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Université libre de Bruxelles, Belgium

*CORRESPONDENCE

Poonkuzhali Balasubramanian

bpoonkuzhali@cmcvellore.ac.in

SPECIALTY SECTION

This article was submitted to
Alloimmunity and Transplantation,
a section of the journal
Frontiers in Immunology

RECEIVED 16 November 2022

ACCEPTED 23 January 2023
PUBLISHED 02 February 2023

CITATION

Balakrishnan B, Kulkarni UP, Pai AA,
Illangeswaran RSS, Mohanan E, Mathews V,
George B and Balasubramanian P (2023)
Biomarkers for early complications post
hematopoietic cell transplantation:
Insights and challenges.
Front. Immunol. 14:1100306.
doi: 10.3389/fimmu.2023.1100306

COPYRIGHT

© 2023 Balakrishnan, Kulkarni, Pai,
Illangeswaran, Mohanan, Mathews, George
and Balasubramanian. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 02 February 2023

DOI 10.3389/fimmu.2023.1100306
Biomarkers for early
complications post
hematopoietic cell
transplantation: Insights
and challenges

Balaji Balakrishnan1, Uday Prakash Kulkarni2, Aswin Anand Pai2,
Raveen Stephen Stallon Illangeswaran2, Ezhilpavai Mohanan2,
Vikram Mathews2, Biju George2

and Poonkuzhali Balasubramanian2*

1Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of
Technology, Vellore, India, 2Department of Haematology, Christian Medical College, Vellore, India
Hematopoietic cell transplantation is an established curative treatment option for

various hematological malignant, and non-malignant diseases. However, the

success of HCT is still limited by life-threatening early complications post-HCT,

such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome

(SOS), and transplant-associated microangiopathy, to name a few. A decade of

research in the discovery and validation of novel blood-based biomarkers aims to

manage these early complications by using them for diagnosis or prognosis.

Advances in this field have also led to predictive biomarkers to identify patients’

likelihood of response to therapy. Although biomarkers have been extensively

evaluated for different complications, these are yet to be used in routine clinical

practice. This review provides a detailed summary of various biomarkers for

individual early complications post-HCT, their discovery, validation, ongoing

clinical trials, and their limitations. Furthermore, this review also provides insights

into the biology of biomarkers and the challenge of obtaining a universal cut-off

value for biomarkers.
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Introduction

Hematopoietic cell transplantation (HCT) from matched related or unrelated donors to

recipients with various hematological disease conditions has become a widely accepted curative

treatment of choice. Especially with malignant hematological diseases, the graft versus tumor/

leukemia effect (GVT) is a beneficial phenomenon expected to improve the outcome of the

procedure. However, a similar effect where graft acting against the recipient’s cells, such as graft
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versus host disease (GVHD), leads to an undesirable outcome. Graft

versus host disease (GVHD) still remains a predominant cause of

morbidity and mortality in patients following HCT. Clinically GVHD

may present as acute (aGVHD) or chronic (cGVHD) based on the

symptoms and time of their presentation. The classical pathway of

occurrence of GVHD includes damage of the target organs such as

skin, eye, gastrointestinal (GI) tract, liver, or lung, followed by the release

of a storm of cytokines, which increases the chance of the donor’s

immunocompetent cells to recognize the host’s alloantigens (1). More

than half of HCT patients develop GVHD. Although GVHD is treated by

several immunosuppressive agents, responsiveness to these agents,

GVHD related morbidity and mortality are still concerns that affect

HCT outcomes greatly. In addition to GVHD, other serious

complications include hepatic or pulmonary sinusoidal obstruction

syndrome (SOS), opportunistic infections (bacterial, viral & fungal),

and multiorgan damage. Attempts to improve HCT outcomes include

predicting patients who are at high risk of developing post HCT

complications, predicting their responsiveness to treatment and early

diagnosis of these complications. Composite biomarkers of prognostic

values have been recently used in confirming the diagnosis of some of

these complications (2, 3).

Excluding the known likely causal factors for some of the adverse

effects (such as the donor status, age, comorbidity, sex mismatch between

donor and recipient, conditioning, and post-HCT immunosuppressive

drug levels), various centers performing allogeneic HCT are

concentrating on finding efficient, reliable and robust markers from

biological fluids for informative, early detection or differential diagnosis

of these complications to optimize the treatment as well as improving the

outcome (4–6). Many have successfully reported a variety of blood

plasma, serum, and fecal biomarkers, while only a handful of these is

repeatedly tested and validated and likely to be used as a biomarker

routinely (7). The biomarkers from these sources may be soluble factors,

cellular markers, or genetic markers. While many candidate biomarkers

from plasma were evaluated and verified in independent cohorts, multi-

center clinical trials are still needed to validate their clinical applicability.

Similarly cell-free DNA have also been recently evaluated for identifying

an array of post-HCT complications including aGVHD, relapse,

infection, engraftment failure and chimerism status with an objective

of employing a single test/technique for elucidating a comprehensive

panel of post-HCT complications (8).

However, one of the major limitations of these biomarker studies is

the varying cut-off value as a reference to predict or diagnose these

complications between centers. Moreover, and not all biomarkers are

referenced across the normal cut-off values between healthy individuals

and patients undergoing transplantation. Often these biomarkers are

tested between HCT patients with and without complications. This

review provides insights into the biological significance of biomarkers,

their discovery and validation for HCT complications, challenges in

quantification or techniques, and lack of universal target cut-offs.
The biological significance
of biomarkers

Plasma biomarkers have been extensively evaluated for

complications post HCT, since classic clinical risk scores such as
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HCT related co-morbidity index often fail to predict, diagnose or

prognose such complications. The ultimate aim of plasma biomarker

evaluation is its clinical translatability in predicting HCT

complications, their severity and their response to treatment. On

the other hand understanding the biology of these biomarkers would

also pave way for developing more rational and effective treatment

strategies for HCT complications. However, literature on biology of

the biomarkers for HCT complications appear scanty. While

increasing evidences suggest endothelial injury as a common cause

for most HCT complications, a complete understanding is still

lacking. Here we review the biology of a few biomarkers which are

extensively evaluated for multiple overlapping complications.
ST2

The suppression of tumorigenicity 2 (ST2) is a receptor belonging

to the interleukin (IL)-1 family and binds specifically to IL-33. ST2 is

present in two isoforms: a transmembrane form and a soluble form.

The membrane-bound ST2 receptor is expressed on various

hematopoietic cells such as T helper 2 (Th2) cells, natural killer

(NK) cells, mast cells, antigen-presenting cells, and regulatory T cells

(Tregs) (9, 10). The IL33/ST2 complex signaling in these cell types has

been observed to have proinflammatory and anti-inflammatory

responses depending on the disease type (11–13). During acute

GVHD, a surge in IL33 has been observed both in the clinical

scenario and in mice models of alloHCT. The mucosal barrier

tissues, such as the skin, gastrointestinal tract, and liver, have been

significant sources of IL33. During the alloHCT conditioning

regimen, damage to these tissues increases IL33 production/release

that drives donor Th1 cells expansion leading to inflammatory

phenotype and further tissue injury. Recently, it was demonstrated

that IL-33 acts directly on donor T cells and increases Tbet expression

leading to enhanced Th1 cell polarization and expansion. However,

despite these observations of elevated IL-33, this could not be used as

a specific biomarker for aGVHD due to its pleiotropic effects.

The soluble ST2 (sST2) receptors are expressed in endothelial cells,

epithelial cells, fibroblasts, and T cells (14). The soluble ST2 act as decoy

receptors, sequestering free IL-33, thereby preventing IL-33-mediated

proinflammatory actions (15, 16). Thus, sST2 was generally considered to

negatively regulate IL-33 function (Figure 1). However, this contradicts

the association of elevated sST2 with GVHD severity in patients. A

possible explanation given by earlier studies was that the release of sST2

in the serum occurs very late in the inflammatory response resulting in

the inability of sST2 to sequester circulating IL33 (17).

Zhang J et al. demonstrated in a minor mismatch GVHD model

and xenograft GVHD model that sST2 was secreted by intestinal

stromal cells, endothelial cells, and alloreactive T cells. More

importantly, as GVHD progresses, it was shown that pathogenic T

cells (Th17 and Tc17) secrete more sST2 and express less mST2,

thereby correlating elevated plasma sST2 levels during alloreactivity.

Transient blockade of sST2 during GVHD increased Th2

transcription factor GATA3 and cytokine IL-4, improving Th2

phenotype, which protects against severe GVHD (18).

An overall picture of the ST2/IL33 axis in a severe GVHD context

remains elusive. Whether sST2 is involved in the pathophysiology of
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GVHD or it is just a circulating biomarker indicating GVHD severity

remains to be clarified.
Reg3a

Regenerating islet-derived -3 a (Reg3a) alpha is one of the

antimicrobial peptides secreted by Paneth cel ls of the

gastrointestinal tract and is a C-type lectin having bactericidal

actions on most gram-positive bacteria (19). The crypts’ innate

lymphoid cells 3 (ILC3) secrete IL22, which induces Paneth cells to

secrete Reg3a (Figure 1) (20). During HSCT, the crypt cells, including

the Paneth cells, are damaged; hence, their numbers are inversely

associated with GVHD severity (21). GVHD-induced damage to the

gastrointestinal crypt and intestinal mucosa decreases IL22

production and releases antimicrobial peptides stored in these

cryptic cells into the bloodstream. Thus, the increased plasma level

of Reg3a was strongly associated with GI-GVHD enabling their use

as a biomarker (22). It was also observed in-vivo in mice models of

GVHD that the progression of GVHD suppresses Reg3g (mouse

homolog of human Reg3a) in the GI tract, further worsening GVHD.

However, administration of IL22 has been shown to protect the crypt

from damage, thereby preventing Reg3g from being released into

circulation. Mechanistically it was demonstrated that Reg3g functions
as an anti-apoptotic protein for intestinal stem cells (ISCs) and

Paneth cells (23). Thus, Reg3a has the dual role of being an

antimicrobial peptide as well as a survival signal preventing

apoptosis of ISCs and Paneth cells.

While Il22 from host cells was recognized to promote intestinal

stem cell survival and suppress GI-GVHD (24), a few studies have

also shown that IL22 from donor cells augments GI-GVHD (25, 26).

In a mouse model of steroid-refractory GVHD, by Song Q. et al.

demonstrated that IL22 was produced by donor Th/Tc22 cells,

leading to excess production of Reg3g. However, such excess Reg3g
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was shown to result in dysbiosis and worsening of GVHD. Thus,

REG3g could be a therapeutic target for treating steroid-refractory

GVHD (27). Hence, whether Reg3alpha is a therapeutic target or a

biomarker remains an enigma.
TIM3

T cell immunoglobulin and mucin domain 3 (TIM3) is a

transmembrane receptor protein expressed on interferon g
producing T cells, Tregs, myeloid cells, natural killer cells, and mast

cells (28). The primary function of TIM3 is to inhibit Th1 responses

and cytokine expressions. Hence, its dysregulation correlates with

most autoimmune diseases, such as multiple sclerosis (29) and type I

diabetes (30). Increased expression of TIM3 has been observed in

solid tumors such as lung cancer, gastric cancer, colon cancer, etc.,

and their high expression levels were associated with low overall

survival (31).

Elevated levels of TIM3 in the plasma of patients with GVHD (32)

and osteosarcoma (33) have been observed, facilitating their use as

potential biomarkers. However, the mechanism of soluble TIM3

release remains an enigma. It could be a splice variant, a

metalloproteinase-dependent cleaved product, or a soluble fragment

from apoptotic cells. While soluble TIM3 was found to express as a

splice variant in mice splenocytes (34), their existence in humans is

still debatable.

The mechanistic understanding of TIM3’s action in aGVHD

remains incomplete and is not explored much. Oikawa et al.

demonstrated in a murine model of GVHD that TIM3 plays a

crucial role in the activation of CD8+ T cells, which are the

primary effectors in target organ destruction in aGVHD. Two

weeks post-transplantation, the CD8+ T cells in the spleen and liver

of GVHD mice showed enhanced TIM3 and interferon g (IFNg)
expression. Moreover, the CD8+T cell infiltration was dominant in
FIGURE 1

Underlying tissue damage during GVHD and release of soluble biomarkers. HSCT transplant procedures, including conditioning regimen, damage
underlying endothelium, inflames the tissue and releases soluble factors that could be used as biomarkers during GVHD.
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the liver of GVHDmice (35). However, the exact mechanism of TIM3

induction in these cells and their shedding into peripheral circulation

remains unclear.
Elafin

Elafin is a biomarker associated with the diagnosis and prognosis

of skin GVHD. It is an epithelial protein secreted by keratinocytes in

response to inflammatory cytokines. Hence elafin’s expression is

higher in the inflamed epidermis and absent/low in the normal

epidermis. It is a peptidase inhibitor-3 or skin-derived anti-

leukoprotease (SKALP) with antimicrobial activity and priming

innate immune responses (36). It was observed that when induced

by GVHD mediating inflammatory cytokines, human keratinocytes

express elafin significantly (37, 38). However, the mechanism by

which elafin from keratinocytes is released into circulation during

GVHD remains unclear.
Biomarkers for acute GVHD

Biomarkers for acute GVHD have been extensively evaluated over

the past decade in multiple HCT centers worldwide. These range from

plasma, cellular, genetic and in a few cases, a combination. Biomarkers

for aGVHD have been measured pre-HCT to personalize GVHD

prophylaxis, post-HCT before or at the onset of GVHD, to confirm

the diagnosis of GVHD or after treatment to predict treatment response.
Biomarkers measured pre-transplant for
modulating GVHD prophylaxis

CD86 is the ligand for costimulatory (CD28) and coinhibitory

(CTLA-4) molecules. Karaban et al. reported that the recipients’

CTLA-4 CT60GA[GG] genotype, myeloablative conditioning

regimen, and use of an unrelated donor were independent

predictors of acute GVHD (39). Also, the same group has shown

that donor and recipient CTLA-4 mRNA and recipient membrane

protein expression measured before transplantation are prognostic

for acute GVHD (40). Later they also reported a lack of association of

CD86 gene polymorphisms with GVHD. However, they noted a gene-

gene interaction wherein patients with a specific CD86 genotype and

a CTLA-4 genotype was associated with an increased risk of aGVHD.

With a combination of specific donor CD86 genotype and recipient

CTLA-4 genotype there was an elevated GVHD risk (41).

In a study exploring the role of donor genetic variations in

glucocorticoid pathway on steroid responsiveness of GVHD,

although donor SNPs in ZAP70 and DUSP1 genes were associated

with response, these were not statistically significant on adjustment

for multiple testing (42). Cytokine biomarkers – TLR4 and TNFR1

are significantly increased in steroid-refractory acute GVHD

compared to those with steroid-responsive GVHD (43).

DNAX accessory molecule-1 (DNAM-1, or CD226) is a leukocyte

adhesion molecule constitutively expressed on most CD4+ T cells, CD8+

T cells, natural killer (NK) cells, and monocytes. A retrospective study

from Japan showed that higher soluble DNAM-1 measured between day
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-7 to day 0 of an allotransplant was predictive of a higher risk of acute

GVHD. Using a cut-off of 30pM for soluble DNAM-1, the sensitivity for

predicting acute GVHD was 43.8%, while the specificity was 82.6% (44).

Serum IL-6 levels measured pre-conditioning and one week after

transplant were predictive of acute GVHD and transplant-related

mortality (45), although, the pleiotropic nature of IL-6 may be a

concern. Specific donor graft characteristics like an elevated proportion

of T cells with low CD127 and high PD-1 expression have been

associated with subsequent acute GVHD (46).
Biomarkers measured post-transplant
before or at GVHD onset

Specific patterns of immune reconstitution following transplantation,

such as increased CD8+ T cells (both naïve and memory) in the early

post-transplant period (on day 15), have been associated with

development of subsequent acute GVHD (47).

Elevated plasma REG3a measured at the onset of GVHD predicted

non-response to treatment at 4 weeks and also 1 year non-relapse

mortality (22). Elevated plasma elafin at the onset of skin GVHD is

associated with higher maximum grade of GVHD and also non-relapse

mortality (48). Also, elevated ST2 predicts steroid resistance in acute

GVHD and non-relapse mortality (4). In non-myeloablative transplants,

elevated plasma ST2, REG3a, and elafin measured early post-transplant

were predictive of acute GVHD (49). Similarly, in T-replete

haplotransplants, elevated plasma ST2 and REG3a measured early

post-transplant were predictive of acute GVHD and non-relapse

mortality (50). In patients undergoing matched donor T deplete

transplantation using anti-thymocyte globulin or alemtuzumab, a

biomarker panel including HGF, elafin, sIL-2Ra, sTNFR1, and REG3a
was predictive of GVHD and its severity (51).

Lower serum sIL-27Ra at the time of neutrophil engraftment is

predictive of acute GVHD and has been shown to correlate with other

serum GVHD biomarkers (52). Elevated plasma levels of sIL2-Ra and

TIM-3 in the early post-transplant period predicted increased

transplant-related mortality and acute GVHD (53).

Similarly, expression patterns of genes and a few microRNAs have

also been evaluated as biomarkers post HCT. Transcripts levels of

FOXP3, ICOS, CD52, and CASP1 genes involved in alloreactive

immune responses and immune cell interactions were predictive of

acute GVHD using a personalized modeling-based gene selection

(PMGS) method (54). A risk score developed using metabolite and

transcriptome analysis incorporating 5 metabolite markers from

glycerophospholipid metabolism was predictive of acute GVHD

(55). miR-155 and miR-146a measured in target tissues at the time

of GVHD onset and measured in extracellular vesicles in serum and

urine in the early post-transplant period before GVHD onset have

been predictive of acute GVHD (56).
Biomarkers measured at symptom onset for
supporting the diagnosis of GVHD
(elafin, calprotectin)

Fecal, and not serum calprotectin is a biomarker for acute gut

GVHD and can potentially help diagnose gut GVHD (57). Also, low
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tissue amphiregulin expression on immunohistochemistry has been

reported in 74% of patients with acute gut GVHD and might aid in

diagnosis without classic apoptotic changes (58). Similarly, tissue, and

not plasma, elafin on immunohistochemistry can aid in diagnosing

acute GVHD involving the skin (59, 60).

Analysis of exosomal miRNA expression using quantitative RT-

PCR on plasma samples showed that miR-128 was elevated in late-

onset GVHD and is a promising diagnostic marker of late-onset

GVHD (61). However, the turnaround times for these biomarkers

may limit their practical utility.
Biomarkers measured at the onset of GVHD
and after treatment of GVHD for potentially
predicting response

The Mount Sinai Acute GVHD International Consortium

(MAGIC) algorithm probability score (MAP score) based on

plasma ST2 and REG3a is a response biomarker for acute GVHD.

After four weeks of therapy, it was shown to predict non-relapse

mortality better than the change in clinical symptoms. The MAP

score was predictive of non-relapse mortality within every clinical

grade of acute GVHD (62). The MAP score has been shown to be

helpful when measured at day 28 along with the disease risk index

could also identify patients at high relapse risk and low non-relapse

mortality risk who can potentially benefit from strategies to enhance

the graft versus leukemia effect for relapse prevention (63). Rising

REG3a following treatment for GVHD using a novel combination of

upfront steroids+ruxolitinib was shown to be a predictor of refractory

GVHD (64). However, there is no prospective clinical study on

biomarker-based intervention for adding second-line therapy for

acute GVHD. A list of various biomarkers measured at different

stages during HCT procedure and/or at GVHD onset, with potential

clinical values that could help in prediction, diagnosis or prognosis for

acute GVHD is summarized in Table 1.
Biomarker guided pre-emptive therapy
for GVHD

Initial discovery and validation of ST2 as a biomarker for aGVHD

also led to studies investigating inhibitors for ST2 in animal models

(65). While this is still in progress, biomarker evaluation has

progressed towards guided therapy/intervention for aGVHD with

already existing anti-GVHD strategies. Gergoudis et al. have recruited

patients at high risk for developing steroid-refractory GVHD (SR-

GVHD) based on the MAGIC algorithm probability (MAP) scores on

days 7 and 14 post-HSCT. These patients were then treated with

alpha-1 anti-trypsin (AAT), a serine protease inhibitor with proven

activity against GVHD. Although AAT treatment was well tolerated,

the incidence of SR-GVHD was not lowered (66). Nevertheless, the

power of biomarker-based SR-GVHD prediction could not be

undermined. Instead, such studies pave the way for investigating

more treatment options. A recent study involving a prospective phase

2 trial stratified patients based on sIL-2Ra and IL-15 levels. High-risk

patients (sIL-2Ra 4500 ng/L or IL-15 31 ng/L) were treated with
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rabbit anti-thymocyte globulin (ATG) 3 mg/kg on day 8 post-

transplant and were compared with controls who had the

biomarkers measured but did not participate in this interventional

trial. A reduction in GVHD was observed in these patients compared

to high-risk controls who did not receive ATG (Hazards ratio of 0.48),

signifying the feasibility and effectiveness of such an approach (67).
Biomarkers for sinusoidal
obstruction syndrome

Sinusoidal Obstruction Syndrome (SOS), previously, known as

veno-occlusive disease, is a severe complication post HSCT affecting

liver sinusoidal endothelial cells. About 13 to 20% of allogeneic HSCT

recipients develop SOS and the severe form of SOS is associated with

multiorgan failure and mortality (68).

Typically, SOS has been observed between one to three weeks

post-HSCT. Often clinically indistinguishable from other causes of

weight gain, ascites, abdominal pain, and jaundice.

Factors such as conditioning regimen drugs or radiation, releasing

cytokines from injured tissues, and the endogenous microbial

substances that cross the compromised mucosal barriers lead to the

activation of sinusoidal endothelial cells. Sustained activation can

progress to endothelium damage (69). The sinusoidal endothelial cells

swell and round, forming gaps in the sinusoidal barrier. These

alterations facilitate the egress of leucocytes, RBCs, and cellular

debris into the perisinusoidal space beneath the endothelial cells

and disrupt the endothelial lining leading to sinusoidal embolisms

and obstruction of the sinusoidal flow, liver dysfunction, ascites

ultimately leading to multiorgan failure (70, 71).

Some reliable markers of endothelial activation and damage are

soluble cellular adhesionmolecules (sVCAM1, sICAM1, and sP-selectin),

coagulation factors (Von Willebrand factor (VWF), thrombomodulin

(TM) and plasminogen activator type-1 (PAI-1)) (Table 2).

The microenvironment of the endothelium is significantly altered in

patients who undergo allo-HCT. Allo-HCT patients who develop SOS

have a significant increase in both VWF and TM levels (69, 84).

Furthermore, in patients receiving both tacrolimus and sirolimus as

GVHD prophylaxis, levels of VWF and TM (together with ICAM-1 and

E-selectin level) serve as SOS predictive biomarkers one-week post HCT

(69). Two weeks post- HCT, plasma levels of REG3a, sVCAM1,

sICAM1, and TIM3 are shown to be consistently elevated in patients

who developed SOS (80). P-selectin levels are shown to be selectively

higher in patients who develop severe SOS and elevated circulating levels

of PAI-1 allow differential diagnosis between SOS and GVHD, as patients

with SOS show elevated PAI-1 but not those with GVHD (81, 85, 86).

In a recent study, a composite diagnostic panel of three

biomarkers: L-Ficolin, hyaluronic acid (HA), and VCAM-1, was

reported to detect patients at high risk of SOS as early as the first

day after HCT, even before clinical manifestation of SOS (82).

Additionally, it was proposed that the biomarker panel ST2, ANG2,

L-Ficolin, HA, and VCAM-1 could be helpful in the diagnosis of SOS

(82). Inflammatory cytokines such as IL2, IL6, IL33, IFNg, and TNFa
are mediators of EC activation and damage. Both TNFa and soluble

IL2 receptor a (sIL2Ra) are shown to be elevated during GVHD and

SOS (90, 93, 94).
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TABLE 1 List of various types of biomarkers with clinical values that could help in the prediction, diagnosis, or prognosis for Acute GVHD.

S.No Biomarker Type Biological
Specimen(s)

Detection
Method(s)

Biomarker
level(s)

Clinical
Value Ref(s)

1
CD86/CTLA4
polymorphisms

Immunological DNA Genotyping Polymorphism Predictive (12)

2 DNAM-1/CD226 Immunological Serum ELISA Increased levels Predictive (9)

3 IL-6 Immunological Serum ELISA Increased levels Predictive (13)

4 CD127/PD-1 Immunological
Peripheral
Blood

Flow cytometry
High frequency of PD-1+ T cells and low
frequency of CD127+ T cells in donor graft

associated with grades II-III aGVHD
Predictive (14)

5
FOXP3 and

ICOS
Immunological

Peripheral
Blood

RT-PCR
Low levels associated with aGVHD

Increasing levels correlate with response to anti-
GVHD therapy

Diagnostic
/Prognostic

(21)

6
PAF, LysoPC,
PE, PC, and
LysoPE

Metabolic
(Biochemical)

Plasma LC-MS aGVHD risk score developed
Predictive
/Prognostic

(22)

7 sIL2Ra Immunological Plasma/Serum ELISA Decreased levels Prognostic (23)

8
miR-146a and

miR-155
MicroRNA Plasma/Serum RT-PCR Increased expression

Diagnostic
/Prognostic

(24)

9 Calprotectin Immunological Serum ELISA Increased levels
Diagnostic
/Prognostic

(26)

10 Amphiregulin Immunological Serum ELISA Decreased levels
Diagnostic
/Prognostic

(27)

11
Exosomal miR-

128
MicroRNA Plasma RT-PCR Increased expression

Diagnostic
Biomarker for
Late-Onset
aGVHD

(30)

12 Elafin Epidermal Tissue Immunohistochemistry Increased expression Diagnostic
(28,
29)

13
Donor ZAP70

and DUSPI SNPs
Biochemical DNA Genotyping Polymorphism Prognostic (31)

14
TLR4 and
TNFR1

Immunological Serum ELISA Increased levels Prognostic (32)

15
ST2, REG3a and

Elafin
Immunological Plasma ELISA Increased levels

Predictive/
Prognostic
(Non-

myeloablative
HCT setting)

(17)

16
REG3a and

Elafin
Immunological Plasma ELISA Increased levels

Predictive/
Prognostic

(Myeloablative
HCT setting)

(16)

17 ST2 and REG3a Immunological Plasma ELISA Increased levels

Predictive/
Prognostic

(Haploidentical
HCT setting)

(18)

18
HGF, Elafin, sIL-
2Ra, sTNFR1,
and REG3a

Immunological Plasma ELISA Increased levels

Predictive/
Prognostic
(Matched T-
cell deplete
HCT setting)

(19)
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CD, Cluster of Differentiation; CTL14, cytotoxic T-lymphocyte–associated antigen 4; HGF, Hepatocyte growth factor; miRNAs, microRNAs; DNAM1, DNAX accessory molecule-1; IL-6, Interleukin-
6; PD-1, Programmed Cell Death Protein 1; FOXP3, forkhead box P3; ICOS, Inducible T-cell COStimulator; PAF, Platelet-activating factor; LysoPC, Lysophosphatidylcholines; LysoPE,
Lysophosphatidylethanolamine; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; LC-MS, Liquid Chromatography-Mass Spectrometry; ZAP70, Zeta Chain Of T Cell Receptor Associated
Protein Kinase 70; DUSP1, Dual specificity protein phosphatase 1; TLR4, Toll-like receptor 4; TNFR1, Tumor necrosis factor receptor 1; ST2, soluble suppressor of tumorigenicity 2; REG3a,
regenerating islet-derived protein 3a; sIL2Ra, soluble interleukin-2 receptor alpha-chain; ELISA, Enzyme-linked immunosorbent assay; RT-PCR, Reverse transcription–polymerase chain reaction.
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TABLE 2 List of various types of biomarkers with clinical values that could help in the prediction, diagnosis, or prognosis for SOS.

S.No Biomarker Type Biological
Specimen(s) Detection Method(s) Biomarker

level(s) ClinicalValue Ref(s)

1 Ferritin Biochemical Serum Biochemical tests Increased levels Predictive (72)

2 Uric Acid Biochemical Serum Biochemical tests Increased levels Predictive (73)

3 Liver Profiling Physiological Liver MRI Increased iron overload
Predictive/
Diagnostic

(74)

4 HGF Immunological Serum Immunoassay Increased levels Predictive (75)

5
GSTs
GSTA1
GSTM1

Genetic DNA Genotyping Polymorphism Predictive (76, 77)

6 MTHFR Genetic DNA Genotyping Polymorphism Predictive (78)

7 HPSE Genetic DNA Genotyping Polymorphism Predictive (79)

8 sICAM-1 Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Predictive

(69, 80–82)

9 sVCAM-1 Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Diagnostic

(80)

10 sE-Selectin Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Predictive

(69)

11 sP-Selectin Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Predictive

(81, 83)

12 VWF Endothelial Plasma/Serum ELISA Increased levels Prognostic (69, 84)

13 TM Endothelial Plasma/Serum ELISA Increased levels Prognostic (69, 84)

14 PAI-1 Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Diagnostic

(84–87)

15 VEGF Endothelial Plasma/Serum ELISA Increased levels Predictive (88)

16 ANG2 Endothelial Plasma/Serum ELISA Increased levels
Prognostic/
Diagnostic

(82)

18 miRNAs MicroRNA’s Plasma/Serum
RT-PCR/Micro-seq

Microarray
miRNA dependent Prognostic (89)

19 TNFa Immunological Plasma/Serum ELISA Increased levels Prognostic (90)

20 ST2 Immunological Plasma/Serum ELISA Increased levels Diagnostic (82)

21 REG3a Immunological Plasma/Serum ELISA Increased levels Prognostic (80)

22 TIM3 Immunological Plasma/Serum ELISA Increased levels Prognostic (80)

23 HA Immunological Plasma/Serum ELISA Increased levels
Prognostic/
Diagnostic

(82)

24 L-Ficolin Immunological Plasma/Serum ELISA Decreased levels Diagnostic (82)

25 sIL2Ra Immunological Plasma/Serum ELISA Increased levels Prognostic (90)

26 IGF-1 Immunological Plasma Immunoassay (Chemiluminescence) Decreased levels Predictive (91)

27 EASIX Biochemical Panel (Serum/Blood) Biochemical tests Increased levels Diagnostic (92)
F
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SOS, sinusoidal obstruction syndrome; HGF, Hepatocyte growth factor; GST, Glutathione S-transferases; MTHFR, Methylenetetrahydrofolate Reductase; HPSE, Heparanase; sICAM-1, soluble
Intercellular CAM protein 1; sVCAM-1, soluble vascular CAM protein; VWF, VonWillebrand factor; TM, thrombomodulin; PAI-1, plasminogen activator type-1; VEGF, vascular endothelial growth
factor; ANG2, Angiopoietin2; EV, extracellular vesicles; miRNAs, microRNAs; TNFa, tumor necrosis factor alpha; ST2, soluble suppressor of tumorigenicity 2; REG3a, regenerating islet-derived
protein 3a; TIM3, T-cell immunoglobulin and mucin domain-containing protein 3; HA, hyaluronic acid; sIL2Ra, soluble interleukin-2 receptor alpha-chain; EASIX, Endothelial Activation, and stress
index panel; IGF1, Insulin-like growth factor 1; ELISA, Enzyme-linked immunosorbent assay; RT-PCR, Reverse transcription–polymerase chain reaction; micro-seq, miRNAs sequencing.
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Biomarkers for other early
complications post-HCT

Promising results from the studies evaluating biomarkers for

GVHD and SOS have also led to the identification of similar

plasma biomarkers for other early HSCT complications, such as

transplant-associated- thrombotic microangiopathy (TA-TMA) and

engraftment syndrome (ES). TA-TMA is characterized by occlusion

and disruption of microcirculation as a result of micro-thrombi

deposition. It is believed that the disruption of microcirculation

results from endothelial dysfunction. Lia G et al. reviewed that the

endothelial dysfunction could be due to persistent insult to the

endothelium caused throughout the HSCT procedure, starting from

the conditioning regimen and subsequently through calcineurin

inhibitors (95).

While there are multiple causes for endothelial injury, neutrophil

extrusion traps (NETs) also appear to be one component evaluated in

the TA-TMA context. A significantly elevated level of NETS, within

the first 4 weeks post-HSCT, has been reported to be associated with

an increased risk of TA-TMA (96). In contrast, the same study could

not find a possible association of thrombomodulin (expressed by

endothelial cells and serves as a cofactor for thrombin) with the

occurrence of TA-TMA, indicating challenges in understanding the

pathophysiology of TA-TMA. Interestingly, elevated ST2 levels on

day 14 post-HSCT was also reported to be associated with TA-TMA.

The clinical overlap between GVHD and TA-TMA occurrence and

endothelial injury as a common factor for both conditions, indicates

that ST2 could also be a possible biomarker for TA-TMA (97). A

recent study by Okamura H et al. has shown that elevated levels of

complement factor Ba on day 7 post-HSCT significantly predicted

TA-TMA (98).

Similarly, the symptoms of engraftment syndrome (ES) post HCT

appears overlapping with that of either GVHD or with infections.

Biomarkers that could help in the early differential diagnosis of ES

from other conditions with overlapping symptoms could improve

HCT outcomes. Procalcitonin (PCT), a hormokine has been reported

to be elevated in ES patients that could possibly be used as biomarker

(99). Knoll et al., reported procalcitonin levels 2ng/ml could possibly

distinguish patients with ES from patients with bacterimia (100).

However, since PCT is also a FDA approved biomarker for sepsis and

febrile neutropenic pateints with infections (101, 102), the use of PCT

for ES needs to be evaluated in multiple cohorts.

Most of the complications post HCT appears to be as a result of

persistent insult to the damaged endothelium throughout HCT

procedures. Hence many markers of endothelium damage have

been extensively evaluated as potential biomarkers for most HCT

complications as well (103, 104).
Challenges in evaluating biomarkers for
post-HCT complications

More than a decade of progress in discovering and validating

biomarkers for HSCT complications led to incorporating them in

clinical trials to verify their impact as a diagnostic, prognostic, or tool

for pre-emptive therapy/intervention. For example. Reg3a was shown
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to distinguish diarrhea due to GI-GVHD from diarrhea due to non-

GVHD causes (22). In contrast, Elafin could distinguish skin GVHD

from drug hypersensitivity rashes (DHR) (ref). Also, REG3a and

elafin were shown to distinguish diarrhea and rashes due to a more

systemic disease than GI-GVHD alone (105). Similarly, ST2, TIM3,

and IL6 were shown to be diagnostic biomarkers for aGVHD (106).

However, these biomarkers’ prospective utilization has not yet been

achieved. There are more challenges in translating biomarker

concentrations toward a possible clinical decision in terms of

diagnosis or intervention:
Determination of cut-off values

Plasma biomarker concentrations need a range of cut-off values to

make clinical decisions. Different HCT centers have evaluated various

biomarkers either singly or as a panel. However, there appear to be no

universal cut-off valuesfor different biomarkers, probably due to the

methods employed to derive cut-off values. For instance, Hartwell

et al. developed an algorithm using logistic regression analysis of

biomarker concentrations to derive cut-off values (6). Other groups

have used individual biomarker concentrations in respective cohorts

to derive cut-off values (4).

Similarly, the association of biomarkers towards specific HSCT

outcomes that could not be verified in different cohorts precludes

deriving a universal cut-off values. For instance, it was shown that

high ST2 levels correlated with steroid-refractory GVHD (4) but was

subsequently shown in different cohorts to be associated with six

months of non-relapse mortality and not with GVHD (107, 108).

Various groups have reported different cut-off values for the same

biomarker [For example, ST2: 33.9 ng/ml (107); 740 pg/ml (4); 3230

ng/ml (50), REG3a: 151 ng/ml (22); 1989 pg/ml (50)]. Finally, there

always appears an overlap in biomarker concentrations in cohorts

with and without HSCT complications impedes a universal cut-off

values derivation. Thus, establishing a universal reproducible cut-off

values remains a challenge.
Single biomarker vs. panel

Due to the overlap in concentrations of biomarkers in patients

with and without HSCT complications, many groups have reported

that a single biomarker could be of little value correlating with HSCT

outcomes as opposed to a biomarker panel. Elafin was initially

discovered to be associated with skin GVHD (48). However, its

utility appears very limited owing to the lack of reproducibility

(60). The inclusion of elafin to REG3a and ST2 was also shown to

be of little value in improving the accuracy of assessing HSCT

outcomes (109). On the other hand, biomarkers such as ST2 and

REG3a are potentially promising as single biomarkers correlating

with therapy-resistant GVHD and GI-GVHD and as panels

predicting six months of non-relapse mortality (NRM) (4). A

special consideration towards the sensitivity and specificity of

biomarkers, either as single or panel, needs to be given to

biomarkers’ clinical translatability.

Beyond these challenges, the time points for biomarker testing

and the frequency of such testing are also not standardized. There is
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considerable variation in these parameters in the reported literature

so far.
Conclusion

Non-invasive biomarkers have been comprehensively evaluated for

detection, diagnosis, and/or prognosis of early complications post-HCT

in multiple centers. Various studies have evaluated individual biomarkers

alone or as a panel towards GVHD. The past decade of voluminous data

has shown that biomarker panels, as opposed to individual biomarkers,

are more valuable in diagnosing GVHD or predicting GVHD severity. In

this context, MAGIC, a GVHD biomarker panel employing an algorithm

using logistic regression, appears to be so promising in terms of its clinical

translatability since multiple centers have verified this. On the other

hand, biomarkers for other complications, such as SOS, TA-TMA, etc.,

still need to be confirmed in multiple clinical settings. The association of

endothelial damage with post-transplant complications has been a

promising addition to the arsenal of biomarkers. However, biomarkers

based on endothelial damage are greatly influenced bymany factors, such

as underlying disease, conditioning regimen, and post-transplant

conditions. Nevertheless, multiple studies have progressed well in

evaluating endothelial damage biomarkers toward post-HCT

complications. EASIX panel to predict SOS severity is the best example.

Prospective studies and clinical trials incorporating biomarker

based interventions with clinical endpoints are required to further

evaluate the clinical translatability of these biomarkers. In absence of

such studies being reported, the clinical translation of biomarkers in

HCT is not ready for prime time. The longer turn-around times,

variable cut-offs, and assay variabilities also remain as barriers

towards practical utility of such biomarkers in HCT for clinical

decision making and strategies to circumvent these are needed.

Equally important is understanding the biology of the hitherto

validated biomarkers, which will have advantages such as guided pre-

emptive therapy, finding novel therapeutic targets for HCT

complications, and, more importantly, allowing us to validate if the

biomarkers are sensitive and specific.

Progress in biomarker evaluation towards HCT complications is

accompanied by challenges such as the derivation of a universal cut-
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off point, evaluation of individual or panel of biomarkers, and

prospective biomarkers assessment. These challenges could be due

to differences in techniques used to analyze biomarkers, and serum/

plasma sample processing, including dilutions, conditioning regimen

intensity, and the source of graft. Nevertheless, recently many studies

are moving towards using biomarkers as a guide for preemptive

therapy. Thus our knowledge of biomarkers for early complications is

ever-expanding, leading to more significant progress in its

clinical translatability.
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