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Immune checkpoint inhibitors (ICIs) by targeting PD-1/PD-L1 or CTLA-4 have

markedly improved the outcome of cancer patients. However, most solid tumor

patients can’t benefit from such therapy. Identification of novel biomarkers to

predict the responses of ICIs is crucial to enhance their therapeutic efficacy. TNFR2

is highly expressed by the maximally immunosuppressive subset of CD4+Foxp3+

regulatory T cells (Tregs), especially those present in tumor microenvironment

(TME). Since Tregs represent a major cellular mechanism in tumor immune

evasion, TNFR2 may be a useful biomarker to predict the responses to ICIs

therapy. This notion is supported by our analysis of the computational tumor

immune dysfunction and exclusion (TIDE) framework from published single-cell

RNA-seq data of pan-cancer databases. The results show that, as expected, TNFR2

is highly expressed by tumor-infiltrating Tregs. Interestingly, TNFR2 is also

expressed by the exhausted CD8 T cells in breast cancer (BRCA), hepatocellular

carcinoma (HCC), lung squamous cell carcinoma (LUSC), and melanoma (MELA).

Importantly, high expression of TNFR2 is associated with poor responses to the

treatment with ICIs in BRCA, HCC, LUSC, and MELA. In conclusion, the expression

of TNFR2 in TME may be a reliable biomarker for the precision of ICIs treatment of

cancer patients, and this idea merits further research.
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Introduction

The development of immune checkpoint inhibitors (ICIs) by

targeting CTLA-4, PD-1 or PD-L1 has now revolutionized cancer

treatment (1–3). ICIs interrupt co-inhibitory signaling pathways and

relieve or overcome tumor-induced immunosuppression, thereby

reinvigorating anti-tumor immune responses (2, 4). Despite the

outcomes being promising, the majority of patients cannot derive

the benefits from PD-1/PD-L1 and CTLA-4 inhibitors therapy, due to

low response rates and immune-related adverse events (irAEs) (5–8).

The onset of irAEs is highly unpredictable, severe, and sometimes

even fatal. The identification of novel biomarkers to predict the

responses of ICIs is crucial to enhance the efficacy of their

treatments. Recently, a substantial number of studies have been

performed to explore the potential irAE biomarkers, including

cytokines/chemokines, autoantibodies, immunogenetics, and

microbial biomarkers (9–13). To date, no single biomarker has

been identified to precisely predict the responses in patients

receiving ICIs treatment.

CD4+Foxp3+ regulatory T cells (Tregs) are central regulators of

anti-tumor immune responses (14) and they represent a major

cellular mechanism of tumor immune evasion (15, 16). Tumor

necrosis factor receptor 2 (TNFR2), one of two receptors that

mediate the biological function of TNF, is predominantly expressed

by highly immunosuppressive subset of Tregs in mice and humans

(17–20). There is now compelling evidence indicate that TNFR2 plays

a decisive role in the activation, proliferative expansion,

immunosuppressive function, and phenotypic stability of Tregs (17,

19, 21). Furthermore, TNFR2 is also expressed by other types of

immunosuppressive cells such as myeloid-derived suppressor cells

(MDSCs), mesenchymal stem cells (MSCs), and some tumor cells (16,

22, 23). We have proposed that TNFR2 behaves as an immune

checkpoint stimulator and oncoprotein (15). Interestingly, it was

reported that TNF could upregulate PD-L1 expression in pancreatic

cancer cells through TNFR2 signaling, and consequently induced PD-

1/PD-L1-mediated immune evasion (24). Targeting TNFR2 was able

to significantly improve the anti-tumor efficacy in multiple tumor

models (25–27). We further hypothesize that TNFR2 may be a useful

biomarker for the prediction of the responses to ICIs therapy.
TNFR2 is preferentially expressed by
tumor-infiltrating Tregs and exhausted
CD8 T cells

To test the hypothesis, we first examined the expression of TNFR2

in different types of tumor-infiltrating T cells, by re-analyzing and

integrating the pan-cancer single-cell landscape with UMAP

visualization from the Zemin Zhang group’s study (28), based on

their framework of scDVA (short for single-cell RNA-seq data

visualization and analysis) among those various tumor types. It was

reported by us and others that TNFR2 could be expressed by mouse

antigen-experienced CD4+Foxp3- conventional T cells, including

those in the tumor environment (29, 30), we thus firstly analyzed

TNFR2 expression by subsets of cells in CD4 T cell metaclusters. As

expected, the expression of TNFR2 by CD4+FoxP3+ Tregs was much
Frontiers in Immunology 02
higher than that expressed by conventional CD4 T cells in human

cancers (Figures 1A, B). Therefore, high expression of TNFR2

remained to be a trustful marker of Tregs in human tumors.

CD8 T cells could also express TNFR2 and the signal of TNFR2 in

CD8 cytotoxic T lymphocytes (CTLs) was purportedly mediated by

the anti-tumor effect of agonistic antibodies against TNFR2 (27). We

analyzed TNFR2 expression on tumor-infiltrating CD8 T cells in

human cancers. The results showed that CD8 T cells indeed

expressed high levels of TNFR2. Interestingly, CD8 cells with high

TNFR2 expression appeared to have a terminal exhausted phenotype,

as defined by the expression of CTLA4, HAVCR2, and CXCL13

(Figures 1C–F). Furthermore, we analyzed the expression of selected

marker genes across several cancer types. UMAP visualization

demonstrated that high expression of TNFR2 was presented in

tumor-infiltrating Tregs and exhausted CD8 T cells across human

breast cancer (BRCA), hepatocellular carcinoma (HCC), lung cancer

(LC), and melanoma (MELA) (Figures 1G, H). TNFR2 expression by

CD4 T and CD8 T cell metaclusters in other 17 human cancer types

were analyzed as well, and results consistently showed that TNFR2-

expressing cells are mostly concentrated by Tregs in CD4 T cells, while

distribution of TNFR2-expressing cells are less homogenous in the

CD8 T cells in these cancer types (Supplementary Figure 1). Besides,

the expression profile of TNF in tumor-infiltrating T cells was also

analyzed. The results showed that there was no clear pattern of TNF

expression in CD4 and CD8 T cells (Supplementary Figure 2).
Association of TNFR2 with
responsiveness to ICIs therapy

To further assess the potential relationship of TNFR2 signaling on

the state of the immune-suppressive tumor environment, and to

predict the response of patients to the treatment with ICIs, we

evaluated the expression of immune-checkpoint–relevant gene

markers of SIGLEC15, TIGIT, CD274 (PD-L1), HAVCR2, PDCD1

(PD-1), CTLA4, LAG3, and PDCD1LG2 (PD-L2) (31, 32). The results

showed that TNFR2 expression was positively correlated with the

expression of these checkpoint markers in BRCA, HCC, LUSC, and

MELA, respectively (Figures 2A–D). Next, we assessed the correlation

between TNFR2 expression and the ICIs response by Tumor Immune

Dysfunction and Exclusion (TIDE) score (33). The results showed

that higher TNFR2 expression was associated with higher TIDE

scores, complying with poorer responses to ICIs therapy, in patients

with BRCA, HCC, LUSC, and MELA (Figures 2E–H). Therefore, the

results of our analysis clearly indicate that TNFR2 expression is

associated with a general immunosuppressive state in tumor

environments. Thus, high levels of TNFR2 expression are associated

with poor responses of patients to ICIs treatment.
Discussion and perspective

We and others have shown that targeting TNFR2 with antagonistic

antibodies could mobilize anti-tumor immune responses by

eliminating Treg activity, yielding a potent anti-tumor effect both in

mice and humans (25–27, 34–36). Fcg-binding could result in the

conversion of antagonistic TNFRSF receptor-specific antibodies into
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strong agonists (37), therefore, further investigation is needed to clarity

if the anti-tumor effect of these antibodies is truly caused by the

inhibition of the TNFR2 signal. In fact, it was shown that TNFR2

agonistic antibody Y9 could inhibit tumor growth by acting directly on

CD8 CTLs in tumors and stimulating their activation and expansion in

murine cancer models (27). Based on the above contradictory results,

pharmacological companies are currently developing both agonistic

and antagonistic anti-TNFR2 antibodies simultaneously (38), in

chance one of them may eventually be proved useful in the clinic as

a cancer immunotherapeutic agent. Therefore, further understanding

TNFR2 expression by T cell subsets in tumor microenvironment is

important to clarify the primary cellular target of both agonistic and

antagonistic TNFR2 antibodies. In this study, we found that among

tumor-infiltrating CD4 T cells, TNFR2 is quite selectively expressed by

Foxp3+ Tregs. Notably, although Foxp3 expression is a standard

marker for murine Tregs, caution should be taken to use Foxp3 as a

marker for human Tregs, since it can also be expressed by the activated

human T cells upon TCR triggering (39). Thus, further study is needed

to verify if all Foxp3-expressing cells in the metacluster are bona-fide

Tregs or not. The expression of TNFR2 by tumor-infiltrating CD8 T
Frontiers in Immunology 03
cells appeared to be less homogeneous and relatively discrete, as

compared with its expression in CD4 T cells. Nevertheless, it is clear

that TNFR2 is mainly expressed by CD8 T cells with an exhaustive

phenotype. Our results are consistent with a number of previous

studies that suggest both Tregs and exhausted CD8 CTLs are potential

targets of TNFR2 antibody treatments (25, 27, 34, 35, 40). Based on our

results, it is possible to propose that antagonistic antibodies may

dampen the immunosuppressive function of Tregs, while the

exhaustive phenotype of CD8 CTLs may be reversed simultaneously.

Our results also indicate that TNFR2 expression levels are

associated with the responsiveness of ICIs treatment. The

expression of TNF, an endogenous ligand of TNFR2 with the

capacity to up-regulate TNFR2 expression by Tregs (41), in tumor

tissue could be markedly upregulated after ICIs treatment (42). It was

shown that TNF derived from CD8+ T cells and CD8- T cells

represent a crucial effector mechanism in ICI-responsive tumors

(43). Nevertheless, it was also reported that blockage of TNF

overcome the resistance to anti-PD-1 treatment in experimental

melanoma (44), and the treatment with TNF inhibitors enhanced

the anti-tumor effect of combined CTLA-4 and PD-1 immunotherapy
B
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FIGURE 1

The expression profile of TNFR2 in tumor-infiltrating Tregs and exhausted CD8 T cells in BRCA, HCC, LC, and MELA. To estimate the differentiation of
TNFR2 expression among tumor-infiltrating immune cells, we re-analyzed and integrated the pan-cancer single-cell landscape from the Zemin Zhang
group’s study, based on their framework of scDVA (short for single-cell RNA-seq data visualization and analysis). UMAP visualization shows the
expression of FOXP3 (A) in CD4 T cell metaclusters. The dotted line represents regulatory T cells. (B) TNFR2 expression in CD4 T cell metaclusters. In
CD8 T cell metaclusters, the expression of selected marker genes, such as HAVCR2 (C), CTLA4 (D), and CXCL13 (E) are shown. Dotted line represents
terminal exhausted CD8 T cells. (F) TNFR2 expression in CD8 T cell metaclusters. UMAP visualization shows the expression of TNFR2 in CD4 T cell
metaclusters (G) and CD8 T cell metaclusters (H) across four cancer types (BRCA, HCC, LC, and MELA).
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(45). However, a preclinical study revealed that the treatment with

anti-mouse TNFR2 surrogate antibody (suAb) abrogated TNF-

induced expansion of Tregs in vitro and decreased expression of

PD-1 on CD8 tumor-infiltrating lymphocytes (TILs) in vivo (46).

Thus, it is highly possible that TNF-TNFR2 axis is attributable to the

resistance to ICIs therapy. This notion is supported by the evidence

from us and others that blockade of TNFR2 with antagonistic

antibodies could markedly enhance the efficacy of ICIs treatment in

mouse tumor models (25, 35, 47). For example, in a cohort of

metastatic melanoma patients treated with CTLA4 and PD-1

blockade, a deep immune analysis of tumor samples found that

TNF was markedly upregulated after PD-1 treatment (42).

Taken together, our analysis clearly indicates that the expression of

TNFR2 in TME may be a reliable biomarker for the precision ICIs

treatment of cancer patients. Our results also support the notion that

both tumor-infiltrating Tregs and exhausted CD8 CTLs are major

cellular targets of antagonistic TNFR2 antibody treatment, for the
Frontiers in Immunology 04
reason that both subsets of tumor-infiltrating lymphocytes express

high levels of TNFR2. These possibilities merit further clinical research.
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FIGURE 2

Correlation of TNFR2 expression and immune checkpoint gene markers. To predict the correlation between TNFR2 expression and the responses to immune
checkpoint inhibitor therapy, (TIDE) score was evaluated. According to the median value of TNFR2 expression, tabulated tumor samples and types (BRCA, HCC,
LUSC, and MELA) were divided into TNFR2high and TNFR2low groups. Then, TIDE score was used to predict the correlation between TNFR2 expression and
immune checkpoint inhibitor responses. The correlation between TNFR2 and representative immune checkpoints gene markers, such as CD274 (PD-L1), CTLA4,
HAVCR2, LAG3, PDCD1 (PD-1), PDCD1LG2 (PD-L2), TIGIT, and SIGLEC15 were shown in BRCA (A), HCC (B), LUSC (C) and MELA (D). TIDE score was used to
predict the correlation between TNFR2 expression and ICIs responses in BRCA (E), HCC (F), LUSC (G), and MELA (H). *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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