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Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies.

Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are

involved in both normal physiology and pathology of the ocular system. Thus,

studying extracellular vesicles may lead to a more comprehensive understanding

of the pathogenesis, diagnosis, and even potential treatments for various

diseases. The roles of extracellular vesicles in inflammatory eye disorders have

been widely investigated in recent years. The term “inflammatory eye diseases”

refers to a variety of eye conditions such as inflammation-related diseases,

degenerative conditions with remarkable inflammatory components,

neuropathy, and tumors. This study presents an overview of extracellular

vesicles’ and exosomes’ pathogenic, diagnostic, and therapeutic values in

inflammatory eye diseases, as well as existing and potential challenges.

KEYWORDS

inflammation, autoimmune, infection, extracellular vesicles, exosome, eye,
mesenchymal stem cells
1 Introduction

Globally, at least 2.2 billion individuals are affected by visual impairment or have an

underlying visual condition that will eventually result in blindness (1). Epidemiological studies

have demonstrated that the incidence of Inflammatory eye diseases (IEDs) and autoimmune

ocular diseases has increased significantly over the past two decades (2). All-cause mortality is
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considerably higher in individuals with visual impairment compared

with individuals with normal vision (3). IEDs are responsible for a

significant proportion of presentations to ophthalmology clinics (4). IED

is characterized by a broad spectrum of clinical manifestations, from

relatively benign to potentially sight-threatening conditions. IEDs can

variably affect all ocular parts; the inflammation can involve only the eyes

or can present as a part of systemic inflammatory disorders (4). Various

factors, including infections, allergies, autoimmune diseases, and trauma

to the globe, eyelids, and surrounding tissues, can cause IEDs (5).

To avoid excessive immune responses and inflammations,

various regulators are present in the eye (6, 7). These regulators

activate tolerogenic antigen-presenting cells and regulatory T cells,

suppress inflammatory activity, and produce anti-inflammatory

cytokines (8, 9). Inflammation may lead to the breakdown of

ocular immune privilege and progress to autoimmunity through

improper activation of effector immune cells (e.g., T cells and B

cells) and overexpression of proinflammatory mediators (10, 11).

Generally, IEDs are classified based on both the mechanism of

injury and the affected location. Based on injurymechanism, IEDs are

categorized as: (a) inflammation-related diseases, (b) degenerative

conditions with remarkable inflammatory components, (c)

neuropathy, and (d) tumors (12, 13). Typical examples of ocular

degenerations are Dry Eye Syndrome (DES), glaucoma, Diabetic

Retinopathy (DR), and Age-related Macular Degeneration (AMD).

According to anatomical location, ocular inflammations are classified

into two types: (a) extraocular (affecting the conjunctiva, cornea, and

sclera) and (b) intraocular (primarily affecting the uvea and retina)

such as conjunctivitis, keratitis, and uveitis (14, 15).

Although IEDs’ primary triggers may not be immune-related,

chronic inflammation significantly influences the initiation,

progression, and outcome of IEDs (14). The complicated and

multifactorial nature of IEDs has led to multiple hypotheses

regarding underlying mechanisms and the course of progression.

Therefore, novel diagnostic and therapeutic strategies consider

multiple mechanisms rather than focusing on a single one.

Consequently, it is suggested to consider the immunoregulatory

effects of Mesenchymal stem cells (MSCs) and cell-derived exosomes

(Exos) in novel therapeutic approaches to IED (16–20).

The value of various extracellular vesicles (EVs) and cell-derived

Exos has been extensively investigated in diagnostic and therapeutic

studies of several ocular disorders (21–23). Recent reports propose

exosomes as valuable diagnostic biomarkers of eye disorders (16, 24).

Likewise, cell-derived Exos have gained scientific interest due to their

promising therapeutic values. Cell-derived Exos are safer than

intravitreal MSCs injections regarding complications such as

blindness following hemorrhage or retinal detachment (25).

Moreover, exosomes could be stored for a long time under certain

conditions without sustaining noticeable damage to their RNA

content (26). This study aims to review the evidence on the EVs’

and Exos’ pathogenic, diagnostic, and therapeutic values for IEDs and

discuss the existing and potential challenges of clinical application.

EVs are secreted vesicles by cells to facilitate intercellular

communication(27). EVs differ in terms of their size, surface

proteins, and internal cargo and are classified based on these

characteristics (28). Three main classifications of EVs are Exos (30-

150 nm), microvesicles (100-1000 nm), and apoptotic bodies (>1000
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nm) (28). Exosomes are formed during the maturation process of

early endosomes to late endosomes due to the cargo loading into the

inward budding of the multivesicular membrane (29). Microvesicles

are generated through the plasmamembrane’s outward budding (30).

Apoptotic bodies are vesicles secreted by cells undergoing apoptosis,

which consequently summon macrophages to remove the debris left

behind by the cell’s death (31). Due to insufficient evidence on the

therapeutic effects of apoptotic bodies on eye diseases, this review

skips this topic. On the other hand, exosomes have been widely

explored for their therapeutic effects on various inflammatory

disorders (such as myocardial infarction, inflammatory bowel

diseases, asthma, and systemic inflammations) (32–35).

Exosomes contain nucleic acids (DNA, RNA, microRNAs

(miRNAs), and long noncoding RNA), metabolites, lipids, proteins,

and peptides (36, 37). Exosome cargos are complicated compositions

influenced by originated cell type and state (38), depending on the

secretory cell and the triggering mechanism of exosome release.

Exosomes can paradoxically both regulate and initiate

inflammasome activation (38). Accordingly, stem cell-secreted Exos

have immunosuppressive effects (by inhibiting inflammasome

activation), whereas immune cell-secreted exosomes intensify

inflammation (through promoting inflammasome activity).

Therefore, EV loading occurs through a selective, specific, and

active process. As a result, exosomes can play different roles in

antigen presentation, extracellular matrix modulation, and immune

regulation (39–43). Hence, the multivalent nature of exosomes

proposes them as diagnostic biomarkers and promising

multifactorial treatments for many diseases, including IEDs.
2 Inflammation-related diseases

2.1 Autoimmune uveitis

The term uveitis, or uveoretinitis, refers to a group of conditions

characterized by intraocular inflammation involving the uvea and

retina. Uveitis is responsible for approximately 10% of blindness

cases (1). Depending on the anatomical location of the

inflammation, it can be classified as anterior, intermediate,

posterior, or pan-uveitis if it affects both the anterior and

posterior parts of the eye (2). Additionally, according to the

causative agent, uveitis is classified into two categories, infectious

and non-infectious. The underlying cause of non-infectious uveitis

is believed to be an autoimmune or immune-mediated process (3).

In some cases, autoimmune uveitis (AU) is accompanied by

systemic autoimmune syndromes affecting organs other than the

eyes, such as Behçet’s disease, systemic sarcoidosis, and Vogt-

Koyanagi-Harada disease. On the other hand, isolated

involvement of the eyes is not uncommon. This condition can be

detected in some disorders, such as sympathetic ophthalmia,

birdshot retinochoroidopathy, and idiopathic uveitis (3).

During AU, aside from the involvement of the uvea tract, other

anatomical structures of the eye can also serve as transport pathways for

inflammatory cells to spread to other ocular tissues. This permeability to

inflammatory cells can facilitate the inflammatory process and increase
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the damage to other healthy tissues (4). A blood-retinal barrier (BRB)

and a blood-aqueous barrier (BAB) are responsible for preventing the

entry of large protein molecules and cells into the eye (5, 44). The uvea

barrier, however, breaks down as a result of inflammation. Neutrophils

predominantly enter the eye during acute uveitis, while mononuclear

cells enter in chronic uveitis (6).

Currently, the treatments available for these patients are divided

into two general categories: corticosteroids and immune

modulatory drugs (45). Antimetabolites, alkylating agents,

calcineurin inhibitors, and biological response modifiers are four

classifications of immune modulatory medications used in treating

AU (7). Even with these treatments, the uveitis prognosis is still

poor; it may even result in blindness (8). Due to these conditions,

there is still a need for more effective drugs with fewer side effects.

2.1.1 The potential of EVs in the pathogenesis of
autoimmune uveitis

The inappropriate immune response mediated by T-cells can

result in AU (46, 47). Furthermore, different inflammatory

cytokines are involved in the process (48). A recent study on
Frontiers in Immunology 03
plasma-derived Exos of patients with Vogt-Koyanagi-Harada

syndrome, a common type of AU, showed that they are involved

in the inflammatory process of the disease (49). In this study,

exosome proteins were analyzed and found to be involved in

platelet activation, phagosome function, focal adhesion, actin

cytoskeleton regulation, and migration of leukocytes across

endothelial cells (49). Furthermore, the analysis revealed that two

proteins present in exosomes were more abundant in patients at an

active stage of inflammation as compared with controls. Therefore,

the author suggested that the level of carbonic anhydrase 2(CA2)

and Ras-related protein Rap-1b(RAP1B) in exosomes may be used

as biomarkers of early inflammation attacks in patients (49).

Exosome pathogenesis and biomarkers of AU are the subjects of

limited research, and more studies are needed to uncover their

underlying mechanisms (Table 1).

2.1.2 The potential of EVs in the treatment of
autoimmune uveitis

Considering the disease’s pathogenesis, the treatment goals

should be to suppress inflammation, prevent recurrences, and
TABLE 1 Biological function of exosome in the pathogenesis of ocular inflammatory diseases.

Ocular Inflam-
matory disease

Origin of Exosomes Exosomal content Biological Function of exosomes in pathogen-
esis of ocular Inflammatory diseases

References

AU Plasma exosomes (patients with
Vogt-Koyanagi-Harada)

• Carbonic anhydrase 2
& protein Rap-1b

A biomarker of active inflammation in Vogt-Koyanagi-
Harada disease

(49)

SS SGECs
(patients with SS)

• Ro/SSA, La/SSB
• Sm RNPs

Contribution to the development of SS by presenting to
autoreactive lymphocytes

(50–53)

B cells (patients with SS) • EBV-miR-ART13-3p Transmission of miRNA from infected lymphocytes to
salivary gland epithelial cell

T cell (patients with SS) • miR-142-3p Decrease protein secretion
Change calcium signaling
Restrict c-AMP production

Saliva and tear fluid (patients
with SS)

• CPNE1
• LCN2
• APMAP

Diagnostic biomarkers

Glaucoma Aqueous humor (human) • miR-486-5p
• miR-204
• miR-184

Communication between AH inflow and outflow tissues (54–60)

TM Cell (human) • Myocillin Affect intraocular pressure (IOP)

Non-TM Cell (human) • Negative regulators of
WNT

Indirectly regulate intraocular pressure

NPCE (Human) • miR-29b Altering the WNT classic signaling pathway causing rise of
IOP

AMD Stressed ARPE-19 • IL-1b, IL-18 Increased inflammation (48, 61)

Stressed APRE-19 • Apaf1 Increased cell apoptosis and inflammatory responses (62)

Stressed RPE • VEGFR2 Increased angiogenesis (63)

RPE • miR-410
• miR-19-a

CNV development
Inhibition of angiogenesis

(64–66)

DR Pancreatic-b-cells (human) • miR-15a Induction of oxidative stress in retinal cells (67–69)

Plasma (human) • cPWWP2A Increased cPWWP2A expression
Inhibition of miR-579 activity

(Continued)
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protect vision while reducing side effects; in this regard, applying

EVs-based therapeutic approaches are among promising treatments

(80). A recent study demonstrated that human umbilical cord MSC-

derived Exos improved experimental autoimmune uveitis (EAU) in

rat models by restricting the infiltration of inflammatory cells (81).

Also, they demonstrated that MSC-Exo treatment inhibited the

chemo-attractive effects of C–C motif chemokine ligands 2 (CCL2)

and C–C motif chemokine ligand 21 (CCL21) on inflammatory cells,

in addition to protecting retinal structure and function (81)

Moreover, another study indicated that retinal pigment epithelium

(RPE)-derived EVs of patients with non-infectious uveitis could

inhibit T-cell proliferation and have anti-inflammatory effects on

monocytes several studies (17). Furthermore, Kang et al. reported

that Ex-vivo-generated interleukin-35-producing regulatory B-cells

(i35-Bregs) secreted exosomes containing interleukin-35 (i35-Exos)

could protect retinal function against uveitis by inhibiting Th-17

responses in (EAU) mice model (82). In another study with EAU

mice, MSC-Exo was shown to prevent disruptions of the

photoreceptor layer, inhibit antigen-presenting cells (APCs)

activity, inhibit T-helper cell development (Th-1 and Th-17),

increase the level of interleukin-10(IL-10) expression, and reduce

proinflammatory cytokines transcription (interleukin-2(IL-2),

interleukin-1b(IL-1b), interferon-gamma (IFN-g), interleukin-17A

(IL-17A), interleukin-6(IL-6), and interleukin-12A(IL-12A)).

However, the effectiveness of MSC-derived Exos on inhibition of T

cell proliferation remains doubtful (18, 81) and more research is
Frontiers in Immunology 04
needed to clarify the issue. Exosomes derived from MSCs and some

other sources may have anti-inflammatory and immunosuppressive

properties. Consequently, they have the potential to be used as

therapeutic agents.(Table 2)
2.2 Corneal diseases

The human cornea, transparency, and integrity are crucial to

vision (5). Corneal stroma consists of keratocytes and a highly

organized collagen matrix constricting almost 90% of corneal

thickness. It plays a crucial role in maintaining corneal

transparency (91, 94). Corneal injury can be caused by infections,

mechanical traumas, chemical or thermal burns, and ocular and

systemic disorders and, consequently, may lead to inflammation,

neovascularization, ulceration, scar formation, and eventually visual

impairment (95, 96).

Treating corneal diseases is still challenging for healthcare

providers as corneal wounds heal through a complicated and

multi-step process that includes apoptosis, cell proliferation, and

migration (70, 91, 92). Current treatments such as topical antibiotics,

corticosteroids, and non-steroidal anti-inflammatory drugs are

mainly supportive care and do not entirely prevent corneal scars

(91, 92). Therefore, corneal transplantation (keratoplasty) has been

suggested as an effective therapeutic strategy that can restore vision

and corneal integrity (64, 94). However, the risk of several
TABLE 1 Continued

Ocular Inflam-
matory disease

Origin of Exosomes Exosomal content Biological Function of exosomes in pathogen-
esis of ocular Inflammatory diseases

References

• CircRNAs Regulation of neoangiogenesis, inflammatory response and
retinal cells death

PRP (human) • CXCL10 chemokine Regulating hyperglycemic retinal damage

corneal diseases Epithelial-derived Exos • TSP-2 chemokine
• MMP14

Enhancement of neovascularization and corneal angiogenesis (70–73)

UM liver perfusate • miRNA Melanoma derived exosomes secreted in hepatic circulation
in patients with metastatic UM

(74, 75)

Vitreous humor and serum
(human)

• miR-146a Regulation of UM melanocytes surveillance (75)

UM cell lines • integrin V
• HSP70, HSP90

Development of uveal melanoma with liver metastasis (76)

RB RB tumor cells • miR-17
• miR-129a
• miR-20a and miR-92a
• TSP-1
• CXCR4

Metastasis, invasion, and angiogenesis of malignant tissue
(by TAM proliferation and recruitment)

(77)

RB tissue • hsamiR216b-5p
• hsa-miR-301b-3p

Upregulated in RB tissue (78)

RBVS • Exosomal proteins:
GSTM1 TLN-1 ITGB3

Involved in metastasis, cancer invasion and chemo resistance (79)
Biological function of Exosomes in the pathogenesis of ocular inflammatory diseases. Rap-1b: Ras-related protein Rap-1b. Sm/Ribonucleoprotein (Sm RNPs). Epstein-Barr virus (EBV)-miR-
BART13-3p. Cyclic AMP (cAMP). Copine-1 (CPNE1). Neutrophil gelatinase-associated lipocalin-2 (LCN2). Adipocyte plasma membrane-associated protein (APMAP). Aqueous humor (AH).
Trabecular meshwork (TM). Human RPE cell line ARPE-19. Apoptotic protease activating factor 1 (Apaf1). Vascular endothelial growth factor receptor-2 (VEGFR2). Retinal pigment epithelial
cells (RPE). Choroidal neovascularization (CNV). MicroRNAs (miRNAs). Circular RNAs (CircRNAs). Thrombospondin-2 (TSP-2). Matrix metalloproteinase 14 (MMP14). Heat shock protein
(Hsp). RB vitreous seeding (RBVS). Autoimmune uveitis (AU). Sjogren’s Syndrome (SS). Age-related macular degeneration (AMD). Diabetic retinopathy (DR). Uveal melanoma (UM).
Retinoblastoma (RB). Salivary Gland Epithelial Cells (SGECs). Non-Pigmented Ciliary Epithelium (NPCE).
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complications (particularly immunological rejection) still remains

and threatens graft acceptance (71).

2.2.1 The potential role of EVs in the
pathogenesis of corneal diseases

Studies demonstrated that EVs are secreted in the wounded

cornea and are able to communicate between the corneal stroma

and epithelium (56, 95, 97). Also, Han et al. showed that mouse

corneal epithelial cell-derived Exos might induce stromal fibroblast

differentiation into myofibroblasts and play an essential role in

corneal wound healing (70). Epithelial-derived Exos carry proteins

like thrombospondin-2, latent-transforming growth factor beta-
Frontiers in Immunology 05
binding protein 1, C–X–C motif chemokine 5, and C-C motif

chemokine 2, which are involved in wound healing and

neovascularization (70, 71). Moreover, corneal fibroblasts secrete

Exos that contain matrix metalloproteinase 14 (MMP14), which

enhances corneal angiogenesis via degenerating vascular

endothelial growth factor (VEGF) receptor 1 and VEGF-induced

proliferation and migration of endothelial cells (72, 73). Corneal

stromal stem cells (CSSCs)-derived and corneal MSCs-derived EVs

modulate inflammatory responses during corneal wound healing

through decreasing early neutrophil infiltration, changing

macrophage phenotypes, and diminishing the production of

inflammatory cytokines (91, 95, 98, 99) (Figure 1, Table 1).
TABLE 2 Biological function of exosomes in the treatment of ocular inflammatory diseases.

Ocular Inflamma-
tory disease

Origin of Exosomes Content of
Exosome

Biological Function exo in treatment of
ocular Inflammatory diseases

References

AU Human umbilical cord-derived
mesenchymal stem cells (Rat)

Immunosuppressive
chemicals

• Inhibition of autoimmune response
• Protection of retinal function and structure
• Reduction of inflammatory cells infiltration
• Prevention of chemo attractive effects of CCL2 and
CCL21

(81)

MSC (Mice) Not mentioned • Prevention of AU initiation
• Immunosuppressive effect

(18)

RPE Not mentioned • Anti-inflammatory effect (17)

i35-Bregs (mice) IL-35 • Preservation of retinal function (82)

SS Placenta tissue miRNAs of C19MC • Immunomodulation (83)

OE-MSC-Exos in (ESS) mice S100A4
IL-6

• Immunosuppressive effect
• Enhancement of saliva flow rate
• Subsiding damage to the tissue

(84)

Labial gland-derived MSCs (in mouse
models of SS)

Not mentioned • Anti-inflammatory effect
• Immunosuppressive effect
• Protection of salivary gland secretory function

(85)

Glaucoma MSC (Human) miRNAs • Reduction of fibrosis risk
• Protection of retinal precursor cells
• Enhances RGC survival and axon regeneration
• Maintained the amount of RGCs
• Neuroprotective therapy
• Reduction of neuro-inflammation and apoptosis

(19, 20, 86)

AMD Retinal astrocytes Anti-angiogenic
factors

• CNV inhibition (87, 88)

RPE cells miRNA-410 • Reduction of VEGF expression and retinal
angiogenesis

(64, 66)

DR MSCs (human) miR-126 • Attenuate retinal inflammation (16, 89)

Retinal pigmented cells miR-202-5p • Reduction of proliferative DR complications (90)

Corneal diseases human corneal MSCs/CSSC/adipose Not mentioned • Enhancement of corneal wound healing
• Reduction of stromal scarring
• Regenerating normal corneal collagen
• Inhibition of apoptosis
• Remodeling of extracellular matrix

(87, 91–93)

Optic neuropathy Bone marrow MSC miRNAs • Promoted neurogenesis and neuroprotection of RGCs (20)

Umbilical cord MSCs miRNAs • Promoted RGC survival and glial cell activation (60)
Biological function of Exosomes in the treatment of ocular Inflammatory diseases. Antigen-presenting cells (APCs). Retinal pigment epithelial cells (RPE). IL-35-producing regulatory B-cells
(i35-Bregs). Chromosome19 Micro RNA Cluster (C19MC). Olfactory Ecto-Mesenchymal Stem Cell-derived exosomes (OE-MSC-Exos). Retinal ganglion cells (RGCs). Choroidal
neovascularization (CNV). Vascular endothelial growth factor (VEGF). Corneal stromal stem cells (CSSCs). Autoimmune uveitis (AU). Sjogren’s Syndrome (SS). Age-related macular
degeneration (AMD). Diabetic retinopathy (DR).
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2.2.2 Potential role of EVs in the treatment of
corneal diseases

Cell-free EV-based treatments might be a promising treatment

method for corneal diseases (56, 93). Exos derived from human

corneal MSCs considerably improve corneal wound closure (91, 92).

Besides, CSSC-derived EVs decrease stromal scarring and regenerate

normal corneal collagen (91, 92). Also, adipose-derived MSC-derived

Exos enhance corneal stromal cell proliferation, inhibit apoptosis, and

are involved in extracellular matrix remodeling (87, 93).

Additionally, different studies showed that exosomes mediated

adaptive immune responses and participated in corneal allograft

rejection (100). MSC-derived Exos prolong corneal graft survival by

prohibiting the Th1 signaling pathway, reducing chemokines like

CXCL9, CXCL10, and CXCL11, and upregulating regulatory T cells

(87, 101). Therefore, MSC-derived Exos might be potential

therapeutic agents for refractory graft-versus-host disease and

corneal transplant rejection (102, 103).

Various investigations indicated that MSC-derived EVs decrease

the production of inflammatory cytokines, apoptosis, and corneal

epithelial defects, consequently increasing corneal wound repair and

stromal cell proliferation, propounding EVs as promising candidates

for corneal disease therapy (95). However, there are still concerns

about potency, pharmacokinetics, safety, route of administration,

stability, and storage conditions (91). Therefore, further studies are

warranted to address these concerns (Figure 2, Table 2).

3 Degenerative conditions

3.1 Sjogren’s syndrome

SS is a multifactorial autoimmune disorder characterized by

infiltrating lymphocytes into exocrine glands resulting in impairment

of their function (104). The dysfunction of the salivary glands and the
Frontiers in Immunology 06
lacrimal glands causes dryness in the mouth and the eye (105). In dry

eye disease, tear production reduces and leads to inflammation of the

orbital surface (106).While dry eye is associated with several diseases, it

is generally more severe in patients with SS (107). There are two types

of SS: solitary (primary (pSS)) or in association with another

underlying autoimmune disorder (secondary) (108, 109). Even

though the exact pathophysiology of pSS remains unclear, genetic

predisposition, environmental factors, factors affecting the autonomic

nervous system, hormonal factors, and the immune system (both

innate and adoptive), in particular autoimmunity, are thought to be

involved (110–112). In vulnerable individuals, a primary insult to the

gland may trigger a series of events leading to the development of SS;

this insult may be viral or non-viral (113, 114).

The revised criteria of American–European consensus group

(AECG) For pSS diagnosis include (1):oral symptoms, (2) ocular

symptoms, (3) ocular signs, (4) salivary gland involvement, and (5)

histopathology and (6) autoantibodies; Autoantibodies which

involved are Anti-Sjogren’s Syndrome A(Anti-SS-A) and anti-

Sjogren’s syndrome type B (anti-SS-B) (115). The prevalence rate

depends on the classification criteria; Based on AEGC criteria, the

prevalence was reported between 0.09% to 0.72% (116–118).

Treatment options for SS include tear and saliva substitutes,

immunosuppressants, and systemic secretagogues (119–121).

While these medications are effective in treating SS, long-term use

may result in adverse side effects (113, 120, 122). The treatment of

SS is based on disease activity and extra glandular manifestations

(123); however, there is increasing evidence that exosome may play

a role in the treatment of SS (16, 24, 124).
3.1.1 The potential of EVs in the pathogenesis
of SS

Kapsogeorgou et al. reported the first detection of SS-

autoantigens in exosomes (containing: Ro/SSA, La/SSB, and Sm
FIGURE 1

Molecular mechanisms that contribute to MSC-Exos’ beneficial effects on treating inflammatory ocular diseases.
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ribonucleoproteins (RNPs)), indicating that exosomes play an

essential role in developing SS by delivering their contents to

autoreactive lymphocytes (50). A recent study revealed that

patients with pSS, compared to healthy individuals, contain a

higher level of Epstein-Barr virus (EBV)-miR-BART13-3p,

encoded by the virus. EBV-infected B lymphocytes transferred

miRNA via exosomes to epithelial cells of salivary glands,

resulting in a reduction in Aquaporin 5 (AQP5) and Stromal

interaction molecule 1 (STIM1) protein level and calcium

signaling impairment (51). Furthermore, another study

demonstrated that activated T-lymphocytes secrete Exos that are

transferred to glandular cells in patients suffering from pSS (52).

These Exos contain miR-142-3p, which targets three proteins

(sarcoplasmic reticulum Ca2+ ATPase2b (SERCA2B), adenylate

cyclase 9, and ryanodine receptor 2). Consequently, T cell-derived

Exos may impair calcium signaling, inhibits cyclic AMP (cAMP)

production, and reduces salivary gland protein secretion (52).

Moreover, an analysis of the tear fluid of patients with SS

revealed the presence of 14 miRNAs that may be involved in the

pathogenesis of the disease (53).

In several studies, the expression of miRNAs in salivary gland

epithelial cells differed between patients and healthy individuals.

Thus, they could serve as diagnostic biomarkers (125, 126). In

patients with SS, EVs from saliva and tears were found to contain

some components that may serve as new biomarkers for diseases

that affect the salivary and lacrimal glands. These biomarkers

include Copine-1 (CPNE1), Neutrophil gelatinase-associated

lipocalin-2(LCN2), and Adipocyte plasma membrane-associated

protein (APMAP), which are involved in Tumour necrosis factor

a (TNFa) signaling, involved in innate immunity and apoptosis

and adipocyte differentiation (127). Another study compared Exos

from oral rinse samples from SS patients and healthy individuals.

The results indicated that miR-1290, let-7b-5p, miR-3648, and miR-
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34a-5p were upregulated in patients with SS oral rinse-derived Exos

compared to healthy ones. Therefore, miRNAs derived from oral

rinse samples could be used to screen and diagnose SS non-

invasively (23) (Table 1).

3.1.2 The potential of EVs in the treatment of SS
Despite the existing treatments, there is still a need for more

effective treatments; using exosomes may be the promising

treatment for SS treatment. Utilizing exosomes containing

miRNAs from Chromosome19 Micro RNA Cluster (C19MC)

analogs derived from the placenta could be a potential treatment

for autoimmune diseases such as SS by targeting immune cells and

suppressing their function (83). Li et al. treated mouse models of SS

with Labial gland-derived MSCs (LGMSCs)-derived Exos; They

reported that LGMSCs and their derived Exos decrease

inflammatory cells infiltration to salivary glands and reserve their

secretory function in non-obese diabetic (NOD) mice, raise

regulatory T cells proliferation and inhibit T helper-cell 17

differentiation in NOD mice and SS patients invitro with increase

Tcell secretions of IL-10 and transforming growth factor beta(TGF-

b) and decreased cytokine levels(IL-6, IL-17, Interferon-gamma)

(85). Also, another study has reported that injection of olfactory

recto-mesenchymal stem cell-derived Exos (OE-MSC-Exos) into

experimental Sjogren’s syndrome (ESS) mice models increased

saliva flow rate and decreased tissue damage (84). OE-MSC-Exos

increase Nitric Oxide (NO) and Reactive Oxygen Species (ROS)

level and upregulate arginase expression; All these together lead to

improve myeloid-derived suppressor cells (MDSCs) suppressive

function (84). Also MDSCs found to be increased in mice model

with ESS, however its suppressive function decreased with disease

progression (128, 129). Additionally, exosome-secreted IL-6

activates Signal transducers and activators of transcription 3

(STAT3), while exosome-releasing S100A4 links to MDSCsTLR4
FIGURE 2

Molecular mechanisms that contribute to MSC-Exos’ beneficial effects on treating inflammatory ocular diseases.
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and triggers IL-6 production; Together, these factors contribute to

MDSC’s immunosuppressive properties (84). All these together

suggest that exosome therapy could be a promising candidate for

SS treatment (Table 2).
3.2 Age-related macular degeneration

AMD is one of the leading causes of visual loss in the elderly

population. AMD is a multifactorial disease which its pathogenesis

is not only considered as degenerative but also as inflammatory and

immune-mediated (130, 131). AMD has two phenotypes: (a) early

non-exudative (dry), which is characterized by drusen (extracellular

deposit) formation and macular atrophy (132, 133), and (b) late

exudative (wet) that is marked by abnormal choroidal

neovascularization (CNV) (133, 134). Unfortunately, current

therapeutic methods such as drugs, radiation and photodynamic

therapy, and vitreous surgery are not entirely effective (134, 135).

Although anti-VEGFs are the most recent treatment options for

AMD (134, 136), yet, they have not been shown to have promising

effects in a proportion of patients with late wet AMD (135).

3.2.1 Potential role of EVs in the pathogenesis
of AMD

Aged retinal pigment epithelial cells (RPE)-derived Exos are

probably responsible for drusen formation (63) since their markers

(LAMP2, CD63, and CD81) were found in the drusen that have been

collected from AMD patients (48, 63). Moreover, the increased

exocytotic activity of aged RPE causes extracellular protein release

through exosomes (63). Oxidative stress, one of the main risk factors

of AMD, stimulates the secretion of RPE cell-derived Exos, which

transfer stress messages to healthy RPE cells resulting in RPE

dysfunction (137). Human RPE cell lines (ARPE-19) under

oxidative stress released Exos with overexpressed apoptotic protease

activating factor 1 (Apaf1) (62). Apaf1, a key molecule in the

mitochondrial apoptotic pathway, increases cell apoptosis and

inflammatory response through Caspase-9 signaling pathway

activation (62). Additionally, Zhang et al. demonstrated that photo-

oxidative blue-light stimulation in RPE cells promotes the secretion

of nod–like receptor protein 3 (NLRP3) inflammasome mRNA-

containing Exos (89). Exo-associated inflammasome activation in

RPE cells is involved in AMD pathogenesis and may be a potential

therapeutic target for AMD treatment (89). Activating NLRP3

inflammasome stimulates the maturation of inflammatory

cytokines (like IL-1b and IL-18) (48, 61). Recent findings suggested

that exosomes derived from RPE cells under pathologic conditions

promoted endothelial cell migration and tube formation, resulting in

angiogenesis and CNV development (138). Besides, stressed RPE cells

release exosomes with high expression of VEGFR2 that contribute to

new blood vessel formation (63).(Table 1)

3.2.2 Potential role of EVs in the diagnosis and
treatment of AMD

Exo cargos, especially miRNAs and proteins, may act as

biomarkers for the diagnosis of AMD (72). Previous studies have
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identified proteins secreted from RPE cells-derived Exos, involved

in the autophagy-lysosomal pathway and epithelial-mesenchymal

transition, such as cathepsin D, cytokeratin 8, actin, myosin-9 and

heat shock protein (Hsp70) (64, 139). These proteins were found in

individuals with AMD’s aqueous humor (AH) and might be

potential biomarkers and therapeutic targets for AMD diagnosis

and treatment (64, 139). Results of a recent study revealed that Exo

miRNAs correlate with apoptosis and angiogenesis; particularly,

miR-410 and miR-19-a are related to the VEGF signaling pathway,

which is a pivotal factor in CNV development (65). Chen et al.

found that miRNA-410 reduces VEGF expression, and eye drops

containing miRNA-410 inhibits VEGF expression and retinal

angiogenesis in mice models of oxygen-induced retinopathy (64,

66). Retinal astrocytes (RACs)-released Exos have anti-angiogenic

properties and inhibit laser-induced CNV (87, 88). Human

umbilical cord mesenchymal stem cell-derived Exos ameliorate

laser-induced retinal injury by down-regulation of VEGF-A in

rats (140). Moreover, MSC-derived Exos regulate macrophage

polarization and diminish VEGF secretion, two known triggering

mechanisms of CNV in AMD; thus, they are able to regulate

abnormal neovascularization (141, 142). EVs’ diagnostic and

therapeutic applications in AMD are still in the early preclinical

stages. Further investigations and trials are substantial to determine

their safety, efficacy, and generalizability (Table 2).
3.3 Glaucoma

Glaucoma is a visual disorder characterized by elevated

intraocular pressure (IOP), causing optic neuropathy and leading

to vision loss. IOP is regulated based on the equilibrium between the

inflow and outflow of AH through the trabecular meshwork (TM).

The main risk factor for glaucoma is the aqueous drainage

reduction, which raises the IOP causing mechanical compression

with subsequent ischemia of the optic nerve (143–145).

Approximately 3.5 percent of the world’s population suffers from

glaucoma, and the prevalence is on the rise (146).

Various subtypes of glaucoma are classified as primary and

secondary and open-angle glaucoma (OAG) and angle closure

glaucoma (ACG). Primary glaucoma results from congenital or

anatomical defects within the eye, while the complications of

another underlying disease or pathology, such as trauma or

neovascularization, cause secondary glaucoma. The term ACG

also refers to the closure of the angle causing impairing drainage

from TM. Also, OAG refers to the normal-appearing angle of the

anterior chamber with ocular hypertension (147, 148).

However, there are adequate drug therapies, like prostaglandins,

carbonic anhydrase inhibitors, and b-blockers, and surgical

approaches for decreasing the IOP of glaucoma patients. The

retinal ganglion cells (RGCs) are susceptible to injury, which

necessitates innovative therapeutics. A novel therapeutic approach

should enhance neuroprotection and regeneration. Strategies such

as gene therapy and novel drug delivery methods could reduce

glaucoma complications in the future (149, 150).
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3.3.1 Potential role of EVs in the pathogenesis of
glaucoma

Exosomes participate in various biological processes during

nerve injury associated with glaucoma, including regenerative and

pathological features (132). For example, AH exosomes contain

miR-486-5p, miR-204, and miR-184, which regulate AH inflow and

outflow (54). Additionally, TM cells produce myocilin (MYOC)

that carries exosomes in response to pathologic changes in the eye.

Although there is a lack of understanding regarding MYOC’s exact

role (55), there was shown that mutations in MYOC can increase

the IOP (56). This could be attributed to the reduction of AH

drainage (57).

It has also been proposed that exosomes can be used to regulate

intraocular pressure in a non-TM-mediated manner (58). Tabak

et al. found that non-pigmented ciliary epithelial cells (NPCE)-

derived exosomes reduce the levels of phosphorylated glycogen

synthase kinase 3 (GSK3) and b-catenin in the TM by triggering

Wnt signaling. Among the components of the extracellular matrix,

cadherin can increase the size of the TM pore, which leads to an

increase in AH outflow resistance and a rise the intraocular pressure

(59, 60). NPCE-derived Exos contain a high concentration of

negative regulators of Wnt signal transduction, such as miR-29b

(58). Upon increased IOP, exosomes released from immature

microglial cells increase proinflammatory cytokines, enhance

phagocytosis, and generate ROS to modify the number of RGCs

(151) (Table 1).

3.3.2 Potential role of EVs in the treatment
of glaucoma

Increased IOP is associated with dysfunction and loss of many

optic cells. Therefore, patients with glaucoma can benefit from

strategies that reduce IOP (152). The exosomes may act as a

communication medium between the producer and drainer cells

of AH (143). Using exosomes for delivery can also reduce the risk of

fibrosis following glaucoma surgery (19). Also, MSC-derived Exos

containing brain-derived neurotrophic factor (BDNF) may protect

retinal precursor cells from hypoxia-induced damage (48).

Consequently, MSC-derived Exos prevent glaucoma-related

blindness caused by the loss of RGCs and their axons. As

nanoscale particles, exosomes can also reach RGCs rapidly and

offer neurotrophic proteins with saturable binding to vitreous

fluids. The release of exosomes by MSCs enhances RGC survival

and axon regeneration and, to some extent, avoids RGC axon loss and

dysfunction (20, 86). MSC-derived exosomes significantly improve

functional recovery in mice with retinal ischemia while decreasing

neuroinflammation and apoptosis. Furthermore, exosomes can be

seen in vitreous fluids for up to four weeks following treatment (86).

Exosomes generated from human Bone marrow stromal cells

(BMSCs) were also an efficient neuroprotective therapy. This

neuroprotection feature could sustain for one year and maintain

the number of RGCs. On the other hand, exosomes of BMSCs

showed inhibitory effects on axial mutations in a model of chronic

ocular hypertension (153). These modifications on RGCs were

partially explained by miRNA-dependent mechanisms (153).
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Furthermore, exosomes from umbilical cord MSCs (UMSCs)

increased RGC survival and glial cell activation, suggesting that

they could be employed for the therapy of glaucoma injuries (60).

However, UMSCs could not induce axonal regeneration like BMSCs

(72). Exosome therapy looks to be an efficient, stable, and durable way

in comparison with other drug delivery systems. Besides, Exos

derived from MSCs could be a suggestive way as a cell-free therapy

for glaucoma (Table 2).
3.4 Diabetic retinopathy

DR is the most prevalent complication of diabetes mellitus

(DM) and suffers one-third of the patients with DM (154, 155). This

condition could result in blindness and permanent visual

impairment (156). In patients with DM, the presence of DR is a

risk factor for cognitive and cardiovascular disorders (156).

As a DM microvascular complication, DR may lead to retinal

ischemia. The resulting hypoxia and subsequent reperfusion induce

oxidative stress, ROS, and increased inflammatory reactions. This

condition is called retinal ischemia-reperfusion injury (IRI) (157,

158). Lastly, IRI advances into regional cell necrosis, apoptosis, and

autophagy resulting in neuron loss, specially RGCs (159).

The DR development chain involves two phases: (a) the non-

proliferative and (b) the proliferative phase. During the non-

proliferate phase, because of high glucose levels, patients develop

microaneurysms, micro infarctions, flame-shaped hemorrhages,

and capillary widening, which are followed by the proliferative

phase. During the proliferative phase, neovascularization happens,

which may lead to several complications, such as hemorrhages,

tractional retinal detachment, and neovascular glaucoma (160).

Despite DR’s widespread prevalence among the human

population, there are limited therapeutic options for the late

stages (161). Treatment options include photocoagulation with

laser, vitrectomy, glucocorticoids, and VEGF neutralizing agents;

however, neither of these options are capable of reversing the

clinical progression and injuries (162). Therefore, novel

treatments are needed (162).

3.4.1 Potential role of EVs in the pathogenesis
of DR

Intercellular communication, which EVs facilitate, is an essential

biological component of retinal homeostasis (163). Therefore, it is

hypothesized that during DM, EVs and their contents alter, which

could be accounted for vascular complications (164). During DM,

early retinal endothelial damage can alter BRB permeability (165).

The altered BRB permeability allows EVs to accumulate at the injury

site (163). Accumulated EVs containing circular RNA (circRNA

cPWW2P2A) could be transferred into endothelial resulting in

dysfunction of retinal vascularization (67). CircRNAs also regulate

neo-angiogenesis, inflammatory response, and death in retinal cells.

Exosomes containing circRNAs are promising therapeutic

options for DR (68). Also, MCS-derived EVs could cause retinal

vascular destabilization through pericyte detachment (166).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1097456
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Habibi et al. 10.3389/fimmu.2023.1097456
Another pathogenesis contributing to retinal vascular injury is the

activation of the complement system, which results in the formation

of Membrane Attack Complexes (MACs) (163). This process may

be triggered by the increased production of IgG-laden antibody-

contained Exos (167).

miRNAs play an important role in the pathogenesis of DR. They

regulate several DR-related mechanisms, such as inflammation,

neurodegeneration, angiogenesis, autophagy, and oxidative stress

(168). It has been shown that in mice models, during DR, several

miRNAs become dysregulated; these miRNAs include miR-381–3p,

miR-206–3p, miR-106a-5p, miR-27a-5p, miR-27b-3p, miR-20a-5p,

miR-20a-3p and miR-20b (169). Also, high glucose concentrations

can increase VEGF levels and trigger angiogenic processes.

Moreover, high glucose levels suppress the expression of miRNA

inhibitors of VEGF, such as miR-20a-3p, miR-20a-5p, miR-106a-5p,

and miR-20b, resulting in the presence of VEGF angiogenic

characteristics (170). Other miRNAs contribute to DR in

additional ways, such as miR-874, which reduces inflammation,

ROS levels, and apoptosis in the retina (171). MiR-145 also

attenuate oxidative stress caused by high glucose level through

regulating toll-like receptor 4 (TLR4)/nuclear factor kappa light

chain enhancer of activated B cells (NF-kB) signaling (172). On

the other hand, it had been found that exosomes containing miR-15a

that secrets from pancreatic b-cells can induce pathologies caused by

DM. This miRNA could contribute in pathogenesis of DR (69)

(Figure 1, Table 1).

3.4.2 Potential role of EVs in the treatment of DR
EVs-including Exos, are promising vehicles for DR treatment

because of their potential for transporting many factors (22). Also,

Exos could deliver gene editing factors for genetic manipulation or

non-drug biological components that could change the efficacy of

drugs or non-coding RNAs. These features made EVs practical tools

in novel drug therapies (173).

MSC-derived Exos, which contain miRNA-126, can attenuate

hyperglycemia-induced retinal inflammation by downregulating

the expression of the high-mobility group box 1 (HMGB1).

Therefore Exos containing miRNA-126 may serve as novel

carriers for MSC-based therapeutics (16, 89). Additionally, it has

been demonstrated that intravitreal administration of human MSC-

derived Exos, cultured under hypoxia conditions, reduces retinal

ischemia (174). Moreover, Exos secreted by retinal pigmented cells

containing miR-202-5p have been shown to reduce the

complications of proliferative DR. miR-202-5p inhibits cell

growth, migration, and cell transition (90).

Exos from platelet-rich plasma (PRP) regulate hyperglycemic

retinal damage by upregulating components of the TLR4 signaling

pathway via C-X-C motif chemokine ligand 10 (CXCL10). Blocking

CXCL10 with a CXCL10 neutralizing antibody significantly

downregulates the TLR4 signaling, which can reduce the

inflammation caused by TLR4 signaling (16, 89, 175).

Peroxisome proliferator-activated receptor y (PPARy) plays a

significant role in DR by suppressing multiple cytokines,

chemokines, growth factors, and inflammatory factors. The

PPARy agonists’ pioglitazone, rosiglitazone, and troglitazone have
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anti-proliferative and anti-inflammatory properties, which aid in

ameliorating proliferative DR. These drugs can be delivered to the

retina via EVs for practical application (176, 177). As proposed, EVs

could be used to deliver miRNAs and medications to the retinal

area, which could ameliorate and reduce the pathogenesis induced

by DM. Further studies could discover many other benefits of EVs,

including clinical usage of EVs in DR (Figure 2, Table 2).
4 Neuropathy and tumors

4.1 Optic neuropathy

Optic neuropathy is a condition characterized by damage to the

optic nerve, composed of axons of neural cells known as RGCs

(178). Optic neuropathy is commonly associated with optic neuritis

and ischemic optic neuropathy, which may lead to permanent

visual loss (179). An optic nerve injury may be caused by

traumatic, ischemic, demyelinating, and inflammatory events,

such as anterior and posterior ischemic optic neuropathy (AION

and PION, respectively) and direct and indirect trauma. The

function of the optic nerve cannot be completely restored after

the injury to the optic nerve. This lack of complete regeneration is

because of the anatomical position and microenvironmental factors

that made the optic nerve (180–182). RGCs can’t regenerate

themselves, but inducing them to activate the intrinsic growth

state could partially help reverse the optic neuropathy damages.

However, there are signaling molecules in the extracellular space of

RGCs that could prevent the regeneration of RGCs (183).

Due to the multifaceted nature of optic neuropathy, different

treatment approaches are used (184); like in traumatic optic

neuropathy (TON), high-dose corticosteroids and decompressing

surgeries are the main treatment options for reducing the effect of

injury on the optic nerve. However, there is not enough evidence

that surgery could benefit the patient in the case of visual loss (185).

Also, optic neuropathy can happen due to infections. The treatment

of infections causing optic neuropathy concentrated on anti-

infectious and anti-inflammatory drugs to prevent further damage

to the optic nerve (186). In the ischemic types of optic neuropathy,

reperfusion and resolving the underlying factors that cause ischemia

is essential. For example, glucocorticoids are helpful in vasculitis-

induced optic neuropathy caused by giant cell arteritis (187).

Considering the sensitivity of the optic nerve, advances in optic

nerve injuries and precise therapies are required (184).

4.1.1 Potential role of EVs in the treatment of
optic neuropathy

Using exosomes in remission of RGCs after optic neuropathy is

a novel approach (180). Recent research on bone marrow-derived-

MSC (BMSC)-derived Exos has shown that intravitreal injections of

BMSC Exos promote the regeneration of RGC axons and protect

the optic nerve after crush injury (20). BMSC-derived Exos

replicated this result in other glaucoma models as well (21).

Although umbilical cord-derived MSCs could increase the

survival of RGCs, they could not promote their regeneration (60).
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Generally, MSCs have anti-inflammatory properties, which may be

attributed to their carrying different miRNAs. The immune

suppressive effects of MSCs may contribute to their beneficial

impact on RGCs (21).

The miRNAs are essential factors that regulate the regeneration

and protection of RGCs and the induction of inflammation (178).

Furthermore, secretomes derived from stem cells and amnion cells

showed promising effects on optic neuropathies (188–190). The EV

may serve as a vehicle for delivering these beneficial components to

the optic nerve since anatomical difficulties prevent the delivery of

many therapeutics to the optic nerve (191) (Table 2).
4.2 Eye tumor

Despite being rare, eye cancers are one of the life-threatening

orbital disorders. There are two types of intraocular cancers: 1-

primary, which originates from the eyeball, and 2-secondary, which

occurs due to metastasis from different organs to the orbit. Among

the primary intraocular malignancies, uveal melanoma (UM) and

retinoblastoma (RB) are the most common (192–194). Although

treatment measures have improved considerably, metastasis is still a

cause of death; Therefore, finding the underlying tumorigenesis

mechanism could help to improve treatment strategies (195–197).

Based on emerging research, exosomes have a substantial role in

mediating cancer pathways related to Epithelial-to-Mesenchymal-

Transition (EMT), angiogenesis, and metastasis (5, 198, 199);

Exosomes have potential uses in the diagnosis and prognosis of

ocular cancers like RB and UM. Since there is limited evidence on

the correlation between exosomes and eye cancers, this article will

focus only on RB and UM.

4.2.1 The potential of EVs in the pathogenesis of
ocular tumor

RB is the most common eye cancer in children, caused by loss of

function mutation in the RB1 gene located in chromosome 13 (13q1–

4) (200, 201). The tumor is fast-growing and is almost fatal if it

remains untreated (192, 202). The current therapeutic options for RB

treatment include chemotherapy, radiotherapy, and surgery; However,

metastasis and tumor invasion remain major concerns (195).

Due to the life-threatening nature of metastases, the evaluation

of circulating biomarkers should be considered a non-invasive

screening tool for these patients. A potential diagnostic target for

RB could be exosomal biomarkers, as tumor-derived Exos infiltrate

the microenvironment and cause tumor progression (5, 77, 203).

Chen et al. showed miRNAs s(miR-17, miR-129a, miR-20a, and

miR-92a), thrombospondin-1(TSP-1), C-X-C chemokine receptor

type 4 (CXCR4) were found in RB cells-derived Exos (77); They

play a role in tumor-associated macrophages (TAMs) recruitment

and proliferation (204, 205). TAM can potentially increase the

programming invasion, metastasis, and angiogenesis of neoplastic

tissues (206–209). Furthermore, another study has shown that

despite the upregulation of hsa-miR-216b-5p and hsa-miR-301b-

3p expression in RB tissue, serum exosomes containing these

miRNAs did not change, suggesting that serum exosomal miRNA
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may not be a reliable biomarker for RB prognosis (78). According to

a new study, exosomal proteins involved in RB vitreous seeding

(RBVS) (ß3 integrin, Talin-1, Glutathione S-Transferase Mu) were

involved in a variety of mechanisms, including anoikis resistance,

glucose, amino acid metabolism, and extracellular matrix

remodeling, all of which are responsible for tumor invasion and

metastasis (79). As a result, RBVS analysis can be regarded as a

promising non-invasive diagnostic technique (Table 1).

UM is the most common primary intraocular neoplasm in

adults within the eye uveal tract (192). UM is highly metastatic and

mainly affects the liver, with an average survival of 4-5 months (196,

210–212). There has been no significant improvement in the

survival rate of UM patients despite advances in the available

methods for treatment and diagnosis (196). A possible

explanation is the occurrence of metastasis at the early stages of

the disease, as circulating malignant cells (CMCs) can be detectable

in the bloodstream at the time of diagnosis (213).

Several studies have demonstrated that Exos can participate in

various UM stages; The findings of these studies emphasize the

importance of understanding exosomes to diagnose diseases and to

understand how they participate in the pathogenesis process (74–

76, 214–217). Tsering et al. exhibited that the transformation of

UM-derived EVs to human breast Cancer gene 1(BRCA1)-deficient

fibroblasts (Fibro-BKO) and then inoculation of these cells in Severe

combined immunodeficiency (SCID) mice would result in the

development of UM with liver metastasis. Analysis of this study

exhibited that UM-EVs are involved in endocytosis, PI3K-AKT

signaling pathway, and adhesion (focal and cell to cell); They also

reported that integrin V, HSP70, and HSP90 were highly expressed

in UM-EVs (76). Moreover, a recent study demonstrated that

upregulated proteins in UM-EVs, such as GNAQ, GNA11, and

integrin aV, are linked to UM tumorigenesis and liver metastasis

(76, 218). Ragusa et al. also showed that miR-146a levels were

upregulated in the vitreous humor (VH) and serum of UM patients,

which could have a regulatory role in UM melanocyte surveillance

(75). Therefore, it could be a potential diagnostic circulatory

biomarker (75). In another study on UM proteins secreted from

cancer cells, it was demonstrated that exosomal proteins (such as

Synaptosomal-associated protein 23(SNAP23), Complement C1s

subcomponent GN = C1S) that could involve in ECM remodeling,

cancer cell migration, and invasion and metastasis (216, 219). A

recent analysis of hepatic perfusate-derived Exos in 12 UM patients

with liver metastasis revealed that UM patients’ circulating exosome

levels were significantly higher compared with healthy controls;

additionally, the miRNA composition of liver perfusate exosomal

cargo is different from other neoplastic cargo’s composition (74).

These results indicated that exosomal miRNA might be a possible

specific marker for UM diagnosis (75).

UM-EVs have principal roles in cancer cell proliferation,

migration, invasion, and metastasis (64). While various clinical

trials analyze exosomes as diagnostic biomarkers for non-

ophthalmic cancers, studies on exosomes as a biomarker for

ocular cancers are still at preclinical levels (64). Consequently,

more studies are essential to explore the potential and prospects

of EVs in ocular malignancies (Table 1).
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5 Conclusion
Incidence, prevalence, morbidity, and mortality of inflammatory

eye diseases have increased over the past decades. However, current

therapeutic and diagnostic approaches lack favorable efficiency.

Therefore, novel, effective, and safer measures are required to reach

sufficient medical care for these patients. Extracellular vesicles

mediate a variety of extra- and intracellular activities in the visual

organs and are potential candidates for diagnostic and therapeutic

agents; however, data that support such evidence are limited.

Moreover, there are several challenges regarding the production,

isolation, purification, safety, potency, and contamination

susceptibility of extracellular vesicles. Therefore, a complete

understanding of extracellular vesicles and their cargo is essential.
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