, some

bacterial species possess the ability to ferment dietary

carbohydrates into the production of short chain fatty acids

(SCFAs) (125). SCFAs can readily cross the gut–blood and

blood–brain barriers and induce widespread effects on gut and

brain via impact on epithelial barrier integrity, neurotransmitter

synthesis and immune modulation (126–128). Since some of the

metabolites such as Omega-6 (n-6) and Omega-3 (n-3)

polyunsaturated fatty acids (PUFA) are essential nutrients for

brain development and function, these metabolic alterations may

be associated with the severity of autistic symptom (122, 129, 130).

All these results further support the notion that ASD is a pervasive

developmental disorder with multisystem dysfunction and

metabolic disturbance.

Functional profiles analyses from the metagenomic data in our

study also revealed that the abundances of genes related to infection

(Pathogen gene: purT, Host species: Homo sapiens) and

gastroenteritis (Pathogen gene: flhF, Host species: Homo sapiens)

were significantly enriched in the IFN-g-High group. Gastrointestinal
disorders are one of the most common medical conditions that are

comorbid with ASD, and these comorbidities can cause greater

severity in autistic symptoms (131). The results from our study

further suggest that children in the IFN-g-High group may suffer

from higher incidence or severity of infection and gastroenteritis, but

these results need to be further validated with medical examination.

Another significant difference is the underrepresentation of the gut–

brain module (MGB010) associated with histamine degradation in

the IFN-g-High group. Altered expression of histamine signaling

genes has been found in ASD populations (132), and antagonism of

histamine receptors could reduce autistic behavioral symptoms in

ASD individuals and several relevant animal models (132–135).

Moreover, histamine receptor antagonists can suppress IFN-g
production (136), while IFN-g can also modulate histamine-

induced IL-6 and IL-8 production (137). Our data suggests the

histamine degradation capability in fecal microbiota were much

more impaired in children with higher levels of IFN-g, and the
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decreased capability of histamine degradation may partly affect the

autistic behavioral symptoms in ASD children.

For the correlation analysis, the relative abundance of Bacteroides

xylanisolvens showed most significant relationships with not only

several autistic behavioral characteristics, but also with one of the

carbohydrate-active enzymes families (GT28). Additionally,

Bacteroides xylanisolvens was the top discriminating features in the

multivariatemodels using the random forests algorithm, suggesting its

importance in the separation of the two groups. Our results of the

multivariate analysis indicate that although both of the two groups are

within the spectrum, they canbe separated using the IFN-g as indicator
to obtain subtypes with more similar features. Based on the cross

validation, theROCcurves built using 10 variables achieved anAUCof

0.835. In this study, the ROC curves were generated by MCCV using

balanced sub-sampling. In eachMCCV, two thirds (2/3)of the samples

were used to evaluate the feature importance. The top 2, 3, 5, 10…

important featureswere then used to build classificationmodelswhich

were validated on the 1/3 samples that were left out (54). Since more

variables consistently leads to better prediction, and due to the

relatively small sample size in this study, there exists a risk of

overfitting. Therefore, it is important to evaluate the models with a

large number of samples to estimate their generalizability with

high confidence.

Since INF-g level varies widely within the heterogeneous broad

spectrum of ASD, and as is shown in our study, the behavioral

symptoms, gut microbiota composition and some metabolic features

of ASD children in the INF-g-High group were different from those in

the INF-g-Low group, utilization of this information to segregate ASD

children into different subgroups will greatly facilitate the

pathophysiology study of a more homogeneous clusters of ASD in the

future. Additionally, although there still lack of solid evidence, several

anti-inflammatory compounds (such as Palmitoylethanolamide,

celecoxib, flavonoid luteolin) have been studied to investigate their

effect as an adjunctive therapy in improving behavioral symptoms in

autistic individuals (64, 138, 139). Since INF-g is an important pro-

inflammatory cytokine involved in ASD but varies widely within the

heterogeneous spectrum, we believe that using these anti-inflammatory

drugs inASDsubgroupwithhigh INF-g levelswill yieldmore promising

and consistent results.

As a preliminary study, there are several limitations ought to be

mentioned. Firstly, only children with ASD were enrolled in this

study, lacking typically developing children as controls, and the

comparison of these obtained results with a control group can be

informative. Secondly, the sample size in this study is relatively

small, which may decrease the statistical power, and there exists a

risk of overfitting for the MCCVmodel. Results of this study need to

be validated in an independent larger cohort. Thirdly, additional

risk factors (such as having a close relative with ASD, very low birth

weight, and complications at delivery) were not collected from the

participants in this study. The results should be interpreted with

caution due to the observational nature of the present study. Also,

consistent with the sex ratio of ASD, participants were mostly

males, which limited the analyses of sex differences. Finally, only

IFN-g was measured in this study without testing other cytokines

such as interleukin and TNF, which limits the ability to explore the

full picture of immunological profiles and characteristics in ASD
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children. Results of this study demonstrate only associations but not

causations. Further studies are warranted to reveal the cause–effect

relationships among IFN-g levels, gut microbiota composition and

autistic behavioral symptoms.

Despite of these limitations and the preliminary nature of this

study, our results suggest that levels of IFN-g derived from gdT cell

could serve as one of the potential candidate biomarkers to subtype

ASD individuals to reduce heterogeneity and produce subgroups

which are more likely to share a more similar phenotype and etiology.

Our results also further support the notion that there exits

comprehensive and complex interaction among gut microbiota,

immune function and autistic phenotypes. And a better

understanding of the associations between immune function and

gut microbiota composition as well as metabolism abnormalities in

ASD would provide us deep insights into the pathogenesis of ASD

and give us important clues to facilitate the development of systemic

biomedical treatment for this complex neurodevelopmental disorder.
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