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Introduction: Triple negative breast cancer (TNBC) is the most aggressive and

hard-to-treat subtype of breast cancer, affecting 10-20% of all women diagnosed

with breast cancer. Surgery, chemotherapy and hormone/Her2 targeted therapies

are the cornerstones of treatment for breast cancer, but women with TNBC do not

benefit from these treatments. Although the prognosis is dismal, immunotherapies

hold significant promise in TNBC, even in wide spread disease because TNBC is

infiltrated with more immune cells. This preclinical study is proposing to optimize

an oncolytic virus-infected cell vaccine (ICV) based on a prime-boost vaccination

strategy to address this unmet clinical need.

Methods: We used various classes of immunomodulators to improve the

immunogenicity of whole tumor cells in the prime vaccine, followed by their

infection with oncolytic Vesicular Stomatitis Virus (VSVd51) to deliver the boost

vaccine. For in vivo studies, we compared the efficacy of a homologous prime-boost

vaccination regimen to a heterologous strategy by treating 4T1 tumor bearing BALB/

c mice and further by conducting re-challenge studies to evaluate immunememory

responses in surviving mice. Due to the aggressive nature of 4T1 tumor spread (akin

to stage IV TNBC in human patients), we also compared early surgical resection of

primary tumors versus later surgical resection combined with vaccination.

Results: In vitro results demonstrated that immunogenic cell death (ICD) markers

and pro-inflammatory cytokines were released at the highest levels following

treatment of mouse 4T1 TNBC cells with oxaliplatin chemotherapy and influenza

vaccine. These ICD inducers also contributed towards higher dendritic cell

recruitment and activation. With the top ICD inducers at hand, we observed that

treatment of TNBC-bearing mice with the influenza virus-modified prime vaccine

followed by VSVd51 infected boost vaccine resulted in the best survival.

Furthermore, higher frequencies of both effector and central memory T cells
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along with a complete absence of recurrent tumors were observed in re-

challenged mice. Importantly, early surgical resection combined with prime-

boost vaccination led to improved overall survival in mice.

Conclusion: Taken together, this novel cancer vaccination strategy following early

surgical resection could be a promising therapeutic avenue for TNBC patients.
KEYWORDS

Immunogenic cancer vaccine, oncolytic virotherapy, triple negative breast cancer, tumor

microenvironment, immune effector cells
1 Introduction

The incidence of triple negative breast cancer (TNBC) is significant,

with approximately 230,000 cases diagnosed globally each year (World

Health Organization 2020). TNBC is a heterogeneous group of breast

cancers that donot express estrogen, progesterone andHER-2 receptors.

Compared to other breast cancer subtypes, TNBC has a poor prognosis

due to a high rate of early recurrence, distant metastasis and lack of

targeted therapies (1).Neoadjuvant chemotherapyand surgical resection

are recommended for early stageTNBC.Apathologic complete response

to this frontline care is the best indicator of long-term survival (2, 3). For

patients with late stage, metastatic or chemo-resistant TNBC, there are

no further, effective treatment options.

The presence of tumor infiltrating lymphocytes (TILs) within

tumor tissue, suggests an immune response to tumor-associated

antigens (TAA). The presence of high levels of TILs in TNBC tissue

and its correlation with improved prognosis has been recently

evaluated (4–6). Moreover, both genomic instability and high rates

of genetic mutations have been found in TNBC tissue, which

implicates the production of neoantigens and increased tumor

immunogenicity (7, 8). While TNBC contains more pre-existing

TILs than other breast cancer subtypes, these TILs reveal

dysfunction (5, 9–12). Possible reasons include deficient Interferon

(IFN) signaling and immune suppressive pathways in the tumor

microenvironment (TME) that dampen TIL responses (13, 14).

Oncolytic viruses (OV) are a form of immunotherapy that uses

attenuated viruses to selectively replicate in and destroy cancer cells,

with subsequent induction of anti-tumor immune responses within

the TME (15). Many recent studies demonstrate the ability of OV to

induce immunogenic cell death (ICD) upon tumor killing (14, 16–

18). Infection of tumors by OV leads to the release of pathogen

associated molecular patterns (PAMPs) and danger associated

molecular patterns (DAMPs), which signal through toll-like

receptors (TLR) and activate cellular stress. This results in the
fected cell vaccine; ICD,
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production of type I IFN, upregulation of surface major

histocompatibility complex (MHC), expression of costimulatory

ligands CD80/CD86, and “eat-me” signals such as externalized

calreticulin (CRT), high mobility group box 1 (HMGB1), ATP and

heat-shock proteins, which are all associated with ICD (19). This leads

to the release of TAAs in a T cell inflamed TME capable of recruiting

and activating antigen presenting cells (APCs), such as dendritic cells

(DC) and anti-tumor CD8+ T cells (14, 18, 20, 21).

The lack of precision therapies for TNBC and the existence of pre-

existing, but dysfunctional TIL, provides a strong rationale to treat

TNBC with immunotherapies, such as therapeutic cancer vaccines.

The field of therapeutic cancer vaccines has experienced a revival in

research activity in the past decade due to a better understanding of

the TME, the breadth of TAA and the development of novel platforms

for TAA delivery. Currently, the use of cancer vaccines against TAA

such as MAGE-A, NY-ESO-1, and MUC-1 are being tested in

preclinical and early stage human trials to activate TNBC TILs (22).

Recent gene expression data reveal elevated expression of these TAA

in TNBC compared to other breast cancer subtypes (6, 9). Given that

TNBC is a highly heterogeneous disease grouped together due to an

absence of tissue histological markers, it is reasonable to postulate that

not all TNBC patients will response to a cancer vaccine formulation

that targets a single TAA. In contrast, treatment with autologous (self)

tumor cells will uncover their own complete and individualized tumor

antigen repertoire. Significantly, the personalized cancer vaccine may

contain many self-tumor antigens that can activate a broad and

polyclonal immune response that is able to recognize and remove a

distinct population of heterogeneous TNBC tumors (23).

To overcome the immune suppressive TME and induce strong

immune responses against TAA and/or neoantigens, we developed an

infected cell vaccine (ICV) platform for TNBC. This consists of

harvesting tumor cells, followed by their ex vivo infection with a

replicating OV and direct intratumoral delivery into the TME. This

method circumvents the main obstacles to systemic delivery of OV

and permits additional ex vivo alteration of the tumor cells to enhance

immune recognition (17, 24, 25). Autologous tumor cell vaccines are

an antigen agnostic form of personalized immunotherapy and

uncovers a TNBC patient to their complete and personalized TAA

repertoire, therefore lessoning the chances of heterogenous tumor

immune evasion (23). Clinical studies on autologous tumor cell

vaccines have reliably demonstrated that patient survival is

significantly improved when they produce an immune response
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against their own tumor cells (26, 27). The solid immunological basis

supporting cytokine-based tumor cell vaccines propels the

development of novel vaccines. Recently, Gradalis and Vaccinogen

Inc. are conducting Phase III clinical studies founded on promising

clinical responses in breast and colon cancers (26, 28).

We have previously demonstrated that oncolytic rhabdovirus-

based ICV can effectively treat preclinical models of colon cancers

that are completely resistant to systemic OV treatment, even when the

same rhabdovirus is used (24). In a preclinical model of TNBC, we

have recently showed that the in vitro infection of 4T1 cells with

oncolytic vesicular stomatitis virus (VSVd51, a rhabdovirus) results in

features of ICD, including enhanced exposure of CRT and release of

HMGB1 and ATP. From in vivo experiments, we observed enhanced

DC, natural killer (NK) and CD8+ T cell recruitment and activation,

both systemically and in spontaneous metastases to the lungs in ICV

treated cohorts. Importantly, we detected improved survival in the

presence of an intact immune system in ICV treated mice (17).

To further focus the immune response on TNBCTAA/neoantigens,

we are developing a heterologous prime-boost strategy in which flu

vaccine infected irradiated whole tumor cells (prime vaccination)

followed by the ICV (boost vaccination) is administered to enhance

the exposure of the immune system to the same TAA/neoantigen

epitopes, but minimizing the anti-OV response. This strategy is

different from heterologous prime-boost vaccines used to elicit broadly

neutralizing antibodies against infectious diseases (22, 23), where several

strains of an inactive virus (with different epitopes) are used to boost the

immune response (24). In this study, we used various classes of

immunomodulators to improve the immunogenicity of whole tumor

cells in the prime vaccine, followed by their infection with VSVd51 to

deliver the boost vaccine. We compared the efficacies of homologous

prime-boost vaccination versus the heterologous prime-boost strategy

by treating 4T1-tumor bearing BALB/c mice and further by conducting

an in vivo tumor challenge study to assess tumor memory responses.

Furthermore, we confirmed that survival can be additionally improved

when the prime-boost vaccination strategy is combined with early

surgical resection of primary tumor.
2 Methods

2.1 Cell lines, viruses and ICD inducers

4T1 and MDA-MB-231 cell lines were cultured in DMEM; and

BT-549 in RPMI, all supplemented with 10% heat inactivated (HI)

FBS + 100U/ml penicillin and 100mg/ml streptomycin (P/S). Cell lines

were purchased from ATCC in the past year. All cells were tested for

mycoplasma infection, had negative test results and reveal

appropriate microscopic morphology at time of experimentation.

VSVd51 expressing GFP reporter protein was grown on Vero cells

and purified using Opti-Prep purification methods. Viral titers were

obtained by a standard plaque assay as previously published (24).

Viral cytotoxicity was assessed on the indicated cell lines, and cell

viability was carried out as described previously (24). The following

ICD inducers were used at their IC50 doses: Oxaliplatin (30 mg/ml,

Sigma), Doxorubicin hydrochloride (25 nM, Sigma), BCG vaccine

(1X, OncotTice - Merck Inc), seasonal flu vaccine (1X, Sequirus), Td

Adsorbed (1X Sanofi Pasteur).
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2.2 Mice

Female BALB/c mice (6-8 weeks old, 20-25g) were purchased

from Charles Rivers (Quebec). Animals were housed in pathogen-free

conditions at the Pavilion for Applied Cancer Research of the

Université de Sherbrooke with liberal access to food and water.

Animals were euthanized by cervical dislocation under anesthesia.

All studies were performed in accordance with Université de

Sherbrooke guidelines and the Canadian Council on Animal Care.

The protocol 2020-2606 was approved by the Faculty of Medicine and

Health Sciences Animal Care Committee.
2.3 4T1 syngeneic mouse model with
resection and prime-boost vaccination

We have previously established a mouse model of spontaneous

and aggressive metastasis and surgical resection of Stage IV TNBC

(29, 30). 1x105 4T1 cells in 100ml of sterile 1X PBS at >98% viability

were implanted orthotopically into the 4th mammary fat pad of

BALB/c mice at day 0. Subsequently, mice were monitored daily by

finger palpation of the primary tumor site, the volume of tumors was

measured by a digital Vernier caliper and the tumor volume was

calculated using the equation (width2*length)/2. A complete resection

of the primary tumor was performed (tumor volume = 75-80mm3) at

days 8-10. During surgery, mice were kept under anesthesia (3%

induction, 1.5% maintenance of isoflurane with 2% O2). For

perioperative pain management, mice were injected with 0.05 mg/

kg of buprenorphine 1h before and 4h following surgery. Mice were

randomized into different cohorts for treatment. At 1-2d post-

surgery, mice received 1 dose of irradiated 4T1 cells treated with

the best ICD inducers (FLU or Oxa) as the prime vaccine, injected

subcutaneously into the cleared surgical bed. One week later, mice in

the prime-boost group or the boost control group were treated with

irradiated 4T1 cells infected with 10 MOI of VSVd51. Surviving mice

were re-challenged by inoculating 1x105 4T1 cells in the opposite

mammary fat pad. The size of re-challenged tumors was measured by

digital caliper and the tumor volumes were calculated as

described above.
2.4 Prime boost vaccine preparation

Prime vaccines were prepared using ICD inducers described

above at their IC50 doses. 5x106 of viably dissociated, single cell

suspensions of 4T1 primary tumors were g-irradiated at 50Gy. These

parameters has been previously determined to create a non-

proliferating, but intact whole cell vaccine (25). Cells were then

treated with ICD inducers for 24h at 37°C, harvested and washed

twice prior to resuspension in 100ml and injected into the cleared

mammary fat pad. ICV using VSVd51 was prepared as previously

published (24). VSVd51 was added to the cells at 5x107 PFU and

further incubated at 37°C for 24h. This preparation was injected in the

cleared mammary fat pad in mice at 100ml, giving each mouse 1:10 g-
irradiated cells to virus per dose (10 multiplicity of infection, MOI).

Peripheral immune cells were assessed 1 week following

boost vaccination.
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2.5 Flow cytometry

To measure mouse spleen and blood lymphocyte populations,

single cells suspensions were incubated in ACK lysis buffer for 5 mins

to lyse red blood cells (RBCs). 1x106 splenocytes or blood immune

cells were then added to each flow tube. Fc block was added before

antibody staining for 20 mins at 4°C. Samples were then washed twice

with flow cytometry buffer (PBS + 2% FBS) and acquired on a

CytoFLEX 30 (Beckman Coulter). Data were analyzed with

CytExpert software. NK and T cell functional measurements were

performed using fresh blood or spleen lymphocytes that were

cultured with PMA/ionomycin for 4h in the presence of brefeldin A

(1mL/mL) at 37°C. Following this, cells were washed twice with PBS,

and then stained for NK/T cell markers. BD Cytofix/Cytoperm kit was

used to fix and permeabilize cells using the manufacturer’s protocol.

Intracellular staining for granzyme B and IFNg was performed. All

antibodies used are listed in Supplementary Table S1.
2.6 Immunogenic cell death assays

Weobtained conditionedmedia (CM)by culturing 5x105 cells in 24-

well plates for 24h followedby treatmentwith ICD inducers at their IC50

doses or infection with VSVd51 at 10 MOI for 24h. Flow cytometry:

treated or infected cells were processed as described above and stained as

described in the flow cytometry section. Antibodies are listed in

Supplementary Table S1. Bioimaging was performed using a

fluorescence microscope (Leica). Western blot: proteins from cell-free

CM (HMGB1) were resolved by SDS-PAGE and transferred to Immun-

Blot-PVDF membranes (BioRad) for immunoblotting. Protein

expression was detected using specific primary antibodies (1:1000) and

correspondingHRP-conjugated secondary antibodies (1:10000). Protein

expression was visualized by chemiluminescence detection (ChemiDoc,

BioRad). Antibodies are listed in Supplementary Table S1. For

Adenosine 5′-triphosphate (ATP) detection, the relative luminscent

unit (RLU) of ATP in the CM was measured with the ENLITEN-ATP

kit (Promega). Briefly, 100 ml of CMwere transferred to 96-well opaque

plates, 100µl of reconstituted rLuciferase/Luciferin reagent was added to

each well followed by measurement of luciferase using a luminescence

microplate reader (Fusion 3.0).
2.7 ELISAs

Culture supernatants were diluted 5-fold. ELISA kits for detecting

TNFa, IL-10, IL-1b, CCL2, CCL4, CCl5 (all Peprotech), TGFb Elisa

(Invitrogen), PGE2 (Cayman), IFN1b (R&D Systems) were

performed according to manufacturer’s instructions.
2.8 Spheroid and co-culture assay

2.5x104 TNBC cells were suspended in 100% Matrigel (Corning)

in a 48-well plate, and 300ml of the corresponding media were added

over the spheroid plugs in each well. For co-culture assays with

immune cells, the human spheroids were resuspended in 65-70% of

Matrigel and co-cultured with human peripheral blood derived DCs,
Frontiers in Immunology 04
and 4T1 spheroids were resuspended in 65% of Matrigel and co-

cultured with purified bone marrow dendritic cells (BMDCs). Human

DCs or mouse BMDCs were labeled with CellTracker Deep Red Dye

(ThermoFisher) at a final concentration of 1X in 1ml of complete

media. The labeled cells were incubated for 30 minutes at 37˚C. Cells

were washed (15,000 RPM 10 minutes at room temperature). The

labelled cells were resuspended in complete media, counted, and co-

cultured with treated spheroids (1 spheroid:10 immune cells).
2.9 Bone marrow isolation and
differentiation to DCs

The tibias and femurs were removed and processed from euthanized

BALB/cmice. The two ends of the boneswere cut, and bonemarrowwas

flushed out by washing with cold 1X PBS using an insulin syringe.

Following filtration (70 mm) and washing to remove tissue debris, the

resulting bone marrow cells were resuspended in DC media (complete

RPMI supplemented with recombinant mouse IL-4 (4.5 ng/ml) and

recombinant mouse GMCSF (5ng/ml) (Peprotech)). 1x106 cells were

seeded in10cmcultureplates.Onday3,1mlofDCmediawas added.On

days 5-7, all floating cells were harvested and washed with 1X PBS. The

supernatant was removed, and the pellet was resuspended in DCmedia,

counted, and co-culturedwith theCMof treated/infected 4T1 cells for 48

hours at 37°C. Following incubation, cells were washed, and flow

cytometry was performed for analyzing DC maturation markers

(CD11c, MHCII, CD80, CD86).
2.10 Quantitative PCR of mouse BMDCs

1.5x106 DCs were seeded in six-well plates. The CM of 4T1 cells

(1.5x105) after in vitro treatment with FLU, Oxa (IC50 concentrations),

CM of 4T1 infected with VSVd51, or CM of non-treated 4T1 cells were

added to the DCs cultures. Twenty-four hours post-treatment, DCs

were harvested, and total RNA was isolated by Trizol (Invitrogen)

according to the manufacturer’s instructions. qPCR was performed

using RNA pooled from two independent experiments. RNA was then

used for reverse transcription and qPCR was performed, validated and

analyzed by the RNomics Platform at the Université de Sherbrooke

(Bio-Rad CFS RealTime system) according to the protocols previously

established by Hellemans et al. (31) and Vandesompele et al. (32).

Primers’ sequences are available in Supplementary Table S2. RNA

integrity was assessed with an Agilent 2100 Bioanalyzer (Agilent

Technologies). Results were represented as fold change of DCs co-

cultured with CM of treated samples relative to DCs co-cultured with

the CM of non-treated cells.
2.11 Phagocytosis assay

1.5x105 4T1 cells were treated with ICD inducers and plated in a 48

well plate. Twenty-four hours post-treatment, the treated cells were

harvested and labeled with Bodipy TMR (Invitrogen #D6117) at a final

concentrationof 2mMfor 30mins. The labeled cellswerewashed 3 times

and further co-cultured with labeled-BMDCs as described above, then

added to the cell cultures and incubated overnight. The ratio of 4T1 cells
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to BMDCs was 1:5. Twenty-four hours after co-culture, the labeled

tumor cells and BMDCs were assessed by flow cytometry. Percentage of

phagocytosis was calculated according to the formula: (number of the

double-positive population of labeled BMDCs and 4T1 treated tumors)

*100/number of labeledDCs). In addition, the live imaging of labeled co-

culture cells was performed by CellDiscover7 microscopy, and the final

images were analyzed by Zenblue software. The merged images

representing the 4T1 tumors engulfed by DCs were calculated by

Image J software, representing the number of phagocytic DCs

engulfing the treated 4T1 cells.
2.12 Human polarization
and migration assays

Polarization: Human monocytes were isolated from peripheral

human blood using the Human CD14+ isolation kit (Stemcell). 5x105

monocytes were seeded in 24-well plates in cRPMI and incubated

overnight at 37°C and 5% CO2. 24h later, the monocyte media was

replaced with the CM from infected human cell lines. Undifferentiated

monocytes remained in complete media as M0; LPS (50ng/ml)

(Millipore Sigma) and recombinant human IFNg (20ng/ml) (BioBasic

Inc) were added to monocyte cultures for differentiation into M1-like

macrophages; recombinanthumanIL-10, IL-4, andTGFb (BioBasic Inc)
all at a final concentration of 20ng/ml were added to monocyte cultures

for differentiation to M2-like macrophages. Monocytes were harvested

and processed for flow cytometry as described above following 18h

culture.Migration: 200ml of CMwere placed in the lower well of Boyden

chambers, separated by a 5 mm-pore polycarbonic membrane (Neuro

Probe). 6x105 humanPBMCwere added to the top chamber, followedby

incubation at 37°C, 5%CO2 for 45mins. Following this, themedia in the

bottom chamber was harvest and quantification of migrated cells by

Trypan Blue exclusion was performed. The cells were stained and

acquired by flow cytometry as described above. Antibodies are listed in

Supplementary Table S1.
2.13 Statistical analysis

All statistical analyses were conducted using Prism 7 (GraphPad).

Unpaired two-tailed t tests were used for comparing uninfected or

infected cells or differentially treated mice. Survival differences of

tumor-bearing and treated mice were assessed using Kaplan–Meier

curves and analyzed by log-rank testing. P<0.05 was considered as

statistically significant.
3 Results

3.1 Immunogenic cell death of mouse
and human TNBC cells can be induced
following in vitro treatment with the
chemotherapeutic agent oxaliplatin
and the seasonal influenza vaccine

We have previously reported that TNBC cells exhibit a necrotic

cell death phenotype after infection with VSVd51. Moreover, our
Frontiers in Immunology 05
work highlighted that VSVd51 infection-induced necrosis was

immunogenic in nature due to the release of DAMPs and other

soluble mediators critical to the formation of anti-tumor immune

responses (17). To further improve the efficacy of the ICV approach,

we tested other immune modulators that could be used to formulate

a more immunogenic prime vaccine. Accordingly, we treated

human (BT-549 and MDA-MB-231) and mouse (4T1) TNBC cell

l ines with different classes of ICD inducers, including

chemotherapeutic agents such as oxaliplatin (Oxa) and

doxorubicin (Dox) widely used as standard of care chemotherapy

for TNBC; and commercially available vaccines against infectious

diseases that could provide an adjuvant effect, including the seasonal

flu vaccine (FLU), Bacillus Calmette Guerin (BCG) vaccine against

tuberculosis, and Td adsorbed vaccines against tetanus-diphtheria.

Following treatment of TNBC cells with IC50 doses of ICD inducers

(Supplementary Figure S1), we measured the resulting levels ICD

biomarkers, including HMGB1 (Figure 1A) and ATP release

(Figure 1B) and cell surface CRT exposure (Figure 1C). Among

chemotherapeutic ICD inducers, Oxa treated-4T1 and MDA-MB-

231 cells released higher levels of HMGB1 compared to Dox

treatment and non-treated controls. The release of HMGB1 was

not significant when comparing Oxa and Dox treatment for BT-549

cells. However, HMGB1 release was significantly higher following

Dox treatment when compared to non-treated BT-549 cells.

Treatment of TNBC cells with FLU resulted in the release of

higher levels of HMGB1 for all treated cells compared to BCG

and Td adsorbed (Figure 1A). ATP release was significantly higher

after treatment of TNBC cells with Oxa compared to all other ICD

inducers (Figure 1B). For CRT exposure, Oxa and FLU treated

TNBC cells resulted in their highest cell surface level expression

(Figure 1C). Taken together, the release of HMGB1, ATP and CRT

exposure were the highest following treatment of TNBC cells with

Oxa and FLU, among ICD inducers tested.
3.2 ICD inducers improve the release of
immunogenic mediators from TNBC cells

Next, we sought to determine if other critical factors such as pro-

and anti-inflammatory cytokines and chemokines that modulates the

TME in addition to DAMPs are released following in vitro treatment

of TNBC cells with ICD inducers. We detected enhanced

concentrations of pro-inflammatory cytokines, including CCL2,

CCL4, and CCL5 released from 4T1 cells following their treatment

with Oxa and FLU for 24h. Treatment of 4T1 cells with Dox and Td

also raised the levels of these inflammatory cytokines compared to

non-treated cells, but their levels were not as high compared to Oxa

and FLU treatment (Figure 2A). In contrast, treatment of 4T1 mouse

cells with Oxa and FLU diminished the amounts of anti-

inflammatory/immune suppressive cytokines IL-10, TGFb and

PGE2 compared to untreated cells. In parallel, the highest

concentrations of pro-inflammatory cytokines, including IFN1b,
TNFa, IL-12, and IL-1b, were detected after treatment of human

BT-549 and MDA-MB-231 cells with Oxa and FLU, among other

ICD inducers tested (Figure 2B; Supplemental Figure S2). Similar to

the 4T1 data, the immune suppressive cytokine PGE2 was detected at

lower levels following treatment of both human TNBC cell lines with
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the FLU vaccine compared to untreated cells. Reduced IL-10 levels

were also detected following Oxa treatment of both human TNBC cell

lines. Taken together, our results suggest that a combination of

inflammatory and immune suppressive signals contribute to TNBC

cell line immunogenicity following treatment with ICD inducers.

Further, these results reveal that Oxa and FLU provoke the release of

more pro-inflammatory cytokines, while simultaneously decreasing

anti-inflammatory signatures compared to other prime-vaccine

immune modulators.
3.3 Enhanced recruitment and activation of
mouse dendritic cells following exposure to
TNBC spheroids treated with oxaliplatin or
influenza vaccine

DAMPs and cytokines are essential signals for attracting immune

cells to the site of stimulation/infection leading to the maturation of

DCs and activation of CD8+ T and NK cells. Therefore, we explored

whether the secreted soluble mediators described above are critical for

attracting TNBC-targeted immune cells. To do so, we performed live

imaging of a co-culture system, including mouse bone marrow

derived DC (BMDC) with 4T1 spheroids. We grew the 4T1 cell line

as spheroids to better recapitulate the glandular structures of breast

cancer cells in vivo. Following the migration of BMDCs towards the

spheroids, we quantified areas of infiltrated and aggregated DCs. Our

data illustrates that spheroids pretreated with Oxa or FLU recruit

more BMDCs than other treatments (Figures 3A, B). Furthermore, we

were interested in assessing whether these BMDCs are more mature.
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Accordingly, we measured cell surface maturation markers and

observed that those BMDCs exposed to the CM of 4T1 spheroids

treated with Oxa and FLU exhibited a more mature (CD11c+/CD80+/

CD86+/MHCII+) cell surface phenotype (Figure 3C). Moreover, we

evaluated a panel of immunogenic and tolerogenic gene signatures

from these BMDCs following co-culture with CM. Our qPCR data

revealed that the CM of 4T1 spheroids following treatment with

Oxa and FLU skewed the BMDCs toward an immunogenic

phenotype confirmed by elevated mRNA expression of the MHCI

gene H2-k1, the canonical DC co-stimulatory receptor CD40, the

T-cell polarizing cytokines TNFa, and IL-2 (Supplemental Figure

S3). In contrast, the gene signature associated with a tolerogenic

phenotype, including gene expression of CTLA-4, IL-10, and IDO

on BMDCs co-cultured with CM of 4T1 cells treated with FLU and

Oxa were down-regulated compared to BMDCs co-cultured with

CM of non-treated 4T1 cells (Supplemental Figure S3). Lastly, to

confirm whether BMDCs can uptake tumor antigens more

efficiently after co-culturing with ICD treated 4T1 cells, we

performed a phagocytosis assay. Previously treated and Bodipy-

labeled 4T1 cells were co-cultured with cellTracker red-labeled

BMDCs. The phagocytic capacity of BMDCs to engulf tumor cells

was then assessed by flow cytometry. We detected higher

percentages of double positive BMDCs in co-culture with 4T1

cells treated with Oxa and FLU, suggesting a higher phagocytic

ability of these DCs (Figure 3D). Taken together, these results

suggest the heightened immunogenicity of Oxa and FLU treated

4T1 cells increased their capacity to recruit and activate critical

functions of DCs, that are key players in the generation of anti-

tumor immune responses.
A
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C

FIGURE 1

Immunogenic cell death of mouse and human TNBC cells can be induced following in vitro treatment with the chemotherapeutic agent oxaliplatin and
the season influenza vaccine. (A) Western blot analysis of HMGB1 from cell-free supernatants, (B) luminometry measurement of relative ATP from cell-
free supernatants, and (C) measurement of cell surface calreticulin of TNBC cell lines treated with ICD inducers at their IC50 concentrations or infected
with VSVd51 at 10 MOI for 24h. The results were compared to non-treated cells. All data are representative of at least three similar experiments where
n=3 for technical replicates, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; (n.s., no significance).
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3.4 Increased migration and functionality
of human DC and effector immune cells
following co-culture with oxaliplatin
and influenza vaccine treated
human TNBC spheroids

To evaluate whether these results in mouse cell lines and immune

cells can be recapitulated in human cells, we isolated human DCs

from peripheral blood and cultured them with spheroids grown from

human BT-549 and MDA-MB-231 TNBC cell lines. First, we

measured the migration of human DCs towards the spheroids, and

observed higher infiltration and aggregates of DCs towards spheroids

treated with Oxa or FLU (Figures 4A, B). Next, we measured cell

surface maturation/differentiation markers and observed that those

DCs cultured with spheroids treated with Oxa or FLU demonstrated a

more mature (CD1a+/CD11c+/CD80+/CD86+/CD40+) cell surface

phenotype (Figures 4C, D). Following the characterization of DCs,

we assessed effector immune cell migration and functionality. We

performed a migration assay using purified human CD8+T cells and

NK cells in co-culture with CM from ICD-treated human TNBC

spheroids. We observed an increased migration of CD8+T cells and

NK cells toward the CM of BT-549 and MDA-MB-231 spheroids

treated with Oxa or FLU, compared to non-treated cells. Importantly,

the CM from Oxa and FLU treated spheroids induced the highest

amount of effector cell recruitment compared to other prime vaccine

candidates (Figure 4E). In a tri-culture assay comprising of purified
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DCs, TNBC spheroids, and either purified CD8+T cells or NK cells,

heightened levels of IFNg+ and CD107+ CD8+T and NK cells were

detected following Oxa or Flu treatments (Figures 4F, G). These

results suggest that human DCs stimulated by Oxa-treated or FLU-

treated TNBC spheroids can attract and activate effector immune cells

that have the potential of recognizing and eliminating metastatic

human TNBC tumors.
3.5 Early surgery coupled with heterologous
Prime boost vaccination improves survival in
the BALB/c-4T1 model of TNBC

To corroborate these in vitro results with in vivo data, we

administered the top prime vaccines followed by a boost ICV in

BALB/c mice bearing orthotopic 4T1 tumors after primary tumor

resection (Figure 5A, timeline). This model makes use of an aggressive

mouse stage IV TNBC from the BALB/c strain that spontaneously

metastasizes from the mammary glands to multiple distant sites, in

particular the lungs. Primary tumor resection is performed to prolong

survival due to the fast-growing primary tumor and to provide a

therapeutic window for adjuvant treatment. Since we observed that

Oxa or FLU treated 4T1 cells were the top inducers of ICD for DC

maturation, phagocytosis, and effector cell function, we included the

following treatment cohorts: prime vaccine alone (irradiated 4T1 cells,

Oxa-4T1, FLU-4T1); and prime and boost vaccine (4T1+ICV, Oxa-4T1
A

B

FIGURE 2

ICD inducers improve the release of immunogenic mediators from TNBC cells. Cytokine and chemokine levels from (A) mouse 4T1 and human (B)
BT-549 cell line culture supernatants were quantified by ELISA following treatment of with IC50 concentrations of ICD inducers or infected with 10
MOI of VSVd51 for 24h. The results were compared to non-treated cells. ELISA was performed using supernatant pooled from 3 independent
experiments, where *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; (n.s., no significance).
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+ICV, FLU-4T1+ICV). Importantly, a control group consisting of an

ICV prime followed by the same ICV boost vaccine was included (i.e.,

homologous vaccination, ICV+ICV). We observed that postoperative

administration of a heterologous prime-boost vaccine, regardless of the

ICD inducer, significantly improved CD3+/CD8+ T cells proportions

and functionality (IFNg+, CD107+ degranulation) compared to the

administration of prime vaccine alone or homologous vaccination (ICV

+ICV) (Figure 5B). Notably, we detected the longest survival in mice

that received a prime vaccine consisting of FLU-treated 4T1 cells

followed by an ICV boost (Figure 5C).

Following this, we sought to investigate whether these long-term

survivors harbor immunological memory against 4T1 tumors. Therefore,

we re-challenged surviving mice (FLU-4T1+ICV; 4T1+ICV cohorts) by

implanting 4T1 tumors in the opposite mammary fat pad at 120 days

post primary tumor implantation. Following 4T1 tumor re-challenge,

FLU-4T1+ICV cohorts were completely protected from the development

of secondary tumors (Figure 5D) compared to previously measured fast

growing primary tumors following initial tumor implantation. In

contrast, we observed slower secondary tumor growth in 4T1+ICV

vaccinated cohorts. Importantly, we measured higher percentage of

effector circulating memory T cells (CD3+, CD8+, CD44+, CD62L-)

and central memory T cells (CD3+, CD8+, CD44+, CD62L+) in the

tumor draining lymph nodes of FLU-4T1+ICVmice following tumor re-

challenge (Figure 5E). The resected lungs from re-challenged mice also

contained less metastatic nodules compared to the lungs of mice treated
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with 4T1-ICV (Figure 5F). These findings suggest the presence of tumor-

specific immune memory against 4T1 tumors in mice receiving

heterologous prime-boost vaccination.

Even though the heterologous prime-boost vaccine strategy

resulted in improved survival for treated mice, we were dissatisfied

with the overall survival percentages. As previously published, the

4T1 cell line is an extremely aggressive stage IV TNBC mouse tumor

that spontaneously metastasizes to the brain, lungs, liver and bones.

In unpublished observations, we noticed metastatic colonization in

the lungs as early as day 5 following orthotopic breast tumor

implantation. We reasoned that earlier primary tumor resection

may reduce lung metastases and prolong survival. In our

established model, we typically performed primary tumor resection

at day 10-12 following tumor implantation when a large tumor (75-

100mm3) is observed. However, 20-50mm3 size tumors are evident in

all 4T1 implanted mice by day 5. Therefore, we repeated the

heterologous prime (FLU-4T1) and boost (ICV) vaccine regimen

comparing either early surgical resection of primary tumors at day 5

or later surgery at day 11. We observed that the combination of early

surgical resection combined with heterologous prime-boost

vaccination resulted in significantly improved survival of mice

bearing aggressive 4T1 orthotopic tumors (Figure 5G). Taken

together, these preclinical results suggest that therapeutic cancer

vaccines can be combined with early surgical intervention to

improve response in aggressive TNBC.
A B
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C

FIGURE 3

Enhanced recruitment and activation of mouse dendritic cells following exposure to TNBC spheroids treated with oxaliplatin or influenza vaccine. Live
cell images from (A) 4T1 spheroids co-cultured with deep red CellTracker-labelled BMDCs, 24h following their treatment with ICD inducers at IC50
concentrations. LPS (1mg/ml) treated spheroids were used as positive controls. (B) Quantification of microscopy images representing the number of
infiltrated and aggregated immune cells around treated spheroids. Dashed lines delineate the edge of spheroids. The results are compared to non-
treated cells. (C) Flow cytometry analysis of maturation markers of BMDCs following 48h of exposure to CM of 4T1 cells treated with indicated ICD
inducer at IC50 concentration or 10 MOI of VSVd51. LPS treated (1mg/ml) BMDCs were used as a positive control. (D) Flow cytometry analysis of
phagocytic BMDCs labelled with deep red CellTracker and co-cultured with Bodipy TMR labelled 4T1 cells. All data are representative of at least three
similar experiments where n=3 for technical replicates, *P < 0.05; **P < 0.01; ****P < 0.0001; (n.s., no significance).
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4 Discussion

Poor prognosis TNBC patients who fail neoadjuvant

chemotherapy and surgery urgently need effective therapies to

prevent recurrence and progressive disease. Multiple recent efforts

using checkpoint inhibitor monotherapy and in combination with

chemo- and targeted-therapies have been made to improve outcome

for TNBC patients. A significantly improved progression free survival

(PFS) and a positive median overall survival (OS) was observed in
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TNBC patients receiving aPD-L1 atezolizumab with nab-paclitaxel,

compared to patients receiving nab-paclitaxel and placebo in the

phase III Impassion 130 trial (22, 33). The phase Ib/II KEYNOTE-150

trial investigating the combination of aPD-1 pembrolizumab with

eribulin demonstrated benefits in PFS and OS in preliminary findings

(22, 34). Despite these new immunotherapies, early results show

modest improvements in survival and only in subsets of TNBC

patients. This underscores the need to continue the development of

novel immunotherapies for broader subsets of TNBC patients. Given
A
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C

FIGURE 4

Increased migration and functionality of human DC and effector immune cells following co-culture with oxaliplatin and influenza vaccine treated human TNBC
spheroids. Live cell images from (A) BT-549 and MD-MBA-231 spheroids co-cultured with deep red CellTracker-labelled human DCs, 24h following their
treatment with ICD inducers at IC50 concentrations. LPS (1mg/ml) treated spheroids were used as positive controls. (B) Quantification of microscopy images
representing the number of infiltrated and aggregated immune cells around the treated spheroids. Dashed lines delineate the edge of spheroids. The results are
compared to non-treated cells. Flow cytometry analysis of maturation markers on human DCs following 48h of exposure to CM of (C) BT-549 or (D) MDA-MB-
231 cells treated with indicated ICD inducers at IC50 concentration or 10 MOI of VSVd51. LPS treated (1mg/ml) human DCs are used as a positive control. (E) Flow
cytometry quantification of migrated purified human CD3+/CD8+ T cells and CD3-/CD56+ NK cells towards CM from BT-549 and MDA-MB-231 cells incubated
with indicated treatments; MCP-1 (50ng/ml) was used as a positive control for immune cell migration. Flow cytometry analysis of purified human CD3+/CD8+ T
cells and CD3-/CD56+ NK cells in tri-cultures with human DCs previously exposed to CM from (F) BT-549 or (G) MDA-MB-231 treated spheroids with indicated
treatments. The results are compared to non-treated cells. All data are representative of at least three similar experiments where n=3 for technical replicates, *P <
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; (n.s., no significance).
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the heterogeneous and immunogenic nature of TNBC, we reasoned

that the development of personalized therapeutic vaccines is

warranted for poor prognosis TNBC.

Autologous tumor cell vaccines are an antigen agnostic form of

personalized immunotherapy that eliminates the need to sequence the

tumor prior to vaccine formulation, saving both precious time and

money. Treatment with autologous tumor cells will reveal a patient’s

own complete and individualized tumor antigen repertoire, thus

lessoning the chances of heterogenous tumor immune evasion (18–

20). A major limitation of whole tumor cell-based vaccines is the lack

of immunogenicity of self-antigens. A treatment approach combining
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cytokines and whole tumor cells could significantly delay tumor

progression. This has been shown to involve the development of a

pro-inflammatory microenvironment that promotes immune system

activation against TAAs (35). However, the majority of patients

treated with this combination do not respond. This could be due to

the lack of immunogenicity of the tumor cell vaccine and cytokine

combination or profound cancer-induced immune suppression. The

FANG vaccine was developed to address these limitations. It is

composed of autologous tumor cells transfected with an

immunogenic GM-CSF/shRNAi furin vector (36). Remarkably,

stage III/IV ovarian cancer patients treated with the FANG vaccine
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FIGURE 5

Heterologous prime-boost vaccination improves survival in the BALB/c-4T1 model of TNBC. (A) Timeline of in vivo BALB/c-4T1 experiment. BALB/c mice
were orthotopically implanted with 1x105 4T1 cells followed by a complete primary tumor resection on indicated days. Two days postoperatively, mice
received 1 dose of the prime vaccine in the cleared mammary fat pad (FLU-4T1, Oxa-4T1, irradiated 4T1, ICV). Nine days postoperatively, mice received
their 4T1-ICV boost vaccine. Immune functional analyses, re-challenge and monitoring were performed as indicated. (B) Immune cell suspensions from
the peripheral blood of mice following indicated treatments were stained with T cell markers (CD3+, CD8+, IFNg+, CD107a+) and analyzed by flow
cytometry. (C) Kaplan-Meier survival analysis of mice receiving prime-boost ICV. n=10-12 mice/group. *P < 0.05; **P < 0.01; (n.s., no significance), log-
rank test. (D) Tumor growth measurements comparing re-challenged 4T1 tumors with their corresponding primary tumor from 4T1-ICV and FLU-4T1-
ICV treatment cohorts. (E) Flow cytometry analysis of central memory T cells in the axillary lymph node and effector memory T cells in the blood of FLU-
4T1+ICV treated cohort before and after re-challenging with 4T1 tumors. (F) Representative lung pictures from FLU-4T1+ICV re-challenged and 4T1-ICV
treated cohorts. (G) Kaplan-Meier survival analysis of mice receiving early vs. late surgery and prime boost ICV. n=10-12 mice/group. *P < 0.05; **P <
0.01; (n.s., no significance), log-rank test. All flow cytometry data are representative of three similar experiments where n=4 mice/treatment, *P < 0.05;
**P < 0.01; (n.s., no significance).
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demonstrated extended recurrence-free survival, likely due to high

levels of T cell activation (37). These findings reveal the promising

clinical potential of immunogenic autologous tumor vaccines.

We and others are working to improve the whole cell vaccination

strategy by infecting tumor cells ex vivo with OV (17, 21, 24, 25, 38).

As proof of concept for TNBC, we recently demonstrated that the

intratumoral delivery of postoperative autologous TNBC cells

infected with VSVd51, provided a significant therapeutic benefit to

aggressive mouse models of TNBC (17). Both NK and CD8+ T cells

demonstrated enhanced cytokine secretion and cytotoxicity following

VSVd51-ICV administration (17). Moreover, we observed improved

survival of mice when we combined ICV with aPD-1 checkpoint

inhibitor therapy. We sought to further enhance the therapeutic

efficacy of ICV by applying a heterologous prime-boost vaccination

approach where irradiated whole tumor cells are delivered twice to

focus the immune response on 4T1 specific TAA. In the prime

vaccine, the 4T1 cells are modulated with immune adjuvants, while

the boost vaccine involved infection of 4T1 cells with VSVd51

(Figure 5B). Using several classes of known ICD inducers, including

chemotherapeutic agents and existing infectious disease vaccines, we

determined that in vitro treatment of both mouse and human TNBC

cell lines with oxaliplatin or the seasonal influenza vaccine resulted in

the highest levels of ICD biomarker exposure, including HMGB1,

ATP and CRT. Furthermore, critical soluble mediators known to be

involved in immune cell recruitment and activation such as CCL2,

CCL4, CCL5, TNFa, IFN1b, and IL-12 were detected at significantly

higher levels in the CM of Oxa and FLU treated TNBC cell lines. We

demonstrated that these biomarkers of ICD and proinflammatory

cytokines attracted and differentiated both mouse BMDCs and

human DCs. Accordingly, an immunogenic gene signature was

detected in mouse BMDCs, exhibiting elevated levels of MHCI,

CD40, TNFa and IL-12; and dampened levels of IL10, IDO1 and

CTLA4. Subsequently, increased migration and activation of both

human and mouse effector CD8+ T and NK cells were detected. From

in vivo experiments, we observed that postoperative prime-boost

vaccination with FLU treated 4T1 cells followed by VSVd51-ICV

significantly improved initial and memory immune cell responses and

provided durable survival benefits. Furthermore, we showed that
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VSVd51 served to further improve the booster vaccine efficacy

when combined with early primary tumor resection.

Surgical resection, especially of early stage disease is a critical

intervention and provides a chance of cure for patients with cancer,

breast cancer included. Resection of early stage breast disease results

in less surgical complications and better outcome for the patient (39).

The perioperative period has been characterized by an increased risk

for accelerated growth of micrometastatic disease and enhanced

formation of new metastatic foci. Perioperative factors including

immunosuppression, anesthesia, hypothermia, and posteoperative

complications may accompany later stage resections and contribute

as potential deleterious factors contributing to worse outcome in

patients (40). Our in vivo results demonstrated that early resection

coupled with cancer vaccination translated to improved survival

outcome compared to later surgery combined with the same cancer

vaccine strategy.

We are working towards the design of a future clinical trial that

consists of early primary tumor resection and an optimized

heterologous prime-boost vaccination strategy to initiate ICD and

TAA release to promote an antitumor immune response (Figure 6).

Our in vitro and in vivo data showed that a superior immune and

survival response is ultimately achieved through enhancing the prime

vaccine with the seasonal flu vaccine. The established safety, efficacy

and acceptability profile of the seasonal flu vaccine will accelerate its

translation and potential incorporation into a therapeutic prime-

boost cancer vaccine for TNBC. However, in the human setting, it is

likely that many TNBC patients will have been previously vaccinated

with a flu vaccine. This could potentially hinder or improve outcomes.

The Zloza group demonstrated that intratumoral administration of

an unadjuvanted seasonal flu vaccine reduced tumor growth,

improved systemic antitumor immunity, and sensitized resistant

tumors to immune checkpoint blockade immunotherapy in B16

experimental lung tumor models, whereas intramuscular injection

did not. They also showed that previous influenza infection did not

interfere with subsequent tumor reduction using the same heat-

inactivated strain of influenza as a vaccine in the B16 model (41).

Their results suggest that pre-existing immunity or immunization

against flu antigens would not handicap the anti-tumor immune effect
FIGURE 6

Model of heterologous prime-boost vaccination for TNBC. Adjuvant vaccination with a prime cellular vaccine results in the release of immunogenic cell
death biomarkers (DAMPs, cytokines, chemokines) that recruit and activate antigen presenting cells to cross-present tumor associated antigens to
tumor-targeted T cells. This is followed by the administration of a boost oncolytic virus-infected cellular vaccine to further focus the immune response
on tumor antigens. An enhanced secondary immune response is instigated by this heterologous prime-boost vaccination to reduce metastatic and
recurrent disease of TNBC.
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of the flu vaccine. Notably, their studies revealed that the anti-tumor

effect is abrogated when they used an adjuvanted flu vaccine.

Squalene-based emulsion adjuvants have been shown to induce

strong innate immune pathways to generate strong B cell responses

and antibody production against viral infections (41). Although we

were able to detect anti-tumor immunity through the use an

adjuvanted flu vaccine (Seqirus) in our studies, this could be due to

differences in the overall formulation of our prime vaccine, which also

included irradiated TNBC cells. In a separate study, the Masopust

group similarly demonstrated that virus-specific memory T cells can

be re-stimulated by viral peptides. These were injected intratumorally

and resulted in reduced tumor growth, enhanced checkpoint blockade

immunotherapy, and promoted survival in B16 tumor-bearing mice

(42). We have not yet tried an unadjuvanted formulation in our prime

vaccine nor have we attempted pre-vaccination of our mice before

initiating our therapeutic model. These experiments to improve our

prime boost cancer vaccine approach forms the basis of our

ongoing studies.

Our prime boost vaccination strategy could be further followed by

checkpoint inhibitor administration to sustain the anti-tumor activity

of T cells at the tumor site. The Bell group recently showed that a

neoadjuvant OV can be used to sensitize the tumor to checkpoint

blockade therapy in preclinical TNBC models (43). However, these

mouse models did not include surgical resection nor was the OV

delivered as part of a cancer cell vaccine. For nonresectable disease,

patient tissue obtained via biopsy could potentially provide source

material for both the prime and boost vaccines. The clinical timing of

prime-boost vaccine delivery in the context of frontline treatment for

TNBC is a current focus of our investigations.
5 Conclusions

In summary, we characterized the mechanism and clinical

potential of a heterologous prime-boost vaccination approach for

the treatment of TNBC. We demonstrated that innate and adaptive

immune cells play mediating roles in the in vivo efficacy of our

heterologous vaccination strategy. These findings reveal the

importance of effector and central memory subsets of cytotoxic T

cells in the reduction of metastatic disease. Furthermore, our

preclinical data demonstrate the potential of repurposing

commercially available infectious disease vaccines, such as seasonal

influenza vaccine as a strong ICD inducer to stimulate innate and

adaptive immune cells. These vaccines have established safety data in

many immune competent and comprised populations (infants, the

elderly, pregnant individuals, HIV+ individuals, etc.) and could

therefore translate very quickly to the clinics as a component of

therapeutic cancer vaccines. In summary, our translational data

demonstrate the potential of applying heterologous prime-boost

vaccination for hard-to-treat cancers such as TNBC.
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