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Partial immune responses in
Sichuan bream (Sinibrama
taeniatus) after starvation
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Haoran Gu1,2,3, Xiaohong Liu1,2,3*† and Zhijian Wang1,2,3*†

1Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City &
Southwest University, Chongqing, China, 2Key Laboratory of Freshwater Fish Reproduction and
Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest
University, Chongqing, China, 3School of Life Sciences, Southwest University, Chongqing, China
Background: Food deprivation is a severe stress across multiple fields and it

might be a challenge to immune system.

Methods: In the present study, adult male Sinibrama taeniatus were deprived of

feed for 7 to 28 days. We explored the effects of starvation on immunity in S.

taeniatus through hematological analysis, antioxidant capacity analysis,

detection of the content or activity of immune factors in plasma, and

transcriptomic analysis.

Results: The results indicated that biometric indexes significantly decreased in

the fish after starvation, the proportion of thrombocyte, neutrophil and

monocyte increased and, conversely, the proportion of lymphocyte decreased.

The antioxidant indexes (SOD and CAT) and innate immune parameters (LZM, C3)

were upregulated in fish suffering from a short period of starvation, while

adaptive immune parameter (IgM) conversely declined. The transcriptome

analysis revealed the changes of various metabolic regulatory pathways

involved in fatty acids and amino acids, as well as the immune responses and

antioxidant capacity.

Conclusions: Taken together, this research in the present study suggested an

induced innate immunity while a partly suppressed adaptive immunity under a

short period starvation.

KEYWORDS

Sinibrama taeniatus, starvation, transcriptome, immune response, hematological
parameters
1 Introduction

Basic life activities of all living organisms depend on the energy supply (1). Food

fluctuation is a common and crucial stress in aquaculture due to the fluctuation during

natural activities cycles such as fish reproduction, migration, etc. (2, 3). Especially for

farmed fish, they may suffer from starvation due to underfeeding, uneven feeding or high

breeding densities (4).
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Most fish species cope with short-/long-term fasting when

submitted to the environmental challenges by various

physiological responses (5). Inevitably, changing of nutrition

supply affects the function of the hematopoietic system and the

immune system if the stress response is costly or the organismal

compensation is imperfect (1, 3, 6). The innate immune response is

the first boundary of host defense, protecting alive animals from

pathogens, and adaptive immunity can mount a more targeted and

advanced immune response (7). Fish immune organs are comprised

of thymus, head kidney, trunk kidney, spleen, gills, liver and

intestine, of which head kidney, trunk kidney, spleen and liver are

also important hematopoietic organs (8). There are a variety of cell

types involved in innate immune response, including monocytes (or

macrophages), non-specific cytotoxic cells and granulocytes, and

lymphocytes were mainly involved in specific immunity in fish. In

recent reports, erythrocytes and thrombocytes of fish were reported

to be functional in immune function as well (9, 10). Besides the

immune cells, plasmatic antibodies, complements, antibacterial

peptides and other immune factors constitutes the humoral

immune system Among them, lysozyme, complement and tumor

necrosis factor are mainly involved in innate immune response,

while immunoglobulins produced by B cells are mainly involved in

adaptive immunity. SOD and catalase are important components of

antioxidant systems and they are also relevant to the fish immune

capacity (11). Therefore, the analysis of blood can provide a wealth

of information on the immune status of fish (12). Previous study has

revealed the increase of red and white blood cells in Nile tilapia

(Oreochromis niloticus) after a two-week starvation (13), as well as a

maintained fast-responsive innate immune capacity in Atlantic

salmon (Salmo salar) after a long period of fasting (14). However,

what’s the situation in the adaptive immune system of aquatic fish

after food deprivation, and the underlying mechanism are

still unknown.

Sichuan bream (Sinibrama taeniatus) is a small economic fish

endemic to the upper reaches of the Yangtze River. It provides

important economic and ecological values in the local area (15).

However, population of this fish shows continuous sharp decline

due to excessive human activities, such as overfishing, abuse fishing,

construction of cascades of dams across rivers. Artificial breeding

and cultivation of Sichuan bream has been overcome recently in our

lab, but biology of this fish still remains largely unknown. The

recent preliminary work has shown that the hematopoietic organs

of S. taeniatus are mainly comprised of head kidney, trunk kidney,

spleen and liver. Among them, the trunk kidney contains a large

number of both mature and immature immune cells in various

stages. Thus, it is an important hematopoietic and immune organ of

S. taeniatus (unpublish). In order to investigate the changes in both

innate and adaptive immune systems caused by insufficient energy

supply, and the further interaction between immune and metabolic

mechanisms to reveal the underlying mechanism, S. taeniatus were

challenged to fasting for 7 days (7d), 14d and 28d, and the biological

indexes, hematological parameters and immune indexes of male S.

taeniatus were detected in the present study, and the underlying

mechanisms was also explored by transcriptome analysis.
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2 Materials and methods

2.1 Fish and experimental conditions

210 healthy (without any symptoms such as hemorrhage, ragged

fins, abdominal distension) yearling male S. taeniatus, with body

weight of 12.36 ± 0.89 g and length 8.73 ± 0.49 cm were selected from

the husbandry in Key Laboratory of Freshwater Fish Reproduction

and Development, Ministry of Education, Chongqing City, China,

under a water-circular system. The fish were domesticated in non-

cyclic water for two weeks. During this time, they were fed to

saturation on a commercial diet twice a day (at 9 a.m. and 5 p.m.,

respectively). After acclimating, the fish were divided into control and

starved groups, two groups were divided into three subgroups (7 d, 14

d, and 28 d), with triplicate tanks per subgroup and 8 individuals in

each tank. Fish in the control group were fed under the protocol used

in the acclimation phrases, while the starved group was deprived of

feed for 7 to 28 days. Fish in all subgroups were separately cultured

under the same environmental conditions, and these subgroups were

named C-7d, C-14d, C-28d, S-7d, S-14d and S-28d, respectively.

Water quality was maintained daily by renewing 30% of the water

(dissolved oxygen content greater than 7 mg/L, pH 7.5 ± 0.5), with a

maintenance temperature of 26 ± 0.5°C. The photoperiod was set as a

12 h: 12 h light-dark cycle.
2.2 Determination of biometric indexes

During the starvation period, fish were sampled and measured

at 7, 14, 28 days. In brief, after anesthetized with MS-222 (500 mg/L,

Sigma Chemicals Inc., USA), the body mass and body length of each

fish in each group were measured. Biometric indexes including

weight gain percentage (WG, %), condition factor (CF, g/cm3),

visceral somatic index (VSI, %) and hepatic somatic index (HSI, %).

The above mentioned measurements were calculated as follows:

WG% = (final body weight − initial body weight)/initial body

weight×100, CF = Weight of fish (g)/(fish total length)3(cm)3 ×

100, VSI = (total weigh of all viscera/total body weight) ×100 and

HSI = (liver weight/total body weight) ×100 (16). The analysis was

based on the number of replicate tanks (n=3).
2.3 Sample collection

Sample collection was performed on the 7d, 14d, and 28d after

the starvation of the fish (17). At each sampling time, blood of 9 fish

from each group were collected from the caudal vein. The small

amount of blood (30 mL) was separately diluted by red and white

blood cell dilutions (Solarbio, Beijing, China, R1010) for counting of

red blood cells (RBCs) and white blood cells (WBCs), another small

part (2 mL) was used to blood smear for differential leucocytes

counts (DLC). The rest of blood was used for plasma isolation,

performed as centrifugation at 4000 rpm for 10 min at 4°C. Isolated

plasma from each fish was stored at -20°C until use.
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After blood collection, trunk kidney of three randomly chosen fish

from each group were collected, snap-frozen in liquid nitrogen and

then stored at −80°C until it was used for transcriptome sequencing

and quantitative real-time PCR qRT-PCR validation experiments.
2.4 Analysis of antioxidant activities
(SOD and CAT)

The superoxide dismutase (SOD, A001-3-2) activity and the

catalase (CAT, A007-1-1) activity of plasma samples were

determined using commercial test kits (Nanjing Jiancheng

Bioengineering Institute, Jiangsu, China). Both measures were

expressed as units per milliliter (U/mL).
2.5 Detection of immune parameters
(LZM, C3, TNF-a and IgM)

The plasma lysozyme (LZM) (U/L), complement 3 (C3) (ug/

mL), tumor necrosis factor-a (TNF-a) (pg/mL) and

immunoglobulin M (IgM) (ug/mL) were measured using ELISA

kits (Jiangsu Meimian Industrial Co., Ltd, Jiangsu, China). The LOT

numbers of these four kits were MM-925409O1, MM-33667O1,

MM-0655O1and MM-33677O1 respectively. These immune

parameters were determined according to the manufacturer’s

instructions, in a microplate reader (Thermo Scientific Varioskan

Flash, USA) at 450 nm to measure the optical density.
2.6 Kidney transcriptome analysis

Trizol Reagent was used to extract the total RNA from the kidney

tissues of S. taeniatus in 6 subgroups following the manufacturer’s

instructions. The purity of sample RNA was checked using the

Nanodrop (OD 260/280), and the concentration was measured

using Qubit® RNA Assay Kit in Qubit®2.0 Flurometer (Life

Technologies, CA, USA), and the integrity was assessed using the

Agilent 2100.

The sequencing libraries were constructed with the TruSeq PE

Cluster Kit v3-cBot-HS (Illumina). The library products were

analyzed and sequenced on an Illumina Hiseq platform. After

elimination of raw reads, paired-end clean reads were aligned to

the reference genome of S. taeniatus (unpublished) using STAR

(http://code.google.com/p/rna-star/). And then FPKM of each gene

was calculated based on the length of the gene and reads count

mapped to this gene. The differentially expressed genes (DEGs)

between the starvation group and the control group were evaluated

by FPKM with an adjusted P <0.05 and absolute Log2 fold change (|

log2 FC| > 1). Gene Ontology (GO) and KEGG pathway

enrichment analyses of differentially expressed genes were

implemented by the cluster Profiler R package (http://

bioconductor.org/packages/release/bioc/html/clusterProfiler.html).

P<0.05 was used as the statistically significant enrichment of both
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GO and KEGG (18). The raw transcriptome data was available at

BioProject PRJNA902429.
2.7 Weighted gene co-expression
network analysis

WGCNA is a robust algorithm highlighted by the modular

clustering of genes and the association analysis between the

modules and clinical traits (19). In the present study, WGCNA

was conducted to analyze all DEGs in different stages of the mRNA

expression data using the R package “WGCNA” (http://

www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/

Rpackages/WGCNA). First, a sample-clustering tree was formed to

assess the presence of outliers. Then, the adjacency matrix was

constructed using a soft threshold power of 30. Network

interconnectedness was measured by calculating the topological

overlap using the TOMdist function with a signed topological

overlap measure (TOM) type. After that, the genes that had

similar expression levels were clustered in modules and were used

in subsequent analysis. To reveal the correlation and underlying

mechanisms, Pearson’s correlation analysis was used to calculate

the relationships between gene modules and the above tested innate

and/or adaptive immunity indexes.
2.8 Validation of RNA-seq profiles by
qRT-PCR

To validate the RNA-seq results, 14 DEGs were selected from

the transcriptome data for qRT-PCR analysis. The cDNAs were

synthesized in a 20 mL reaction volume containing 1 µg total RNA,

using a reverse transcription kit (Takara, China). The forward and

reverse primers (Supplemental Table 1) were designed based on the

genomic and transcriptomic sequences using Primer Premier 5

software (Premier Biosoft, California, USA). The qRT- PCR was

performed with SYBR Green ExTaq II kit (Takara, China) and

StepOne™ real-time PCR system (ABI, New York, USA). Beta-

actin was used as the internal reference. The amplifications were

conducted in a 10 mL reactions, which contained 5 mL master mixes,

1 mL of cDNA, and 0.25 mL of each primer. The qRT-PCR reactions

were conducted with the following procedure: 95°C for 10min, then

40 cycles of 95°C for 15 s, 60°C for 60s. Gene expression levels were

calculated with the 2−DDCt approach (20).
2.9 Statistics

Bioassays were replicated at least three times, and laboratory

personnel participated in the study were blinded to treatment

assignment. Statistical analyses were performed using SPSS 21.0

software (SPSS, Chicago, IL, USA), and Prism 6 (GraphPad

Software, San Diego, CA) was used for graphics. Significant

differences among starved and control groups were determined
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using two-tailed t-tests with significance at P< 0.05. Each variable

value was expressed as the mean ± standard error (SEM).
3 Result

3.1 Biometric indexes

No mortality occurred during the 28 days of starvation

treatment. WG, CF, VSI and HSI exhibited similar reduction

tendency and all these indexes were significantly decreased after 7

days of starvation (P< 0.05, Figures 1A–D).
3.2 Hematological parameters

RBCs were significantly raised in all starved fish (P< 0.01,

Figure 2A), with a time dependent manner. As shown in

Figure 2B, WBCs of starved fish was obviously higher than the

control group at 7 days, while declined at 14 and 28 days of

starvation (P< 0.01).

According to our previous research, peripheral leukocytes of S.

taeniatus were mainly comprised of four types including
Frontiers in Immunology 04
lymphocytes, thrombocytes, neutrophils, monocytes and

monocytes with decreasing number in turn. The proportion of

these four leukocyte types showed change significantly

after starvation.

As shown in the Figure 2C, starvation for 7, 14 and 28 days

caused significant decrease of the proportion of lymphocytes

(P<0.001). It significantly decreased by 14.34% after 7 days of

starvation compared to the control group (P< 0.05). When

starved for 28 days, the proportion only accounts for 45.89 ±

5.77% (P< 0.05). However, the proportion of thrombocytes

significantly increased in starved groups, by degrees from 30.91 ±

4.91% to 37.34 ± 6.94% (7 day- 28 days) (P< 0.01). The proportion

of neutrophils increased by 5.82% and 5.99% after 7 and 28 days of

starvation respectively, while recovered to control level at 14 days.

The proportion of monocytes showed a similar alteration pattern

with neutrophils within 14 days of starvation, but significantly

decreased after 28 days of starvation (P< 0.01).
3.3 Antioxidant activity in the plasma

The SOD activities increased significantly after 14 days of

starvation but decreased after 28 days of starvation (P < 0.05,
A B

DC

FIGURE 1

The changes of biometric indexes in S. taeniatus under starved conditions. (A) weight gain percentage (WG, n=3 replicate tanks); (B) condition factor
(CF, n=24 individuals); (C) visceral somatic index (VSI, n=9 individuals); (D) hepatosomatic index (HSI, n=9 individuals). **P<0.01, ***P<0.001.
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Figure 3A). CAT levels were consistently and significantly higher

than those in the control group (P< 0.05, Figure 3B).
3.4 Determination of immune parameters
in the plasma

During the entire starvation period (from 7 day to 28 days), the

plasma lysozyme activity presented a significant raise trend (P<

0.01, Figure 4A). After 7 days of starvation, the C3 levels was

significantly higher than that of the control group, while it was

significantly lower than control group for 28 days starved

(Figure 4B). However, the trend of TNF-a was different from the

above two indexes. It was higher than the control group only after

14 days of starvation, while significantly lower in both 7-day and 28-

day starvation (Figure 4C).

As an immunoglobulin IgM plays an important role in the

adaptive immunity of fish. No significant changes were detected in
Frontiers in Immunology 05
the early stage of starvation (7 day- 14days), while it decreased

significantly after 28 days of starvation (P<0.01, Figure 4D).
3.5 Functional classification of differentially
expressed genes

The 7-day starvation resulted in 393 DEGs in the kidney of S.

taeniatus, with 131 up-regulated genes and 262 down-regulated

ones. The 14-day starvation resulted in 79 DEGs with 16 up-

regulated genes and 63 down-regulated genes. The starved 28

days group resulted in 497 DEGs with 200 up-regulated genes

and 297 down-regulated genes. In general, most of these genes were

related to metabolic function, and they were mainly affected by

starvation stress, such as Hadha, ANGPTL4 and Mgll (Figure 5A).

Interestingly, we noted some genes associated with immune

response, such as C3, IL1R1, ccl19, Gpx4, eomes and etc. 28 DEGs

were shared in these three different starvation periods (Figure 5B).
A B

C

FIGURE 2

The impact of starvation stress on hematological parameters in S. taeniatus. (A) red blood cells (RBCs, n=9); (B) white blood cells (WBCs, n=9);
(C) differential leucocytes count (DLC, n=12). (C-7d represents the control group after 7 d of feed, S-7d stand for starved group after 7d of starvation,
other groups are named in the same way as this one). **P<0.01, ***P<0.001.
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GO analysis showed that starvation for both 7 days and 14 days

mainly affected “biological processes” and “molecular function”, such

as “iron ion binding”, “inorganic anion exchanger activity”, and there

were 29 DEGs and 13 DEGs in the affected pathways, respectively.

Starvation for 28 days mainly affected “cellular composition” and

“molecular function” (60 DEGs), which involved biological processes

such as “protein-glutamine gamma-glutamyltransferase activity”

(no.1) and “oxidoreductase activity” (no.3) related to apoptosis as

well as the antioxidant system (Figure 6).
Frontiers in Immunology 06
In addition, 51 different DEGs pathways of significant

enrichment were identified with KEGG pathway analysis

(Figure 7). Top 10 KEGG pathways at each of the phase were

related to the digestion metabolism and mainly involved the energy-

substance metabolism, including lipids, proteins, and amino acids.

In addition, these pathways also involved signal transduction

regulation, which was mainly related to immune response

regulation such as “phagosome”, “complement and coagulation

cascades” and so on.
A B

FIGURE 3

The effects of starvation on antioxidant activity in S. taeniatus (n=6). (A) superoxide dismutase (SOD); (B) catalase (CAT). *P<0.05, ***P<0.001.
A B

DC

FIGURE 4

The changes of immune parameters in S. taeniatus (n=6). (A) lysozyme (LZM); (B) complement component 3 (C3); (C) tumor necrosis factor a (TNF-
a); (D) immunoglobulin M (IgM). *P<0.05, **P<0.01 and ***P<0.001.
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3.6 WGCNA network construction and
immune-related module identification

To discern if potential gene modules correlate with innate and

adaptive immunity, plasma lysozyme activity and content of IgM,

representing typical fish innate and adaptive immune indexes

respectively, were selected as analysis traits here. A scale-free

network was established with the WGCNA method, while a soft

threshold was set to 30 by calculation (R2 = 0.90) (Supplementary

Figure S1). A total of 9 modules were identified based on the traits

of plasma LZM activity and content of IgM via average linkage

clustering (Supplementary Figure S2), and the magenta module was

the strongest correlated one. In particular, correlation values of the

magenta module to LZM and IgM were 0.75 (P = 2.3e-12)
Frontiers in Immunology 07
(Figure 8A) and 0.51 (P = 2.3e-5) (Figure 8B), respectively. In the

magenta module, genes including Gfi1b was downregulated in the

trunk kidney of S.taeniatus after starvation, and genes such as

transferrin receptor (TFRC), GATA binding protein (gata1) were

also identified in this module (Supplementary Table 3).
3.7 Validation of RNA-seq data by qRT-PCR

To verify the transcriptome sequencing data, 14 differentially

expressed genes were selected for qRT-PCR confirmation. Among

them, 8 genes (hadha, ANGPTL4, Mgll, gsk3b, BLVRB, Bbox1,

AQP1, and Ank1) were related to metabolic function, and 6 genes

associated with immune response (IL1R1, C3, ccl19, Gpx4, eomes,
A B

FIGURE 5

DEGs in the kidney of from S. taeniatus under starvation stress. (A) The number of DEGs; (B) The Venn diagram of unique and shared DEGs of S.
taeniatus under starvation stress.
FIGURE 6

Enriched GO terms in the kidney of S. taeniatus after starvation for three time nodes.
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and Glul). qRT-PCR analysis showed that different length of

starvation had different effects on gene expression, which was

fully agreed with the results of RNA-seq (Figure 9).
4 Discussion

4.1 Starvation affected biometric
indexes of S. taeniatus

When subjected to starvation, organisms developed integrated

repertoire of physiological and biochemical responses that reduce

metabolic expenditure and enhance endogenous substrates

utilization, accompanied by loss of body mass and atrophy of

tissues as well as downregulated function (21). The VSI and HSI

are tightly related to the nutritional status and fat reserve of fish

(22). In our present study, the sharp decline of these detected

biometric parameters indicated the nutritional deficiency after

starvation. Visceral organs are important energy deposition sites,

they may function as key sources for energy supply during diet

deprivation periods. The results were in consistent with previous

studies on starved Nile tilapia (13), zebrafish (23) and rose snapper

(Lutjanus guttatus) (24). Besides, our transcriptome data also

showed that genes such as Hadha, ANGPTL4 and Mgll, which

were related to fatty acid metabolism were significantly up-

regulated, while genes (including Gsk3b) related to glycogen

synthesis were significantly down-regulated. This is in accordance
Frontiers in Immunology 08
with the viewpoint that lipids in visceral organs were fully used for

energy supply and gluconeogenesis under starvation conditions to

maintain basic physiological activities (25).
4.2 Starved effects on hematological
indicators of S. taeniatus

Hematological indicators are sensit ive to external

environmental pressures (26, 27). In general, the main function of

RBCs in fish is to carry and transport oxygen, andWBCs are mainly

involved in cell defense and immune responses. In this study, RBCs

in peripheral blood offish increased with the extension of starvation

time, while WBCs increased firstly and then decreased. In previous

studies, RBCs and WBCs of Siberian sturgeon (Acipenser baerii) did

not change significantly after 45 days of starvation (28). RBCs of

grey mullet (Mugil cephalus) did not change significantly after

starvation for 10-30 days, while WBCs increased after 10 days of

starvation (16). However, RBCs and WBCs in Nile tilapia

continuously raised within 7-21 days of starvation (13). Due to

the different starvation tolerance of different fish species, there were

certain differences in their hematological indicators after starvation.

Raise of WBC has been supposed to be helpful in dealing with

external pressure (29). For S. taeniatus, the first raise of WBCs at 7

days of starvation indicated a quick response capacity of the

immune system in a short-term starvation state as well as the

altered energy allocation in immune system.
FIGURE 7

Enriched KEGG pathways in the kidney of S. taeniatus after starvation for three time nodes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1098741
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1098741
From the perspective of DLC, the lymphocyte groups involved

in specific immunity decreased significantly after starvation,

accompanied with decreased IgM content, which is in accordance

with the previous study that nutrient deprivation inhibited

proliferation of peripheral blood lymphocytes (PBLs), resulting in

reduced antibody production and specific immunosuppression (30,

31). The other two leukocyte groups, named neutrophils and

monocytes, which were mainly involved in non-specific immunity

were less affected. The proportion of monocytes decreased at 28

days, while increased at the early stage of starvation (7 days), and

the proportion of neutrophils increased under all starvation periods.

Thrombocytes, mainly involved in functions such as blood clotting
Frontiers in Immunology 09
but also in fish immune responses (10) were also significantly

increased after starvation. The results of the present study are

similar to the reported phenomena in sucker head (Garra gotyla

gotyla) (26).
4.3 Starvation enhanced
antioxidant activity

It is well known that SOD and CAT are important

antioxidants in fish antioxidant defense system (32). SOD is a

reliable indicator of oxidative stress, and its increased activity may
A B

FIGURE 8

The result of WGCNA. (A) Plasma LZM activity correlated with module membership in magenta module; (B) Plasma content of IgM correlated with
module membership in magenta module.
FIGURE 9

The gene expression of 14 selected DEGs of S. taeniatus under starved conditions, quantified by qRT-PCR. *P<0.05, **P<0.01 and ***P<0.001.
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be related to an increase of H2O2 production. CAT is a key

antioxidant enzyme for H2O2 removal and a basic mechanism

for limiting the formation of highly active hydroxyl radicals. CAT

activity is mainly present in peroxisomes and is associated with

elevated H2O2 concentrations as well (33). The results showed that

SOD activity was the highest after the 14-day starvation

(Figure 3A), indicating the increased SOD level of fish.

However, when starved up to 28 day, the decreased SOD

activity might be caused by excessive free radicals, and thus the

damaged antioxidant system in the fish. In addition, the higher

CAT activity also indicated that the fish was subjected to greater

oxidative stress under starvation treatment within 28 days. Apart

from this, in the KEGG pathways for DEGs, the redox system-

related pathway (peroxisome) was enriched. This result showed

that starvation caused oxidative stress in the fish body in a chronic

manner. The same studies were seen in rainbow trout

(Oncorhynchus mykiss) (34), European sea bass (Dicentrarchus

labrax) (35), Soleimani (Mesopotamichthys sharpeyi) (36), brown

trout (Salmo trutta) (37). Persisting oxidative stress can activate a

large range of transcription factors, such as NF-kB, Nrf2 and HIF-

1a. Subsequently, these transcription factors induce the

expression of many cytokines and chemokines (38). In the trunk

kidney tissues of the study, there are a large number of

antioxidant-related genes such as Gpx4 and innate immune-

related genes such as C3 and ccl19, which were all expressed

up-regulated. Thus, oxidative stress can lead to chronic

inflammation (38).
4.4 Starvation altered the immune
response in S. taeniatus

LZM, C3, TNF-a are all important immune factors involved in

innate immunity, and their activities or contents in plasma are good

indicators of the innate immune response of fish (39). LZM can

disrupt bacterial cell walls by catalyzing the hydrolysis of 1,4-b-bonds
(40). C3 is the most important and core component in the

complement system. It is worth mentioning that it is considered to

be the main acute phase protein in response to external stimuli in

vertebrate animals (41). TNF-a is an important activator of

macrophages, by increase the respiratory activity, phagocytosis, and

nitric oxide production of macrophages (41). Here we found a time

dependent increase of LZM (Figure 4A), which was similar to the

results of Chinese sturgeon (Acipenser sinensis) (42), Nile tilapia (13),

grey mullet (16). C3 increased significantly in a short period of

starvation (7d), and decreased significantly after 28 days of starvation

(Figure 4B). Similarly, after 28 days of starvation, both transcriptome

data and qRT-PCR results showed that the C3 gene was significantly

down-regulated. TNF-a in plasma was significantly higher than that

in the control group only after 14 days of starvation, while TNF-a
gene expression detected in the spleen of hybrid grouper (Epinephelus

fuscoguttatus♀×E.lanceolatus♂) (43) and the testis of zebrafish

increased gradually with the extension of starvation (44). Therefore,

as fish cope with environmental challenges, these innate immune

factors are effective in stimulating inflammation (45). But the
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intricate influence of starvation stress and immune responses could

be varied by the duration time and species or tissues (44). Combined

with the increased proportion of thrombocyte, neutrophil and

monocyte in the early stage of starvation, it can be inferred that

short term starvation can promote the innate capacity of fish to a

certain extent.

IgM is the most important medium in the specific immune

response of fish (46). In the present study, plasma IgM content of S.

taeniatus was unchanged within a starvation of 14 days, but

significantly decreased at a longer time starvation (Figure 4D).

Besides, based on the transcriptome analysis, genes associated with

immunoglobulins were also significantly down-regulated after

starvation (Supplementary Table 2). Decrease of serum IgM levels

have been reported in fantail goldfish (Carassius auratus L.) after 8

weeks of fasting (47), and the similar downward trends were

observed in channel catfish (Ictalurus punctatus) (48) and bastard

halibut (Paralichthys olivaceus) (49) as well. However, there was still

limited knowledge about the influence of insufficient energy supply

upon adaptive immune system. The study has shown that mouse

after dietary restriction were inhibited immune capacity due to

reduce immunoreactivity to anti-immunoglobulin G antibody (50).

These results suggested that starvation stress causes some degree of

damage to the body’s adaptive immunity. In current study,

combined with the decreased proportion of lymphocyte, the

results here suggested an inhibitory effect of starvation on the

specific immune response of fish.
4.5 Kidney transcriptome in
response to starvation

In this study, the KEGG pathways for DEGs showed that

starvation stress mainly affected the lipid metabolism of S.

taeniatus, including fatty acid degradation, arachidonic acid

metabolism, cholesterol metabolism and other pathways. This was

in consistent with the findings in gibel carp (Carassius auratus

gibelio var. CAS III) (51), hoplosternum littorale (Teleostei,

callichthyidae) (52). Genes such as Hadha and Mgll were up-

regulated related to fatty acid hydrolysis, while other genes related

to fatty acid synthesis such as ANGPTL4 and Ank1 were down-

regulated. Thus, starvation could induce mobilization of lipid

reserves by accelerating lipid catabolism and inhibiting

lipogenesis, and then promote the energy generation (53).

Meanwhile, in the results of KEGG pathways, we noticed that

after starvation for 14 days, a large number of amino acid

metabolic pathways, such as alanine, aspartate and glutamate

metabolism, arginine biosynthesis, tryptophan metabolism etc.,

were enriched. Lipids are reportedly a major source of energy and

largely accumulate in the body and are of high caloric value, and

proteins are mobilized only when both lipid and glycogen supplies

are nearly depleted (54). Thus, both processes related to lipid and

protein metabolism were disrupted in kidney of S. taeniatus treated

by long-term starvation in the present study.

The antioxidant system played an important role in

maintaining normal physiological activity and detoxification. In
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the present study, “peroxisome” pathway was enriched and genes

associated with antioxidants included Gpx4, GLUL, GSTK1 and ect.

were up-regulated. In mammals that were on a restricted calorie

intake a number of different isoforms of glutathione peroxidase

were increased (55). GSTK1 encoded glutathione-s-transferases that

function in cellular detoxification (56). In this study, GSTK1

expressed upregulation at 7 days of starvation. Interestingly

glutathione-s-transferase activity was up regulated in rainbow

trout following 3 weeks starvation (57). These results reflected

that starvation could activate the antioxidant system.

The pathway “complement system and coagulation cascades”

which has major roles in innate immune defense has components

significantly enriched in starved fish. These genes related to innate

immunity, such as C3, IL1R1, ccl19, Ali3 and etc., were expressed

differently. C3 played a central role in the activation of the

complement system. IL1R1 was an important mediator involved

in many cytokine-induced immune and inflammatory responses.

ccl19 played a role in normal lymphocyte recirculation and homing.

Ali3 affected the activity of proteolytic enzymes to protected to

maintain homeostasis and benefit for the immune. In the study,

IL1R1, ccl19 and Ali3 were significantly upregulated while C3 was

significantly downregulated after suffering 28d starvation stress.

The past study suggested that the control of the complement

cascade is complicated with different components being

independently regulated when energy was insufficient (14). In the

study, C3 was downregulated, possibly due to long-term lack of

energy supply to the starved fish (2), but other innate immune-

related cytokines were activated after starvation stress (44).

In current study, we identified some key genes that suppress

adaptive immunity when subjected to chronic starvation stress. For

example, antigen presentation-related HLA-DPA1 expression was

up-regulated, gene Eomes, cell marker from thymic precursors of

self-specific memory-phenotype CD8 T cells+, CD276, which was

involved in regulating the T cell-mediated immune response (58),

and related genes as part of the immunoglobulin complex such as

IGHV3-21, all of which were down-regulated after starvation.

(Supplementary Table 2). The past study on humans have found

that starvation can affect stimulation of B cells and secretion of

cytokines of PBLs and cause a partial immunodeficiency (30). In

addition, the study has reported Balb/c mouse after suffering

starvation failed in the recovery of the functional abilities of T-

helper cells (Th) and/or in expanding pools of memory B cells (59). In

the WGCNA analysis, the gene Gfi1b was identified (Supplementary

Table 3). Gfi1b is expressed during hematopoiesis and lymphopoiesis

and is a key gene for early regulation of B lymphocytes and T

lymphocytes (60). After starvation stress, Gfi1b was significantly

downregulated in the trunk kidney of S. taeniatus, which may

explain the decrease in the proportion of lymphocytes in DLC

analysis (61). Malnutrition inhibited acquired immunity leading to

depletion in lymphocytes and alteration of their functions (50).

Combined with downregulation of genes associated with the

immunoglobulin domain in the modules, the suppressed acquired

immunity of S. taeniatus after starvation was further verified.
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In general, the expression levels of these DEGs associated with

the innate immune system were up-regulated in the early stage of

starvation stress (7d), but their expression levels decreased after

starvation for too long (28d). Mounting an immune response

requires energy and an increase in metabolic activity, and the

effectiveness of the response may be related to body energy

reserves (62). During the early stage of starvation, the stored

lipid can provide sufficient energy to mount an improved innate

immune response for a rapid defense to the external pathogens

invading. However, with the prolongation of starvation, the

energy supply in the fish is insufficient and thus the immune

level decreases. This is in agreement with previous studies that

starved fish attempt to increase expression of several key immune

related genes to maintain good health (2, 14). However, DEGs

associated with adaptive immune responses begin to be

downregulated after starvation, presented as the significant

decrease of lymphocyte proportion.
5 Conclusion

In summary, our study explored the starvation stress on

immune respond in Sichuan bream. Based on the biometric and

transcriptome data, it is obvious that energy metabolism of Sichuan

bream was disrupted by starvation. However, accompanied with the

robust decrease of biometric parameters and disrupted lipid and

protein metabolism, capacity of innate immunity was also induced,

especially at the early stage of starvation, presented as the increased

proportion of thrombocyte, neutrophil and monocyte and raised

plasmatic content of LZM and C3. On the contrary, the decreased

proportion of lymphocyte, plasma IgM and declined expression

of related genes suggested an adverse inhibitory pattern of

adaptive immunity. The present study will help us to reveal the

survival strategy under stress, and thus provides us a hint in

understanding the energy allocation between metabolism and

immunity. However, more researches are needed for uncovering

of underlying mechanisms.
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