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Integrated analysis revealing a
novel stemness-metabolism-
related gene signature for
predicting prognosis and
immunotherapy response in
hepatocellular carcinoma

Yuxin Wang, Xueshuai Wan and Shunda Du*

Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
Hepatocellular carcinoma (HCC) is a malignant lethal tumor and both cancer

stem cells (CSCs) and metabolism reprogramming have been proven to play

indispensable roles in HCC. This study aimed to reveal the connection between

metabolism reprogramming and the stemness characteristics of HCC,

established a new gene signature related to stemness and metabolism and

utilized it to assess HCC prognosis and immunotherapy response. The clinical

information and gene expression profiles (GEPs) of 478 HCC patients came from

the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). The

one-class logistic regression (OCLR) algorithm was employed to calculate the

messenger ribonucleic acid expression-based stemness index (mRNAsi), a new

stemness index quantifying stemness features. Differentially expressed analyses

were done between high- and low-mRNAsi groups and 74 differentially

expressed metabolism-related genes (DEMRGs) were identified with the help

of metabolism-related gene sets from Molecular Signatures Database (MSigDB).

After integrated analysis, a risk score model based on the three most efficient

prognostic DEMRGs, including Recombinant Phosphofructokinase Platelet

(PFKP), phosphodiesterase 2A (PDE2A) and UDP-glucuronosyltransferase 1A5

(UGT1A5) was constructed and HCC patients were divided into high-risk and

low-risk groups. Significant differences were found in pathway enrichment,

immune cell infiltration patterns, and gene alterations between the two

groups. High-risk group patients tended to have worse clinical outcomes and

were more likely to respond to immunotherapy. A stemness-metabolism-related

model composed of gender, age, the risk score model and tumor-node-

metastasis (TNM) staging was generated and showed great discrimination and

strong ability in predicting HCC prognosis and immunotherapy response.
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Introduction

Representing a globally major reason for death related to

cancer, hepatocellular carcinoma (HCC) has a five-year overall

survival (OS) rate of only 18% and is rising in incidence (1, 2).

Poor survival is attributed to recurrence, relapse and treatment

resistance. Specifically, 50-70% of patients with HCC experience a

resurgence within five years after loco-regional therapy and up to

70% of relapsed patients recur within two years (3, 4). Treatment

resistance is another common phenomenon in HCC.

Immunotherapy (5) and sorafenib (6) have an objective response

rate of approximately 15% and 9%, respectively, which are relatively

low compared with other tumors. The efficacy is below expectation

and high heterogeneity might be one of the reasons. Well-

documented evidence has linked the heterogeneity of HCC with

different clinical outcomes and diverse levels of sensitivity to

treatment (7–9). Nevertheless, no classification accurately sub-

classifying HCC patients, predicting prognosis and guiding

treatment has been widely recognized in clinical practice up to

now. Therefore, it is crucial to find a way to clearly distinguish HCC

and elucidate biological and clinical characteristics simultaneously.

Recently, the theory of cancer stem cells (CSCs) has been

generally accepted, providing new insights into cancer

development and treatments. CSCs are a subgroup of tumor cells

which have the potential to renew themselves and differentiate (10).

A number of studies have already demonstrated the vital role of

CSCs in HCC. Despite being small in number, CSCs are easily

spread to distant organs, leading to HCC progression, recurrence

(11) and metastasis (12). They are also implicated in therapy

resistance, including sorafenib resistance (13–16), TACE

refractoriness (17) and immunotherapy resistance (18). Moreover,

CSCs could enhance immune evasion and induce an

immunosuppressive microenvironment via the up-regulation of

inhibitory molecules and the low expression of stimulatory

molecules (19). They also attenuate the function of tumor-

infiltrating lymphocytes by decreasing the expression of

programmed cell death-ligand 1 (PD-L1), which is associated

with immunotherapy response as well (20) (21). Several HCC

CSC markers have been identified, including cluster of

differentiation 90 (CD90), CD24, CD47, CD13, CD133, CD44,

intercellular cell adhesion molecule-1 (ICAM1), epithelial cell

adhesion molecule (EpCAM), leucine-rich repeat-containing

receptor (LGR5), etc. (21). All the identified markers are

separately reported to be tightly correlated with more aggressive

HCC subtypes and worse outcomes (21). A few previous studies

attempted to use CSC markers and gene signatures linked to CSC

markers to identify HCC subtypes and predict HCC survival (22,

23). However, the results were unsatisfactory due to the

heterogeneity of CSCs, and large-scale analysis is still needed to

conclude how CSCs contribute to the prognosis of individual

patients. It is necessary to conduct more research since the

underlying mechanisms of CSCs remain unclear. A new stemness

index, mRNAsi, was invented for the quantification of stemness on

the basis of gene expression profiles (GEPs) (10). Ranging from zero

(low) to one (high), the mRNAsi value was positively correlated

with the similarity between tumor and stem cells. More than that,
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the mRNAsi value provided a new way of revealing the mechanism

of CSCs in HCC, which was used as well during analysis in

this article.

It has been universally accepted that energy metabolism

reprogramming is a new emerging hallmark for cancer (24). The

liver, which is an essential organ of metabolism, is vital in glucose and

lipid homeostasis and responsible for more than 80% of protein

synthesis. Diagnosed in the majority of HCC patients (68.4%) (25),

metabolic associated fatty liver disease (MAFLD) has risen as one of the

leading etiologies for HCC and received heated attention from

researchers recently. Mounting research has shown that fatty acids,

glucose, glutamine and amino acid metabolism pathways experience

significant alternations in HCC owing to the energy demand for rapid

cell multiplication. Glycolysis, glutamine catabolism as well as fatty acid

synthesis and oxidation are enhanced, and the key enzymes included

are highly expressed and related to poor clinical outcomes (26–29).

Metabolic reprogramming is extremely deeply involved in the

maintenance of CSCs compared with that of normal HCC cells.

CSCs could preferentially survive a more restricted glucose supply by

the increased expression of glucose transporter isoforms 1 (GLUT1)

and GLUT3 (30). Stearoyl-coenzyme A desaturase 1 (SCD1) is an

enzyme that catalyzes the desaturation of lipids, experiences a

particular elevation in EpCAM+ alpha-fetoprotein (AFP)+ HCC and

contributes to sorafenib resistance (31–33). CD13+CD133+HCC CSCs

are deficient in Xanthine dehydrogenase/oxidase, an enzyme catalyzing

purine catabolism (34). It is well-known that no studies have combined

metabolism alterations with stemness features for the prediction of

prognosis and immunotherapy response in HCC to date.

In this study, therefore, the transcriptomic data of patients with

HCC were included to verify the following hypothesis: Stemness

features were closely correlated with metabolism alterations in HCC

patients, and the classification of patients based on a novel

stemness-metabolism-related model could predict the clinical

outcomes and immunotherapy response of HCC patients.

Stemness features and mRNAsi were calculated by the OCLR

algorithm. Metabolism-related gene sets were downloaded from

MSigDB. Differential and weighted gene co-expression network

analyses (WGCNA), univariate cox and least absolute shrinkage

and selection operator (LASSO) regressions were performed and 3

most efficient prognostic DEMRGs: PFKP, PDE2A and UGT1A5

were identified. A risk score model was established and

CIBERSORT, functional enrichment and copy number variation

(CNV) analyses, estimation of stromal and immune cells in

malignant tumor tissues using expression data (ESTIMATE), and

Tumor immune dysfunction and exclusion (TIDE) were all

explored between subgroups. A novel stemness-metabolism-

related model was further constructed based on the risk score

model and the areas under the receiver operating characteristic

(ROC) curve (AUCs) of the novel model corresponding to the

survival of one, three and five years were 0.744, 0.720 and 0.680 in

training dataset, and the AUCs corresponding to the survival of one,

three and five years in validation dataset were 0.633, 0.769 and

0.841, respectively. Collectively, a novel stemness-metabolism-

related model was proposed and the vital role of metabolism

reprogramming and CSCs in predicting the clinical outcomes of

patients with HCC and potential immunotherapy response was
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highlighted. This study presented the first comprehensive analysis

of genes genetically connected with the metabolic reprogramming

and stemness features of HCC, providing several promising

therapeutic targets.
Materials and methods

Data collection

The Cancer Genome Atlas Genomic Data Commons (TCGA

GDC) website (https://portal.gdc.cancer.gov/) offered the RNA-

sequencing (RNA-seq) profiles for the TCGA- liver hepatocellular

carcinoma (LIHC) cohort. These profiles contain corresponding

follow-up clinical information, such as gender, age, TNM staging,

and survival status and time. After the exclusion of samples lacking

complete clinical information, 363 samples were retained finally as a

training dataset in total. Table 1 displays detailed clinical

information. Somatic mutation data were downloaded

concurrently through Game Developers Conference (GDC),

whose analysis and visualization were completed through the R

package maftools (35). The validation dataset GSE76427 (36)

(GPL10558) was downloaded from the Gene Expression Omnibus

(GEO) database, and 115 samples were included after the exclusion

of unqualified samples. The data were normalized using the R

package limma (37).
Calculation of mRNAsi Based on GEPs

The previously reported one-class logistic regression (OCLR)

algorithm (10) was adopted to predict and calculate mRNAsi based

on the GEPs of pluripotent stem cells (PSCs). GEPs were acquired

from the Progenitor Cell Biology Consortium (PCBC, https://

progenitorcells.org/) and downloaded through the R synapser

package. The mRNAsi value for every TCGA-LIHC sample is

presented in Table S1.
TABLE 1 Baseline characteristics of TCGA-LIHC Patients from the TCGA Data

Characteristic le

n

Age, n (%)

>

Gender, n (%) fe

m

Stage, n (%) not r

st

st

sta

sta

mRNAsi, median (IQR)
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Analysis and screening of differentially
expressed metabolism-related genes

Samples were stratified into low- and high-mRNAsi groups on

the basis of the median mRNAsi value. Hallmark gene sets were

downloaded from Molecular Signature Database (MSigDB) (38). A

total of 2,752 metabolism-related genes were obtained after the

removal of duplicated genes.

The R package DESeq2 (39) was used to differentially analyze

the RNA-seq data from low- and high-mRNAsi groups and identify

differentially expressed metabolism-related genes (DEMRGs)

between the two groups. Adj. P value< 0.05 and | logFC | > 1

were regarded as the cutoff values for determining DEMRGs. The

results are presented by the heatmap and volcano plot.
Weighted gene co-expression
network analysis

DEMRGs identified in the prior step were selected, and the R

package weighted gene co-expression network analysis (WGCNA)

(40) was utilized to perform WGCNA. Firstly, the coefficient of

correlation between two random genes was calculated, whose

weighted value was used for connecting the genes in the network

submitting to scale-free networks. Next, the construction of a

hierarchical clustering tree was based on inter-gene correlation

coefficients. The clustering tree has a variety of branches

representing different gene modules. Different colors stand for

different modules. Then, a calculation was conducted for module

significance (MS) which was used for measuring the correlations of

mRNAsi values with different modules. Genes in every module were

recorded and deemed as module eigengenes (MEs). Modules with the

minimum and maximum MS values were perceived to be negative

and positive modules, respectively. Modules of interest were chosen

based on MS values, and MEs in those modules were considered

highly correlated with mRNAsi values. Gene significance (GS) was

utilized to measure the correlations between mRNAsi values and
base.

vels Overall

363

<60 165 (45.5%)

=60 198 (54.5%)

male 118 (32.5%)

ale 245 (67.5%)

eported 9 (2.6%)

age I 170 (48.9%)

age II 84 (24.1%)

ge III 81 (23.3%)

ge IV 4 (1.1%)

0.38 (0.342, 0.422)
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genes. Module membership (MM) was defined to be the association

between an expression profile of DEMRGs and module genes.
Construction of molecular subtypes based
on DEMRGs

ConsensusClusterPlus (41), an R package, was applied to

conduct unsupervised consensus clustering for the purpose of

classifying LIHC patients into different subtypes in light of

DEMRGs. The number of clusters was identified using consensus

clustering which was performed with 1,000 iterations to make sure

that the classification was stable. Ultimately, different patient

subtypes were obtained.
Establishment of a prognostic model based
on DEMRGs

The identification of DEMRGs was based on differential

expression analysis (DEA) and the WGCNA results. DEMRGs in

low- and high-mRNAsi groups were analyzed first and the

correlation was explored to check covariance, to analyze the

expression of DEMRGs in LIHC. Significant DEMRGs were

included in the model, and DEMRGs with prognostic significance

were filtered by performing univariate Cox regression (P< 0.1).

Next, the performance of least absolute shrinkage and selection

operator (LASSO) regression reduced dimension and developed

candidate prognostic DEMRGs, establishing the prognostic model.

Computation was conducted for the risk score of HCC patients on

the basis of this prognostic model in accordance with the

normalized expression level and corresponding regression

coefficients of each gene. The following formula was established.

Patients were classified into low- and high-risk groups when the

median risk score was set to be the cutoff value.

riskScore   =  o
i
Coefficient   (hub   genei)*mRNA  

Expression  
Differential analysis of the prognostic risk
score model

To identify metabolism- and stemness-related genes, the R

package DESeq2 (39) was used for differentially analyzing the

RNA-seq data from low- and high-risk groups in TCGA-LIHC.

Adj. P Value< 0.05 and | logFC | > 1 were filter conditions. The

results are presented by the heatmap and volcano plot.
Functional enrichment and gene set
enrichment analyses

Gene ontology (GO) (42), Kyoto Encyclopedia of Genes and

Genomes (KEGG) (43) pathway analyses and other functional
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annotation and pathway enrichment analyses were carried out on

DEMRGs by use of the R package clusterProfiler (44). The

significance level was defined as false discovery rate (FDR)< 0.05.

Gene set enrichment analysis (GSEA) (45) was performed with

the purpose of exploring the latent signaling pathways involved in

GS between low- and high- risk groups in TCGA-LIHC. As a

computing method of analyzing the statistical difference of a

specific gene set between two biological states, GSEA is

commonly applied to the estimation of changes in pathways and

biological process activities in the samples of expression data sets.

The download of the “c2.v7.2.symbols.gmt” gene set from MSigDB

(46) was completed to perform GSEA and screen the metabolism-

related results in the pathway. It was considered that pathways

showed statistical significance with an FDR of less than 0.25.

REACTOM (http://reactome.org/) and WikiPathways (https://

www.wikipathways.org/index.php/WikiPathways) databases were

employed to help demonstrate the results.
Analysis of tumor immune cell infiltration

The use of estimation of stromal and immune cells in malignant

tumor tissues using expression data (ESTIMATE) (47) evaluated the

tumor microenvironment and quantified immune activity.

ESTIMATE analysis predicted the abundance and tumor purity of

intra-tumoral immune and stromal cells based on the GEPs of

samples with HCC. A comparison was made between low- and

high-risk groups in immune scores. Subsequently, CIBERSORT (48),

a deconvolution algorithm on the basis of linear support vector

regression, was employed for the further quantification and

evaluation of 22 cell types related to immunity in a mixed

population of infiltrating immune cells. The distribution of 22

immune infiltrating cells was presented using the R package ggplot2.
Analysis of copy number variation

The copy number variation (CNV) data of TCGA-LIHC patients

were obtained from TCGA and downloaded via the R package

TCGAbiolinks (49). Genomic Identification of Significant Targets

in Cancer (GISTIC) 2.0 (50) was harnessed to identify significant

amplifications and deletions via GenePattern (51), and the results

were visualized by the RCircos package in R. Default parameters were

utilized except for confidential interval (CI)= 0.9 and no exclusion of

X chromosome before analysis. The CNV burden was believed to be

the total number of genes with CNVs in each sample.
Immunotherapy response prediction

The tumor immune dysfunction and exclusion (TIDE) (52)

(http://tide.dfci.harvard.edu) algorithm based on GEPs was used for

predicting clinical response to the immune checkpoint blockade

(ICB) of HCC patients. On the basis of the TIDE analysis results,

immunotherapy-related factors were compared between low- and

high-risk groups, including TIDE, CD8, CD274, etc.
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Prognostic value of the prognostic model
based on mRNAsi-related metabolic genes

To demonstrate the personalized evaluation of risk scores

combined with clinicopathological features for the prognosis of

patients, the power in predicting OS was evaluated by conducting

multivariate Cox regression analyses. Next, the risk score model in

combination with clinicopathological features was chosen for

inclusion in the model. Meanwhile, a nomogram was plotted for

predicting the one-, three- and five-year OS of patients with HCC.

Calibration curves were generated for assessing the performance of

the nomogram bymaking a comparison between the predicted values

and the observed actual rates of survival. The GSE76427 cohort was

used as a validation dataset, and discrimination was evaluated

through the receiver operating characteristic (ROC) curve.
Statistical analysis

All statistical analyses were performed using R software 4.1.3.

Independent Student’s and Wilcoxon tests for normally and non-

normally distributed continuous data, respectively, were used for

inter-group pairwise comparisons. Chi-square and Fisher’s exact

tests were conducted to test the differences between categorical data.

Survival analysis was performed using the R package survival.

Differences in prognosis between the two patient groups were

compared by conducting Kaplan-Meier (KM) curve analysis and

log rank test. Time-dependent ROC curves were plotted, and
Frontiers in Immunology 05
prediction accuracy was evaluated by calculating the areas under

the ROC curve (AUCs) (53). Univariate and multivariate analyses

were both performed by means of Cox regression models to assess

the performance of risk signature in predicting independent

prognosis. It was deemed that a two-tailed P-value of below 0.05

showed statistical significance.
Results

Screening of mRNAsi-related metabolic
genes and their expression profiles

The flowchart of the entire research work is presented in Figure 1.

The OCLR algorithm was used to define mRNAsi. Stemness indices

were presented for every patient in TCGA-LIHC and ranked from

low to high in accordance with mRNAsi values to investigate the

associations between clinicopathological characteristics and mRNAsi.

No significant association was observed between mRNAsi and HCC

patients’ age or gender (Figures 2A, B), but mRNAsi values differed

between clinical stages. For instance, stage I patients exhibited

significantly lower mRNAsi compared with stage III or IV ones

(Figure 2C). Concurrently, survival analysis indicated the usually

worse outcomes of patients with higher mRNAsi (Log-rank P<

0.001, Figure 2D).

Considering the impact of mRNAsi on the metabolism progression

of HCC, patients with TCGA-LIHC were stratified into low- and high-

groups according to the median stemness index value. In the
FIGURE 1

Flowchart of the entire research work.
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meantime, DEA was performed between both groups. Beyond that,

3,076 differentially expressed genes (DEGs) including 1,536 down-

regulated and 1,540 up-regulated genes were identified. The top 500

DEGs were visualized by a heatmap (Figure 2E), and all DEGs were

drawn as a volcano map (Figure 2F). WGCNA was performed to

further group co-expressing genes into a variety of modules for the

identification of key mRNAsi-related metabolic genes. After analysis, it

was found that the optimal soft threshold was 5 (Figure 2G), and seven

effective modules were obtained (Figure 2H). The significance values of

seven modules through the connection between mRNAsi and each

module and the two most correlated modules were found, namely
Frontiers in Immunology 06
MEblue andMEgreen (Figures 2I, J). Thus, the intersection genes of the

MEblue and MEgreen modules with the DEGs identified before were

selected, and 74 DEMRGs were obtained.

The expression tendency of those 74 DEMRGs was further

mapped to find the down-regulation of most candidate genes in the

group with high mRNAsi (compared with the group with low

mRNAsi) (Figure 3A). Then, co-expression network analysis was

performed. It was noticed that candidate genes were strongly

correlated in their modules, consistent with previous WGCNA

results (Figure 3B). Based on the selected DEMRGs, LIHC

patients could be divided into two clusters. It was found that
B C D

E F G

H
I

A

J

FIGURE 2

Identification of metabolic genes related to mRNAsi in patients with LIHC. (A-C) Boxplot of the associations of mRNAsi values with gender, age and stage,
respectively. (D) Survival status between subgroups with low and high mRNAsi (Log-rank P< 0.001). (E, F) Heatmap and volcano plot of DEG expression in
subgroups with low and high mRNAsi. (G) Sets of genes screened by WGCNA for the correlation with mRNAsi phenotypes. (H) Heatmap of associations and
significant differences between a variety of mRNAsi scores and gene modules, where P values were shown in parentheses. (I, J) Venn diagrams of the
intersection with DEGs, MEblue and MEgreen (ns and * represent P>0.05 and P<0.05, respectively).
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survival probability exhibited a significant difference between

clusters A and B, indicating that DEMRGs could serve as good

prognostic factors for LIHC (Figures 3C–E).
Establishment of a DEMRGs-based
prognostic risk score model

The influence of DEMRGs on LIHC prognosis was quantified

via the establishment of a prognostic risk score model. Firstly,

univariate Cox regression was performed, and 11 qualified genes

were filtered. Secondly, LASSO and multivariate Cox regressions

were conducted. Finally, three genes, including Recombinant
Frontiers in Immunology 07
Phosphofructokinase, Platelet (PFKP), phosphodiesterase 2A

(PDE2A) and UDP-glucuronosyltransferase 1-5 (UGT1A5), were

identified as the most efficient prognostic genes (Figures 4A, B).

Subsequently, the above-mentioned three genes were applied to

build a multi-gene signature for predicting the survival of HCC.

Coefficients acquired from multivariate Cox regression were used

for calculating the risk score of each patient with HCC. Below was

the risk score formula:

riskScore = PKFP*(0:18) + PDE2A*( − 0:40) + UGT1A5*(0:32)

K-M analysis indicated the poorer OS of patients in the high-

risk group (Log-rank P<0.001, Figure 4C). The ROC curve

dependent on time demonstrated that the three-gene signature
B

C D E

A

FIGURE 3

Overall expression of DEMRGs in LIHC patients. (A) Heatmap of 74 DEMRGs in normal and LIHC tissues. Yellow represents high gene expression,
blue represents low gene expression, darker yellow represents higher gene expression level, and darker blue represents lower gene expression level.
(B) Correlation map of 74 DEMRGs. Red represents a positive correlation, blue represents a negative correlation, darker red represents a higher
positive correlation, and darker blue represents a higher negative correlation. (C) Heatmap of the clustering analysis results of DEMRGs, k=2 sample
clustering. Darker blue represents the higher expression level of characteristic genes, conversely, lighter blue represents the lower expression level
of genes. (D) Principal component analysis of two subgroups shown in a three-dimensional model. (E) Prognostic analysis of the subgroups.
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showed the good predictive value and the risk scores corresponding

to the survival of one, three and five years had an AUC of 0.740,

0.679 and 0.664, respectively (Figure 4D). The distribution of risk

scores, survival status as well as three-gene expression pattern are

illustrated in Figure 4E.
DEA between low- and high-risk groups

Patients with DEA were categorized into low- and high-risk

groups following the median score value to further analyze the

association between the risk model and HCC development. DEA

between both groups was performed, and 3,806 DEGs including 777

down-regulated and 3,029 up-regulated genes were identified

(Figures 5A, B).

Functional enrichment analyses were performed on 3,806

DEGs. The GO results revealed that DEGs were primarily

abundant in multicellular organismal and developmental

processes, multicellular organism development and other

biological processes (BPs) (Figure 5C). The KEGG analysis results

indicated that DEGs mainly participated in metabolic, neuroactive
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ligand-receptor interaction and cyclic adenosine monophosphate

(cAMP) signaling pathways, etc. (Figure 5D). It was discovered that

several results were correlated with the progression of metabolism,

such as amino acid, caffeine, retinol and ether lipid metabolism. The

detailed results are supplied in Tables 2, 3.

The analysis results of Friends also implied that recombinant

human protein ripply2 (RIPPLY2, DMRT2), G antigen 2A

(GAGE2A) and 10 other genes might have an important

influence. This meant that they could be hub genes as well, which

were mostly up-regulated in functional analyses consistently

(Figures 5E, F).

GSEA was performed, and the results of WikiPathways, KEGG

and REACTOM databases were summarized according to the C2

pathway. The results demonstrated that the high-risk group mainly

showed enriched ether lipid metabolism while the low-risk one

mainly exhibited enriched starch and sucrose and nitrogen

metabolism (Figure 6A). In the REACTOM pathway database, the

high-risk group demonstrated significantly enriched disease

associated with surfactant metabolism, and surfactant and

selenoamino acid metabolism (Figure 6B). In the WIKIPEDIA

pathway database, the high-risk group witnessed the up-regulation
B

C

D
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FIGURE 4

Construction of the metabolic risk score model related to mRNAsi. (A) LASSO regression analysis results and the optimal lambda value
corresponding to seven variables. (B) Multivariate cox regression analysis results and three identified genes as independent prognostic factors. (C) K-
M curve of risk scores for the OS of patients with HCC. (D) ROC curve analysis of risk scores dependent on time. (E) Distribution of risk scores, the
survival of patients and the heatmap of expression of characteristic genes in LIHC patients.
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of the general overview and integrated pathway of sphingolipid

metabolism, whereas the low-risk one went through the down-

regulation of one-carbon metabolism and related pathways

(Figure 6C). The detailed GSEA results are shown in Table 4.
Correlations between the risk score
model and patterns of tumor immune
cell infiltration

Next, we explored the correlations between the risk score of the

three-gene signature and the immune cell infiltration and tumor

immune pattern of HCC. Overall immune infiltration is shown in

Figure 7A. According to the ESTIMATE results, HCC patients in

the high-risk group exhibited a statistical elevation in immune and

stromal scores compared with those in the low-risk group

(Figure 7B). Meanwhile, it was discovered that the infiltration

levels of several immune cell types showed significant differences

and highly-abundant regulatory T cells (Tregs) and macrophages

(M0) in the high-risk group but highly-abundant naïve B and

activated memory CD4+ T cells in the low-risk group

(Figure 7C). Besides, low- and high-risk groups showed a

significant difference in the expression of several human leukocyte

antigen (HLA) family genes (Figure 7D).
Frontiers in Immunology 09
Correlations between the risk score model
and genomic alternations

Further exploration was conducted into the correlations of risk

scores with genomic alterations, including single nucleotide

polymorphisms (SNPs), CNVs, etc. Somatic mutation analysis

revealed that both low- and high-risk groups possessed their

specific top mutant genes (Figure 8A). Patients in the high-risk

group possessed high-level microsatellite instability (MSI) and

tumor mutation burden (TMB), which indicated that they obtained

more genomic alterations (Figures 8B, C). CNV analysis showed that

HCC patients exhibited plenty of CNVs while patients in different

groups contained different CNV patterns (Figures 8D, E).

As immunotherapy is playing an increasingly important role in

tumor treatment, the TIDE algorithm was used for predicting the

immunotherapy sensitivity of patients in both low- and high-risk

groups. It can be seen from Figure 8F that TIDE scores were lower

in the high-risk group than the low-risk one, indicating the possibly

less sensitivity of patients in the high-risk group. Exclusive scores

were utilized to reveal immune escape capability, and the high-risk

group obtained higher scores than the low-risk one Figure 8G, in

line with prior research results (54). The treatment of immune

checkpoint blockers (ICBs) has made significant progress in HCC

therapy, and predictors like CD8 and PD-L1 were used for the
B

C

D

E

F

A

FIGURE 5

DEG and functional enrichment analyses for the metabolic risk model related to mRNAsi. (A, B) Volcano map and heatmap of expression of DEGs
between low- and high-risk LIHC patients in TCGA and GEO datasets. (C) GO analysis indicated a close association between significant DEGs and
multicellular organismal, developmental and biological processes. (D) KEGG analysis showed the involvement of DEGs in metabolic and cAMP
signaling pathways. (E) Identification of top 10 hub genes from the analysis of Friends. (F) Correlation analysis of hub genes.
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TABLE 2 GO analysis of differentially expressed genes.

Class ID Description Qvalue number

BP GO:0032501 multicellular organismal process 8.89E-30 1011

BP GO:0007275 multicellular organism development 4.49E-16 719

BP GO:0048856 anatomical structure development 5.72E-16 770

BP GO:0032502 developmental process 5.72E-16 812

BP GO:0048731 system development 3.07E-14 647

BP GO:0010817 regulation of hormone levels 6.05E-14 122

BP GO:0009888 tissue development 1.51E-13 317

BP GO:0048513 animal organ development 1.63E-13 500

BP GO:0007267 cell-cell signaling 1.02E-12 267

BP GO:0006811 ion transport 1.08E-12 266

BP GO:0003008 system process 5.79E-11 321

BP GO:0051239 regulation of multicellular organismal process 7.24E-11 441

BP GO:0048878 chemical homeostasis 1.80E-10 197

BP GO:0065008 regulation of biological quality 5.18E-10 536

BP GO:0030154 cell differentiation 8.31E-10 551

BP GO:0051046 regulation of secretion 1.50E-08 118

BP GO:0048869 cellular developmental process 1.78E-08 562

BP GO:0007399 nervous system development 1.78E-08 338

BP GO:0023061 signal release 2.62E-08 91

BP GO:0009653 anatomical structure morphogenesis 3.46E-08 364

CC GO:0031226 intrinsic component of plasma membrane 4.90E-21 301

CC GO:0005887 integral component of plasma membrane 2.24E-18 281

CC GO:0044459 plasma membrane part 1.99E-17 430

CC GO:0005576 extracellular region 1.99E-17 593

CC GO:0031224 intrinsic component of membrane 8.31E-12 730

CC GO:0098590 plasma membrane region 2.92E-10 196

CC GO:0005886 plasma membrane 5.87E-10 686

CC GO:0005615 extracellular space 5.87E-10 444

CC GO:0044421 extracellular region part 6.93E-10 469

CC GO:0071944 cell periphery 9.38E-10 697

CC GO:0016021 integral component of membrane 2.43E-09 696

CC GO:0044425 membrane part 5.36E-07 827

CC GO:0031012 extracellular matrix 2.91E-06 97

CC GO:0097458 neuron part 3.02E-06 250

CC GO:1902495 transmembrane transporter complex 1.15E-05 63

CC GO:0097060 synaptic membrane 1.26E-05 71

CC GO:0016324 apical plasma membrane 1.43E-05 68

CC GO:1990351 transporter complex 2.29E-05 64

CC GO:0045177 apical part of cell 2.86E-05 76
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TABLE 2 Continued

Class ID Description Qvalue number

CC GO:0016323 basolateral plasma membrane 5.67E-05 50

MF GO:0048018 receptor ligand activity 2.51E-10 103

MF GO:0030545 receptor regulator activity 4.69E-10 109

MF GO:0022857 transmembrane transporter activity 2.19E-08 173

MF GO:0015267 channel activity 2.19E-08 92

MF GO:0022803 passive transmembrane transporter activity 2.19E-08 92

MF GO:0015075 ion transmembrane transporter activity 3.27E-08 146

MF GO:0022838 substrate-specific channel activity 3.53E-08 85

MF GO:0015318 inorganic molecular entity transmembrane transporter activity 3.53E-08 138

MF GO:0005215 transporter activity 9.56E-08 182

MF GO:0005216 ion channel activity 1.70E-07 81

MF GO:0005179 hormone activity 5.87E-07 36

MF GO:0022836 gated channel activity 9.28E-07 69

MF GO:0022839 ion gated channel activity 1.59E-06 67

MF GO:0005102 signaling receptor binding 1.71E-06 232

MF GO:0005261 cation channel activity 4.22E-06 64

MF GO:0020037 heme binding 4.41E-06 37

MF GO:0046873 metal ion transmembrane transporter activity 7.29E-06 78

MF GO:0046906 tetrapyrrole binding 8.24E-06 38

MF GO:0016712
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced

flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
8.29E-06 16

MF GO:0008395 steroid hydroxylase activity 1.26E-05 16

TABLE 3 KEGG analysis of significantly differentially expressed metabolism-related genes.

class ID Description Qvalue num

Metabolism ko00830 Retinol metabolism 8.82E-06 23

Metabolism ko00980 Metabolism of xenobiotics by cytochrome P450 1.56E-03 20

Metabolism ko00982 Drug metabolism - cytochrome P450 4.73E-03 18

Metabolism ko00250 Alanine, aspartate and glutamate metabolism 9.81E-03 12

Metabolism ko01100 Metabolic pathways 9.81E-03 190

Metabolism ko00010 Glycolysis / Gluconeogenesis 9.81E-03 17

Metabolism ko00232 Caffeine metabolism 9.81E-03 4

Metabolism ko01230 Biosynthesis of amino acids 2.53E-02 17

Metabolism ko00051 Fructose and mannose metabolism 2.53E-02 10

Metabolism ko00565 Ether lipid metabolism 3.64E-02 12

Metabolism ko00590 Arachidonic acid metabolism 4.21E-02 15

Metabolism ko00410 beta-Alanine metabolism 4.21E-02 9

Metabolism ko00052 Galactose metabolism 4.94E-02 9

(Continued)
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TABLE 3 Continued

class ID Description Qvalue num

Metabolism ko00140 Steroid hormone biosynthesis 4.94E-02 14

Metabolism ko00910 Nitrogen metabolism 5.46E-02 6

Metabolism ko00340 Histidine metabolism 7.94E-02 7

Metabolism ko01200 Carbon metabolism 8.88E-02 21

Metabolism ko00030 Pentose phosphate pathway 8.88E-02 8

Metabolism ko00601 Glycosphingolipid biosynthesis - lacto and neolacto series 1.58E-01 7

Metabolism ko00040 Pentose and glucuronate interconversions 1.70E-01 8

Metabolism ko00120 Primary bile acid biosynthesis 1.79E-01 5

Metabolism ko00591 Linoleic acid metabolism 1.99E-01 7

Metabolism ko00360 Phenylalanine metabolism 2.08E-01 5

Metabolism ko00512 Mucin type O-glycan biosynthesis 2.51E-01 7

Metabolism ko00290 Valine, leucine and isoleucine biosynthesis 3.07E-01 2

Metabolism ko00650 Butanoate metabolism 3.07E-01 6

Metabolism ko00790 Folate biosynthesis 3.07E-01 6

Metabolism ko00430 Taurine and hypotaurine metabolism 3.07E-01 4

Metabolism ko00730 Thiamine metabolism 3.51E-01 4

Metabolism ko00500 Starch and sucrose metabolism 3.51E-01 7

Metabolism ko00380 Tryptophan metabolism 3.66E-01 8

Metabolism ko00524 Neomycin, kanamycin and gentamicin biosynthesis 3.89E-01 2

Metabolism ko00350 Tyrosine metabolism 3.97E-01 7

Metabolism ko00983 Drug metabolism - other enzymes 4.17E-01 12

Metabolism ko00472 D-Arginine and D-ornithine metabolism 4.26E-01 1

Metabolism ko00660 C5-Branched dibasic acid metabolism 4.26E-01 1

Metabolism ko00600 Sphingolipid metabolism 4.43E-01 8

Metabolism ko00400 Phenylalanine, tyrosine and tryptophan biosynthesis 4.54E-01 2

Metabolism ko01040 Biosynthesis of unsaturated fatty acids 4.74E-01 5

Metabolism ko00260 Glycine, serine and threonine metabolism 4.87E-01 7

Metabolism ko00561 Glycerolipid metabolism 6.23E-01 9

Metabolism ko00330 Arginine and proline metabolism 7.54E-01 7

Metabolism ko00450 Selenocompound metabolism 8.26E-01 3

Metabolism ko01210 2-Oxocarboxylic acid metabolism 8.26E-01 3

Metabolism ko00564 Glycerophospholipid metabolism 8.26E-01 12

Metabolism ko00053 Ascorbate and aldarate metabolism 8.26E-01 4

Metabolism ko00062 Fatty acid elongation 8.26E-01 4

Metabolism ko00071 Fatty acid degradation 8.26E-01 6

Metabolism ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 9.05E-01 2

Metabolism ko01212 Fatty acid metabolism 9.54E-01 7

Metabolism ko00280 Valine, leucine and isoleucine degradation 9.60E-01 6

Metabolism ko00270 Cysteine and methionine metabolism 1.00E+00 6
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TABLE 3 Continued

class ID Description Qvalue num

Metabolism ko00220 Arginine biosynthesis 1.00E+00 3

Metabolism ko00860 Porphyrin and chlorophyll metabolism 1.00E+00 5

Metabolism ko00471 D-Glutamine and D-glutamate metabolism 1.00E+00 1

Metabolism ko00603 Glycosphingolipid biosynthesis - globo and isoglobo series 1.00E+00 2

Metabolism ko00534 Glycosaminoglycan biosynthesis - heparan sulfate / heparin 1.00E+00 3

Metabolism ko00592 alpha-Linolenic acid metabolism 1.00E+00 3

Metabolism ko00514 Other types of O-glycan biosynthesis 1.00E+00 5

Metabolism ko00480 Glutathione metabolism 1.00E+00 6

Metabolism ko00770 Pantothenate and CoA biosynthesis 1.00E+00 2

Metabolism ko00520 Amino sugar and nucleotide sugar metabolism 1.00E+00 5

Metabolism ko00620 Pyruvate metabolism 1.00E+00 4

Metabolism ko00020 Citrate cycle (TCA cycle) 1.00E+00 3

Metabolism ko00072 Synthesis and degradation of ketone bodies 1.00E+00 1

Metabolism ko00100 Steroid biosynthesis 1.00E+00 2

Metabolism ko00640 Propanoate metabolism 1.00E+00 3

Metabolism ko00760 Nicotinate and nicotinamide metabolism 1.00E+00 3

Metabolism ko00533 Glycosaminoglycan biosynthesis - keratan sulfate 1.00E+00 1

Metabolism ko00310 Lysine degradation 1.00E+00 5

Metabolism ko00513 Various types of N-glycan biosynthesis 1.00E+00 3

Metabolism ko00604 Glycosphingolipid biosynthesis - ganglio series 1.00E+00 1

Metabolism ko00230 Purine metabolism 1.00E+00 10

Metabolism ko00531 Glycosaminoglycan degradation 1.00E+00 1

Metabolism ko00532 Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 1.00E+00 1

Metabolism ko00515 Mannose type O-glycan biosyntheis 1.00E+00 1

Metabolism ko00563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 1.00E+00 1

Metabolism ko00240 Pyrimidine metabolism 1.00E+00 3

Metabolism ko00562 Inositol phosphate metabolism 1.00E+00 4

Metabolism ko00630 Glyoxylate and dicarboxylate metabolism 1.00E+00 1

Metabolism ko00510 N-Glycan biosynthesis 1.00E+00 1

Metabolism ko00190 Oxidative phosphorylation 1.00E+00 5

Wang et al. 10.3389/fimmu.2023.1100100
assessment of immune response. Figures 8H, I show the risk scores

for CD8, PD-L1 and immune checkpoint molecules, and low- and

high-risk groups were not significantly different.
Establishment of a stemness-metabolism-
related model based on risk scores

A stemness-metabolism-related model combining the risk

scores and clinicopathological features of HCC patients (such as

gender, age and TNM staging) was established to predict survival
Frontiers in Immunology 13
rate (Figure 9A) and visualized by nomogram. Model accuracy was

analyzed by calibration curves and the one-, three- and five-year

survival probability forecast by the nomogram was closely bound up

with the survival probability observed, confirming that the model

was reliable (Figure 9B). After that, the ROC curve based on time

was employed to calculate the AUC values of training (TCGA-

LIHC) and validation datasets (GSE76427) (Figure 9C). All AUCs

showed satisfactory results, demonstrating that the nomogram had

excellent discrimination and could be applied to other cohorts.

Figure 9D shows the decision curve analysis (DCA) curve of

the model.
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FIGURE 6

Results of GSEA. (A) Results of top three pathways of KEGG-based metabolic pathway analysis. (B) Results of top three pathways of Reactome-based
metabolic pathway analysis. (C) Results of top three pathways of WP-based metabolic pathway analysis.
TABLE 4 GSEA analysis results of metabolism-related genes.

ID setSize NES pvalue FDR

KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 30 -1.64 3.01E-02 1.64E-01

KEGG_ARGININE_AND_PROLINE_METABOLISM 53 -1.92 1.68E-02 1.20E-01

KEGG_BETA_ALANINE_METABOLISM 22 -1.82 9.52E-03 8.95E-02

KEGG_BUTANOATE_METABOLISM 34 -1.75 6.71E-03 7.70E-02

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 34 -1.89 6.71E-03 7.70E-02

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 71 -2.30 1.11E-02 9.40E-02

KEGG_DRUG_METABOLISM_OTHER_ENZYMES 51 -1.90 8.13E-03 8.29E-02

KEGG_ETHER_LIPID_METABOLISM 30 1.52 2.63E-02 1.52E-01

KEGG_FATTY_ACID_METABOLISM 42 -3.00 6.99E-03 7.70E-02

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 -2.61 6.13E-03 7.70E-02

KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 16 -1.70 3.17E-02 1.67E-01
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Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2023.1100100
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 4 Continued

ID setSize NES pvalue FDR

KEGG_HISTIDINE_METABOLISM 28 -1.91 5.56E-03 7.70E-02

KEGG_LINOLEIC_ACID_METABOLISM 29 -1.64 2.34E-02 1.44E-01

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 69 -1.85 1.08E-02 9.32E-02

KEGG_NITROGEN_METABOLISM 23 -1.51 4.33E-02 1.93E-01

KEGG_PROPANOATE_METABOLISM 32 -2.34 6.37E-03 7.70E-02

KEGG_PYRUVATE_METABOLISM 40 -1.53 2.72E-02 1.55E-01

KEGG_RETINOL_METABOLISM 64 -2.31 9.62E-03 8.95E-02

KEGG_STARCH_AND_SUCROSE_METABOLISM 52 -1.40 4.27E-02 1.93E-01

KEGG_TRYPTOPHAN_METABOLISM 39 -2.30 6.45E-03 7.70E-02

KEGG_TYROSINE_METABOLISM 40 -1.79 6.80E-03 7.70E-02

REACTOME_ABACAVIR_TRANSPORT_AND_METABOLISM 10 -2.07 3.44E-03 7.11E-02

REACTOME_ALPHA_LINOLENIC_OMEGA3_AND_LINOLEIC_OMEGA6_ACID_METABOLISM 13 -1.51 5.82E-02 2.34E-01

REACTOME_ARACHIDONIC_ACID_METABOLISM 58 -1.58 1.82E-02 1.26E-01

REACTOME_BILE_ACID_AND_BILE_SALT_METABOLISM 43 -2.25 7.30E-03 7.75E-02

REACTOME_BIOTIN_TRANSPORT_AND_METABOLISM 11 -1.86 2.03E-02 1.33E-01

REACTOME_CARNITINE_METABOLISM 14 -1.79 3.40E-02 1.71E-01

REACTOME_DEFECTS_IN_VITAMIN_AND_COFACTOR_METABOLISM 20 -1.62 2.82E-02 1.57E-01

REACTOME_DISEASES_ASSOCIATED_WITH_SURFACTANT_METABOLISM 10 1.55 2.39E-02 1.47E-01

REACTOME_DISEASES_OF_CARBOHYDRATE_METABOLISM 34 -1.61 2.01E-02 1.33E-01

REACTOME_FATTY_ACID_METABOLISM 169 -2.23 4.00E-02 1.87E-01

REACTOME_FOXO_MEDIATED_TRANSCRIPTION_OF_OXIDATIVE_STRESS_METABOLIC_AND_NEURONAL_GENES 30 -1.80 6.02E-03 7.70E-02

REACTOME_GLYCOGEN_METABOLISM 27 -1.71 1.06E-02 9.32E-02

REACTOME_GLYOXYLATE_METABOLISM_AND_GLYCINE_DEGRADATION 31 -2.33 6.13E-03 7.70E-02

REACTOME_KETONE_BODY_METABOLISM 10 -1.68 3.78E-02 1.83E-01

REACTOME_METABOLISM_OF_ANGIOTENSINOGEN_TO_ANGIOTENSINS 17 -2.20 4.13E-03 7.11E-02

REACTOME_METABOLISM_OF_PORPHYRINS 26 -1.71 1.09E-02 9.32E-02

REACTOME_METABOLISM_OF_STEROIDS 148 -1.60 3.13E-02 1.67E-01

REACTOME_PEROXISOMAL_LIPID_METABOLISM 29 -2.44 5.85E-03 7.70E-02

REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 55 -1.49 1.83E-02 1.26E-01

REACTOME_REGULATION_OF_LIPID_METABOLISM_BY_PPARALPHA 118 -1.53 1.96E-02 1.31E-01

REACTOME_SELENOAMINO_ACID_METABOLISM 109 1.53 3.17E-03 7.11E-02

REACTOME_SPHINGOLIPID_METABOLISM 84 1.34 5.63E-02 2.29E-01

REACTOME_SULFUR_AMINO_ACID_METABOLISM 26 -2.56 5.43E-03 7.70E-02

REACTOME_SURFACTANT_METABOLISM 28 1.55 1.95E-02 1.31E-01

WP_AMINO_ACID_METABOLISM 85 -2.33 1.30E-02 1.03E-01

WP_EICOSANOID_METABOLISM_VIA_CYCLO_OXYGENASES_COX 29 -1.70 1.75E-02 1.24E-01

WP_EICOSANOID_METABOLISM_VIA_LIPO_OXYGENASES_LOX 29 -1.80 5.85E-03 7.70E-02

WP_ENERGY_METABOLISM 47 -1.43 4.03E-02 1.88E-01

WP_ESTROGEN_METABOLISM 18 -1.69 3.46E-02 1.72E-01

WP_FOLATE_METABOLISM 70 -1.87 1.08E-02 9.32E-02

WP_IRON_METABOLISM_IN_PLACENTA 12 -1.75 3.66E-02 1.78E-01

WP_METABOLIC_PATHWAY_OF_LDL_HDL_AND_TG_INCLUDING_DISEASES 16 -1.82 1.98E-02 1.31E-01

WP_METHIONINE_METABOLISM_LEADING_TO_SULPHUR_AMINO_ACIDS_AND_RELATED_DISORDERS 11 -2.30 3.39E-03 7.11E-02
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TABLE 4 Continued

ID setSize NES pvalue FDR

WP_NAD_METABOLISM_SIRTUINS_AND_AGING 11 -1.60 6.10E-02 2.43E-01

WP_NUCLEAR_RECEPTORS_IN_LIPID_METABOLISM_AND_TOXICITY 35 -2.20 6.94E-03 7.70E-02

WP_ONE_CARBON_METABOLISM 30 -1.77 1.81E-02 1.26E-01

WP_ONE_CARBON_METABOLISM_AND_RELATED_PATHWAYS 50 -1.42 3.28E-02 1.69E-01

WP_SPHINGOLIPID_METABOLISM_GENERAL_OVERVIEW 22 1.63 1.01E-02 9.12E-02

WP_SPHINGOLIPID_METABOLISM_INTEGRATED_PATHWAY 23 1.59 1.26E-02 1.02E-01

WP_TAMOXIFEN_METABOLISM 21 -2.02 4.61E-03 7.17E-02

WP_TRANSSULFURATION_AND_ONE_CARBON_METABOLISM 30 -1.59 3.01E-02 1.64E-01

WP_TRYPTOPHAN_METABOLISM 41 -2.40 6.94E-03 7.70E-02

WP_UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS 20 -1.58 3.76E-02 1.82E-01

WP_VITAMIN_B12_METABOLISM 49 -1.78 1.60E-02 1.16E-01

Wang et al. 10.3389/fimmu.2023.1100100
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FIGURE 7

Correlation analysis between the metabolic risk score model related to mRNAsi and the level of immune infiltration. (A, B) Immune and stromal
scores of the high-risk group experienced a significant increase in comparison with those of the low-risk group (immune and stromal scores:
P<0.001). (C) Heatmap of the infiltration level of 22 immune cells in GEO and TCGA datasets. (D) Heatmap of the association between different
immune cell infiltration levels. (ns, *, ** and *** represent P>0.05, P<0.05, P<0.01 and P<0.001, respectively).
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Discussion

Heterogeneity is an essential and distinct feature of HCC and

one of the main causes of poor prognosis. Staying in distinct

differentiation states, CSCs maintain the ability to differentiate

into diverse tumor cells, which contributes to heterogeneity.

Accordingly, the subgroup classification based on CSCs might

become a new viable way and shed light on future treatments. It

is difficult to describe and quantify CSCs and stemness. Malta et al.

adopted an innovative OCLR algorithm and defined mRNAsi as a

new signature quantitatively reflecting the degree of oncogenic
Frontiers in Immunology 17
dedifferentiation (10). Since then, mRNAsi has provided new

ideas and possibilities for linking stemness characteristics to

clinical prognosis, gene mutations, treatment resistance, tumor

immune characteristics, etc. Several studies have further

investigated mRNAsi-related genes (55) and probed into the role

of mRNAsi in HCC. Zhang et al. demonstrated a survival model

using five mRNAsi-related genes (56), and Cai et al. constructed a

six-gene prognosis signature (57). Mai et al. developed an HCC

stemness risk model as a potential indicator of TACE treatment

response (17). Zhang et al. and Xu et al. revealed the role that

mRNAsi played in predicting immunotherapy response (58, 59). All
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FIGURE 8

Impact of different mRNAsi-related metabolic risk subgroups on genetic variants and immunotherapy. (A) The waterfall plot shows the mutation
profiles of commonly-seen tumorigenic driver genes of patients in low- and high-risk subgroups, with a variety of colors indicating different types of
mutation and vignettes above the legend indicating mutational load. (B, C) Boxplots of differences in TMB and MSI levels between patients in low-
and high-risk groups, respectively. (D, E) Comparison of the CNV levels of various genes between low- and high-risk groups. Red and blue indicated
genes with significantly increased and decreased CNVs, respectively. (F-I) Differences in TIDE, Exclusive, PD-L1 and CD8 scores between low- and
high-risk groups based on the TIDE database (ns, * and ** represent P>0.05, P<0.05 and P<0.01, respectively).
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studies obtained the same result that higher mRNAsi were

correlated with worse outcomes and more advanced clinical

stages. This is in accordance with the theory that CSCs are

involved in the progression, recurrence, metastasis and treatment

resistance of HCC. Because of technical limitations, not all

mRNAsi-related genes are suitable and practical drug targets at

present. Numerous cellular metabolic target drugs such as

gemcitabine, 5-fluorouracil, l-asparaginase and methotrexate (60)

have already addressed encouraging anti-cancer therapeutic effects

in clinical practice or preclinical experiments. As a result, it was

hypothesized that genes related to both stemness and metabolism

reprogramming might be appropriate drug target candidates.

Metabolic signatures play a crucial role in tumor

subclassification and immunotherapy response prediction. Some

previous research had confirmed that metabolic signatures showed

good power in tumor sub-phenotype and treatment response

prediction in diffuse large B-cell lymphoma (61), ovarian (62) and
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colorectal cancers (63) as well as clear cell renal cell carcinoma (64).

Chen et al. (65) made use of 90 metabolic genes to classify HCC and

affirmed that metabolic signatures also showed great power in HCC

subclassification. Three subtypes were developed: C1, C2 and C3

with high, low and intermediate metabolic activities, respectively.

Further analysis was demonstrated, and the results showed that

different subtypes also possessed different distinctions in prognostic

value, immune infiltration and clinical characteristics. To be

specific, C1 displayed low AFP expression and good clinical

outcomes; C2 exhibited high-expression immune checkpoint

inhibitors (ICIs), predicting high sensitivity to immunotherapy;

C3 demonstrated high AFP expression and the worst prognosis

(65). However, 90 genes for a classifier were too costly in clinical

practice. In the present study, significant metabolic differences

between low- and high-mRNAsi groups were confirmed. Besides,

the association of metabolism reprogramming with clinical

outcomes was revealed, with the enrichment of lipid-related
B

C

D

A

FIGURE 9

Predictive power analysis of metabolic risk scores related to mRNAsi on the HCC prognosis of patients. (A) Nomogram of the clinical prediction
model on the basis of mRNAsi-related metabolic risk score combined with clinicopathological characteristics. (B) Calibration curve of the
nomogram: Horizontal and vertical coordinates are the survival obtained from prediction and the actual observed survival, respectively. The
nomogram showed good prognosis value for one-, three- and five-year survival. (C) Time-dependent ROC curve for training and validation sets,
showing strong discrimination between training and validation set models. (D) DCA curve for the model, with y- and x-axis representing the net
benefit and the probability of death, respectively. Brown and grey dashed lines represented the hypotheses that death occurs in all patients and no
patients experience death, respectively.
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metabolism pathways showing a relationship with poorer prognosis

and carbon- and nitrogen-related metabolism pathways being

closely related to better outcomes. The scope was narrowed, and a

stemness-metabolic-gene signature with fewer genes was

constructed. Additionally, clinical feasibility was improved while

maintaining accuracy and sensitivity.

In this study, higher mRNAsi values were correlated with

advanced clinical stages and worse clinical outcomes, which also

aligned with previous research results (54, 59, 66). Subsequently, 74

DEMRGs were identified by performing differential analysis and

WGCNA between low- and high-mRNAsi groups. LASSO and

univariate cox regressions were explored, and the three most

efficient prognostic genes, including PFKP, PDE2A and UGT1A5,

were identified. PFKP is a protein-coding gene that translates into

PFKP, an isoform of the rate-limiting enzyme of glycolysis,

phosphofructokinase 1 (PFK1), which catalyzes the irreversible

conversion of fructose-6-phosphate to fructose-1,6-biphosphate

(67). As the important enzyme of glycolysis, PFKP was observed to

allow cancer cells to survive under metabolic stress (68). Studies

showed that PFKP went through an increase in HCC tissues (69) and

was proven to be highly participated in glycolysis remodeling and

associated with overall survival in HCC (70, 71). In addition to

metabolic reprogramming, PFKP has a close correlation with

stemness as well. PFPK served an essential role via LIF-Stat3

signaling to maintain embryonic stem cell (ESC) differentiation

(72). The silencing of PFKP decreased the levels of stemness

markers and proliferation capabilities in HCC (69). PFKP also

played an important role in immune regulation. PFKP influenced

stimulation of monocytes with oxidized low-density lipoprotein (73)

and the expression level was correlated with interferon-gamma (IFN-

g) expression level (74). Sirtuin 2-PFKP interaction led to decreased

light chain-3B activation and repressed phagocytosis (75). PFKP

induced PD-L1 expression through EGFR activation and promoted

immune evasion in human glioblastoma cells (76). In addition, a

study explored the difference between progression HCC patients and

partial response/stable HCC patients in response to the first-line

combined immunotherapy, and PFKP showed a great difference in

the level of mRNA, suggesting its potential in immunotherapy

response stratification as well (77). PDE2A is a protein-coding gene

that encodes PDE2A, an enzyme which belongs to the

phosphodiesterase (PDE) family and hydrolyzes both 3’,5’-cyclic

guanosine monophosphate (cGMP) and 3’,5’-cyclic adenine

monophosphate (cAMP), mediating crosstalk between cGMP and

cAMP signaling cascades (78), regulating mitochondrial clearance

(79) and mitochondrial morphology (80, 81). The expression of

PDE2A is tissue-specific and PDE2A is widely expressed in the

brain and liver (78). PDE2A was demonstrated to correlate with

tumorigenesis in osteosarcoma (82) and colorectal cancer (83) and to

correlate with cancer stem cell stemness in glioma (84) and HCC

(85). A recent study revealed that overexpressed PDE2A was

associated with serum AFP level, vascular invasion, histologic

grade, and pathologic stage, closely participating in inhibiting HCC

cell proliferation, migration, and immune function, which had the

potential to be used as a biomarker for HCC prognosis (81), the

results of which consisted with our results. In glioma, PDE2A/miR-

139 suppressed Wnt/b-catenin signaling by inhibiting cAMP
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accumulation and Glycogen Synthase Kinase-3b phosphorylation,

thereby modulating the self-renewal of glioma stem cells (84).

UGT1A5 is a protein-coding gene translated to UGT1A5, a

member of the UGT1 family which is mainly implicated in the

glucuronidation of bilirubin and phenol and acts as an essential

player in the detoxification and metabolism (86, 87). Previous studies

had reported UGT1A5 with a relatively low expression level in liver

tissues and low enzymatic activity (88–91), while hepatic UGT1A5

expression was also proven highly inducible by multiple activators.

UGT1A5 showed a significant age-dependent transcription in

children (92). Treatment with rifampicin or 3-methylcholanthrene

increased UGT1A5 expression level in human hepatocytes (86). In

female efflux transported knockout FVB mice, the expression level of

UGT1A5 was severely decreased, which indicated that UGT1A5

expression might be female-predominant at least for mice (93, 94).

In the cholestasis mice model, the UGT1A5 expression level changed

significantly as well (95). Those three genes were used as the basis for

the establishment of a risk score model according to which patients

with HCC were segmented into low- and high-risk groups.

Differential analysis was performed. Moreover, it was further

confirmed that DEGs were mainly involved in important metabolic

pathways such as ether lipid, one-carbon and nitrogen metabolism,

and disease associated with surfactant metabolism. Though the roles

of PFKP, PDE2A and UGT1A5 in HCC weren’t fully understood yet,

previous studies and our study suggested that the mechanisms of

PFKP, PDE2A and UGT1A5 deserve further investigation. At last,

the validation of the risk score model was completed in the GSE76427

dataset independently, and its AUCs corresponding to one-, three-

and five-year survival were 0.740, 0.679 and 0.664, respectively,

showing high predictive value.

Atezolizumab plus bevacizumab showed meaningful survival

benefits in HCC, with a median OS of 19.4 months, further laying

out the significance of immunotherapy in HCC treatments (96).

Hence, gene signatures linked with the tumor microenvironment and

the patterns of immune cell infiltration were analyzed as well, which

could serve as important biomarkers to predict immunotherapy

response. It has been reported that the tumor microenvironment

could be conducive to maintaining CSCs which could modulate the

tumor microenvironment and vice versa (21). In this study, the high-

risk group demonstrated elevated immune and stromal scores, which

meant that stemness features were positively associated with the

abundance of stromal and immune cells. Compared with the low-risk

group, the high-risk one exhibited an increased number of Tregs, M0

and other infiltrating suppressive immune cells, and higher

expression levels of several immunotherapy target molecules,

providing support for a negative association between stemness and

immunotherapy efficacy. A recent study reported by Zhen Zhang

et al. (58) demonstrated that stemness was robustly associated with

ICIs through a different analysis method. This is in agreement with

the findings of this research that cancer stemness was positively

related to ICI resistance and intratumor heterogenicity.

Cumulative data from previous studies delineated an accurate

picture of genetic variations in HCC and proved the correlation

between gene alterations and antitumor immunity and metabolism

(97). The genetic alterations of glucose metabolism, such as glucose-

6-phosphatase, catalytic (G6PC), maturity-onset diabetes of the
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young type 3 (MODY3) and hepatocyte nuclear factor-1 alpha

(HNF1A) genes, lead to glycogen storage diseases. That is, specific

MODY3 could facilitate the occurrence of genetic liver

adenomatosis and transform it into malignant HCC (98, 99).

Low- and high-risk groups were found to have the same top gene

mutations: tumor protein P53 (TP53), catenin beta-1 (CTNNB1)

and titin (TTN) but different TMB and MSI levels and CNV

patterns. The high-risk group showed more genomic alterations,

indicating more possibility for immunotherapy resistance.

Finally, a nomogram making a combination of gender, age,

TNM staging and gene signatures (PFKP, PDE2A and UGT1A5)

was constructed for prognosis prediction and the predicted survival

probability was closely fitted to the ideal line, indicating

good efficacy.

CSCs are responsible for poor clinical outcomes yet are resistant

to the majority of current therapies. Therapies capable of

eliminating CSCs have aroused great concern, and many efforts

have been dedicated to CSC-targeted therapies. CSC biomarkers are

promising therapeutic targets, oncolytic measles viruses targeting

CD133+ cells and EpCAM/CD3 and CD44 antibodies were

invented in HCC (100–102). Nonetheless, no single biomarker is

presented in all CSCs. For this reason, targeting a single biomarker

resulted in the evasion of some CSCs (19, 103). Compared with

biomarkers, CSCs share more biological features, with similar

metabolic alterations. On this account, targeting altered

metabolism-related pathways might be a better option and some

drugs with metabolic targets have achieved inspiring results in

preclinical and clinical studies. Metformin and Phenformin both

restrain electron transport chain complex I and impair

mitochondrial energy metabolism, giving rise to cell death in

CSCs in pancreatic cancer (104). The down-regulation of the

mammalian target of rapamycin (mTOR) signaling pathway

which has been demonstrated to be deeply involved in energy

homeostasis could reduce CSCs in breast cancer (105). The

connection between metabolism reprogramming and stemness

was uncovered in this study. Worthy of more in-depth research,

DEMRGs have the potential to become targets for novel

therapeutics. Moreover, a prognostic model containing both

stemness and metabolic features was established before.

Nevertheless, limitations exist in this study. Statistical power

was probably low on account of the relatively low sample size in

both training and validation datasets. Therefore, the increase of

statistical power makes it necessary to verify the predictive value of

the novel stemness- and metabolism-related model by more HCC

patients in the future. In clinical practice, BCLC staging is more

widely used than TNM staging in HCC, but due to the lack of

relevant clinical information on BCLC staging in public databases,

our prediction model used TNM staging instead. More importantly,

further experimental validations of PFKP, PDE2A, and UGT1A5

remain to be conducted at organismal, cellular and molecular levels

despite powerful microarray-based bioinformatic analysis.

To sum up, the connection between metabolism reprogramming

and cancer stem cells was comprehensively elucidated in this work. In

addition, a survival model was established to predict prognosis and

immunotherapy response with high accuracy, sensitivity and
Frontiers in Immunology 20
specificity. It was postulated that three genes could also be the

potential therapeutic targets of HCC.
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