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the response to immunotherapy
in hepatocellular carcinoma
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Introduction: Hepatocellular carcinoma (HCC) is a common malignant cancer

with a poor prognosis. Cuproptosis and associated lncRNAs are connected with

cancer progression. However, the information on the prognostic value of

cuproptosis-related lncRNAs is still limited in HCC.

Methods: We isolated the transcriptome and clinical information of HCC from

TCGA and ICGC databases. Ten cuproptosis-related genes were obtained and

related lncRNAs were correlated by Pearson’s correlation. By performing lasso

regression, we created a cuproptosis-related lncRNA prognostic model based on

the cuproptosis-related lncRNA score (CLS). Comprehensive analyses were

performed, including the fields of function, immunity, mutation and clinical

application, by various R packages.

Results: Ten cuproptosis-related genes were selected, and 13 correlated

prognostic lncRNAs were collected for model construction. CLS was positively

or negatively correlated with cancer-related pathways. In addition, cell cycle and

immune related pathways were enriched. By performing tumor microenvironment

(TME) analysis, we determined that T-cells were activated. High CLS had more

tumor characteristics and may lead to higher invasiveness and treatment

resistance. Three genes (TP53, CSMD1 and RB1) were found in high CLS samples

with moremutational frequency. More amplification and deletion were detected in

high CLS samples. In clinical application, a CLS-based nomogramwas constructed.

5-Fluorouracil, gemcitabine and doxorubicin had better sensitivity in patients with

high CLS. However, patients with low CLS had better immunotherapeutic

sensitivity.

Conclusion: We created a prognostic CLS signature by machine learning, and we

comprehensively analyzed the signature in the fields of function, immunity,

mutation and clinical application.

KEYWORDS

cuproptosis-related lncRNA score, hepatocellular carcinoma, machine learning,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1097075/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1097075&domain=pdf&date_stamp=2023-01-25
mailto:729334324@qq.com
https://doi.org/10.3389/fimmu.2023.1097075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1097075
https://www.frontiersin.org/journals/immunology


Lu et al. 10.3389/fimmu.2023.1097075
Introduction

Hepatocellular carcinoma (HCC) ranks fifth in most common

carcinoma and second in cancer-related death (1). As a major

histological type, HCC is identified by a high mortality rate and

rapid progression (2). The main treatments for early and advanced

HCC include surgical resection, multi-kinase inhibitors and

immunotherapy. However, the therapeutic effect was limited due to

the treatment resistance or adverse reactions (3–5). Therefore, it is

vital to individually predict the overall survival rate and sensitivity of

the drugs to guide clinical treatment and improve the therapeutic

effect for HCC patients.

Cuproptosis is an innovative cell death pathway in which copper

can directly bind to the tricarboxylic acid (TCA) cycle and cause

protein stress, which eventually results in cell death (6). Copper,

which is essential for life, plays a vital role in regulating homeostasis.

Lack of copper may cause dysfunction of copper-binding enzymes.

However, increasing the level of copper may lead to cell death (7). A

recent study revealed that the level of intracellular copper may

regulate the progression of cancer (8). Thus, increasing the

accumulation of intracellular cancer is considered to be a novel

therapeutic target for cancer cell killing (9). According to the

mechanism, it is necessary to determine the regulators of the novel

form of cell death in HCC patients.

Long noncoding RNAs (lncRNAs) consist of more than 200

nucleotides and mostly do not encode proteins (10). The functions

of some lncRNAs have been widely studied, and they are involved in

regulating chromatin dynamics, genes, cell differentiation, growth and

development (11). Thanks to next-generation sequencing, thousands

of lncRNAs have been revealed to be abnormally expressed in various

cancers (12). Most importantly, many lncRNAs were associated with

prognosis in many types of cancer as well as potential therapeutic

targets (13–15).

In our study, we constructed a novel machine learning-based

cuproptosis-related lncRNA prognostic signature for HCC patients

with bioinformatic analysis. We performed functional, immune and

mutational analyses to comprehensively evaluate the created model.

Moreover, our model can guide the clinical treatment with

satisfactory results.
Methods

Data extraction

Ten cuproptosis-related genes were obtained from a previous

article. The related data, including transcriptome RNA sequencing

and clinical data, were extracted from The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/) and International Cancer

Genome Consortium (ICGC) (https://dcc.icgc.org) online databases.

Patients in both datasets were collected based on the following

criteria: (a) pathological diagnosed with LIHC (Liver hepatocellular

carcinoma); (b) available clinical information (including age, gender,

stage, and complete follow-up information); (c) available gene

expression matrix. Finally, we collected 340 patients in the TCGA-

LIHC cohort and 226 patients in the ICGC-LIHC cohort. The cohort
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of DNA methylation and copy number were obtained from UCSC

Xena (https://xena.ucsc.edu/), which belongs to University of

California Santa Cruz.
Establishment of the cuproptosis-related
prognostic lncRNA signature

We explored the correlation between 10 cuproptosis-related genes

and lncRNAs by performing Pearson’s correlation with a P-value <

0.05. The network was constructed by R the package “Igraph”. To

filter the prognostic lncRNAs and establish the cuproptosis-related

prognostic lncRNA signature, we performed LASSO regression. The

corresponding coefficients (b) of the signature were obtained. The

cuproptosis-related lncRNA score (CLS) was calculated by the

following formula: CLS = ∑ [expression (cuproptosis-related

prognostic lncRNA signature)*b]. The cutoff value was the median

CLS value in each data set.
Validation of the cuproptosis-related
prognostic lncRNA signature

We constructed the lncRNA signature by using the TCGA dataset

as the training cohort. Afterward, the ICGC dataset was used for

validation as the testing cohort. To evaluate the capacity of prediction,

we calculated the concordance index (C-index) by using the R

package “Pec”. The area under the curve (AUC) analysis was

obtained to assess the reliability of our signature with the R

package “timeROC”. The heatmap was created by the R package

“pheatmap”. Kaplan-Meier (K-M) analysis was performed in TCGA

and ICGC cohorts with the R package “survival”.
RNA isolation and RT-qPCR

We isolated RNA using an RNeasy Mini Kit (QIAGEN, Hilden,

Germany). The RNA was reversed to cRNA by utilizing a High-

Capacity RNA-to-cDNATM Kit (Thermo Fisher Scientific, Hilden,

Germany). Afterward, we performed RT-qPCR with PowerUpTM

SYBRTM Green Master Mix (Thermo Fisher Scientific, Hilden,

Germany) based on the manufacturer’s instructions. The sequences

of the lncRNA primers are shown (Table S2). The relative expression

was calculated using the 2-DDCt method.
Nomogram establishment based on CLS

We performed the univariate Cox regression and multivariate

Cox regression with the R package “survival”. To individually predict

the overall survival rate, we established a CLS-based nomogram

according to the Cox regression analysis by the R package “RMS”.

Then, we obtained the calibration curves and AUCs by utilizing the R

packages “rms” and “survivalROC” respectively. Moreover, the

decision curve analysis (DCA) was analyzed with the R package

“rmda” to further evaluate the superiority of the nomogram.
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Functional and immune analyses

The correlation heatmap was analyzed by the R package “ggcor”.

After obtaining the differentially expressed genes, we introduced an

online resource called Metascape (https://metascape.org) to

determine the enrichment items. Gene set enrichment analysis

(GSEA) was used to analyze the enriched pathways. The immune-

correlated pathways were isolated from a previous article (16). Other

pathways of interest were obtained from a published article (17). We

obtained the homologous recombination deficiency (HRD) score,

cancer-testis antigen (CTA) score and intratumor heterogeneity from

an article (18). The R package “cibersortR” was utilized to obtain the

relative abundance of each tumor-infiltrating immune cell (TIC) in

each sample. Moreover, the tumor microenvironment was analyzed

by ESTIMATE algorithm.
Mutational analyses

The mutational data were extracted from the TCGA using the R

package “TCGAbiolinks”. We created the mutational waterfall plot

and the lollipop chart with the R package “maftools”. The tumor

mutational burden (TMB) of each sample was calculated.

Furthermore, the mutational spectrum of mutational signatures was

determined based on the R package “MutationalPattern”.
Clinical decision based on CLS

The genomics of drug sensitivity in cancer (GDSC) database

(www.cancerRxgene.org) was introduced. The half-maximal

inhibitory concentration (IC50) was calculated with the R package

“pRRophetic”. The immunophenoscore (IPS) was calculated with a

reported algorithm (19). We performed subclass mapping analysis

(20) to assess the response to PD-1 and CTLA4 in an existing dataset

containing comprehensive immunotherapy information in

melanoma patients (21).

The response to immunotherapy was detected by tumor immune

dysfunction and exclusion (TIDE) mode (http://tide.dfci.harvard.

edu) (22). Five biomarkers, including IPS, interferon gamma

(IFNG), CD274, CD8 and myeloid-derived suppressor cell (MDSC),

were compared with CLS to evaluate the accuracy of prediction

according to the AUC analyses. In addition, the database

ConnectivityMap (https://clue.io/) was utilized to figure out the

potential small molecule drugs and the corresponding mechanism

of action.
Statistical analyses

R software (version 4.0.4) was used for all statistical analyses.

Adobe Illustrator was used for managing all figures. We performed

the correlation analyses by Pearson’s correlation. The Wilcoxon test

was used to analyze the difference between two groups. The

proportion of the data was evaluated via the chi-squared test. A P-

value less than 0.05 was considered to be significant. *P < 0.05, **P <

0.01, ***P < 0.001, ****P < 0.0001.
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Results

Ten cuproptosis-associated genes and
related lncRNAs were identified

According to a recent high-quality article (6), we collected 10

cuproptosis-associated genes for further research (Table S1). First, we

analyzed the fold change, mutational frequency, methylation and

hazard ratio of ten cuproptosis-associated genes (Figure 1A). DLAT,

DLD, GLS, LIPT1, MTF1, PDHB and FDX1 were highly expressed in

HCC, while PDHA1 and LIAS were downregulated in HCC. CDKN2A

was considered to be the most frequently mutated gene. The lowest

methylation level was found in the GLS gene. DLAT was found to be a

risk factor in HCC. Afterward, we performed Pearson’s correlation to

identify 242 correlated lncRNAs with a P-value < 0.05, and the result
A

B

FIGURE 1

Identification of cuproptosis-related genes and corresponding
lncRNAs. (A) The fold change, mutational frequency, methylation level
and Hazard ratio of the ten cuproptosis-related genes. (B) The
correlated lncRNAs of the ten cuproptosis-related genes. *P-value <
0.05, **P-value < 0.01, ***P-value < 0.001.
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was exhibited using a circle plot (Figure 1B). Two hundred and twenty

four lncRNAs were selected.
Construction of a prognostic signature
based on 13 cuproptosis-related lncRNAs

To identify the most stable prognostic model, we performed Lasso

regression and revealed that the 13-lncRNA and 14-lncRNA models

were suitable for prognostic signature construction. Since only one

lncRNA was not included in the 13-lncRNA model, we eventually

selected the 13-lncRNA model as the principle of simplicity

(Figure 2A). The lasso regression model of the 13 lncRNAs

(lambda=0.04139117) is shown (Figure 2B). Then, we performed

ridge regression and obtained the same result (Figure 2C). In

addition, we introduced a new scoring system, the cuproptosis-

related lncRNA score (CLS), to evaluate the risk level in HCC. By

detecting the C-index, which is used for the assessment of prediction

capacity and reliability (23), we uncovered that the C-index was the

highest in CLS compared to stage, age and sex in both TCGA and

ICGC databases (Figure 2D). The results illustrated that CLS may act

as a suitable signature with a high prediction capacity in HCC.

Furthermore, we also performed AUC analysis to evaluate our

model in TCGA and ICGC datasets (Figures 2E, S1A), and the

results indicated that CLS was better than some traditional

prediction markers. Then, we calculated the CLS in each sample

and ranked the order from low to high CLS. The survival status and
Frontiers in Immunology 04
the expression of 13 lncRNAs in each sample are illustrated in both

datasets (Figures 2F, S1B). The results revealed that high CLS patients

obtained a worse survival status, and that most lncRNAs in our model

were highly expressed in high CLS patients except PLGLA. Afterward,

we performed the RT-qPCR to detect the mRNA expression of 13

lncRNAs in the LX2 hepatic stellate cell line and Hep3B HCC cell line

(Figure 2G). In addition, we pointed out that the overall survival (OS)

rate was lower in high CLS patients by performing Kaplan-Meier

analysis in the TCGA and ICGC databases (P < 0.001) (Figures 2H,

S1C). We subsequently performed AUC analysis to assess the

accuracy of our CLS system, the AUCs at 1-, 3-, and 5-year were

0.774, 0.685 and 0.71, respectively, in the TCGA database (Figure 2I)

and 0.692, 0.729 and 0.903, respectively, in the ICGC database (Figure

S1D), which showed that our CLS system was satisfactory for

prognostic prediction.
Establishment of a CLS-based nomogram
for HCC

We analyzed the univariate Cox regression and multivariate Cox

regression in both TCGA and ICGC cohorts (Figures 3A, B) to figure

out the possible independent prognostic factors. We announced that

stage and CLS were the independent prognostic factors in HCC

patients, and that the CLS was even better than stage. Thus, we

created a CLS-based nomogram for HCC patients to predict the

prognosis individually (Figure 3C). With the CLS-based nomogram,
A

B

D

E

F

G

I

H

C

FIGURE 2

Prognostic signature based on CLS was created. (A) Lasso regression of the cuproptosis-related lncRNAs. (B) Identification of the tuning parameter in
Lasso model. (C) The coefficients in Lasso model. (D) The C-index of CLS, stage, age and gender in TCGA and ICGC databases. (E) The AUC of CLS, age,
gender and stage in TCGA. (F) The survival status and the expression of the 13 cuproptosis-related lncRNAs of each sample ranked from high to low CLS.
(G) The mRNA expression of 13 cuproptosis-related lncRNAs in HCC cell line Hep3B compared to the hepatic stellate cell line LX2. (H) Kaplan-Meier
analysis of the high and low CLS patients. (I) The 1-, 3- and 5-year AUC of the prognostic signature. *P-value < 0.05, ***P-value < 0.001
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1097075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2023.1097075
we could calculate the survival rate of less than 1-, 3- and 5-year for

each HCC patient. Subsequently, we created a calibration curve to

assess the accuracy of our constructed nomogram (Figure 3D). The

calibration curves illustrated a satisfactory capacity. And the AUC of

the nomogram was the largest compared to age, sex and stage

(Figure 3E), which demonstrated that the CLS-based nomogram

was stable and had a high capacity for prognostic prediction.

Furthermore, we performed the 1-, 3- and 5-year DCA (Figures 3F-

H), DCA was used to assess the usefulness of the models we

interested. We evaluated the usefulness of each model by net

benefit (24). In this analysis, the CLS-based nomogram showed a

larger net benefit compared to other models, the result revealed that

the CLS-based nomogram was worthy of application in the clinic.
Functional analyses of the CLS model

We built a heatmap to exhibit the correlation and the significance

between CLS and hallmark gene sets (Figure 4A). For example, CLS had

a positive correlation with MTORCI signaling with a p-value less than

0.001. In total, the majority of cancer-related pathways were
Frontiers in Immunology 05
significantly related to CLS, with a positive/negative correlation.

Then, after obtaining the differentially expressed genes, we performed

the enrichment analysis using Metascape. The top five enriched items

in high CLS samples were mitotic cell cycle, microtubule cytoskeleton

organization, cell cycle checkpoints, DNA metabolic process and

meiotic cell cycle (Figure 4B). The top five enriched items in the low

CLS samples were monocarboxylic acid metabolic process, metabolism

of lipids, drug ADME, fatty acid omega-oxidation and small molecule

catabolic process (Figure 4C). Furthermore, we performed GSEA to

detect the pathways enriched in samples (Figures 4D, E). Cell cycle,

homologous recombination, oocyte meiosis, RNA degradation and

spliceosome were significantly enriched in high CLS samples.

Complement and coagulation cascades, drug metabolism cytochrome

P450, fatty acid metabolism, oxidative phosphorylation and primary

bile acid biosynthesis were significantly enriched in low CLS samples.

Moreover, we built a heatmap to explore the expression and correlation

of some pathways of interest (Figure 4F). We discovered that myeloid

inflammation and MHC class I were upregulated in high CLS samples,

while cytolytic activity, type I and II IFN responses were upregulated in

low CLS samples. The type II IFN response, however, was negatively

correlated with CLS with the most significant.
A B

D

E

F G H

C

FIGURE 3

Construction of a CLS-based nomogram. (A) Univariate Cox regression in TCGA and ICGC cohorts. (B) Multivariate Cox regression in TCGA and ICGC
cohorts. (C) Construction of a nomogram by various parameters. (D) Calibration curve of the CLS-based nomogram. (E) AUC analysis for the constructed
nomogram. (F) One-year DCA for the nomogram. (G) Three-year DCA for the nomogram. (H) Five-year DCA for the nomogram.
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Immune analysis of the CLS model

First, we detected the enrichment and the correlation of the 22

TICs in samples. By generating a heatmap, we revealed that M2

macrophages, B memory cells, T regulatory cells, neutrophils, T

follicular helper cells and CD4 memory activated T cells were

significantly highly expressed in high CLS samples, while T gamma

delta cells, NK resting cells, monocytes and M0 macrophages were

upregulated in low CLS samples. Among them, M2 macrophages had

the most significant positive correlation with CLS (Figure 5A). Then

we calculated the immune and stromal scores and tumor purity

(Figure 5B). We found that the tumor purity was higher in high CLS

samples, while the immune and stromal scores were higher in low

CLS samples. The results uncovered that high CLS could easily lead to

tumorigenesis. In addition, we detected the relative expression of six

checkpoints between high and low CLS samples (Figure 5C). CLTA-4,

LAG-3, PD-1, PD-L1 and TIM-3 were highly expressed in low CLS

samples, which indicated that low CLS patients had a better response

to immunotherapy. Furthermore, a correlation between CLS and

ESTIMATE/checkpoints was detected (Figure 5D). CLS was

negatively correlated with stromal score and positively correlated

with tumor purity. Nevertheless, CLS and checkpoints had a

significantly negative correlation. Finally, the CTA score, HRD

score and intratumor heterogeneity were evaluated. The expression

of CTA was normal in the adult testis, but aberrant in several types of

carcinoma (25). CTA score was associated with tumorigenesis and

proliferation and was positively correlated with CLS. The CTA score

was much higher in patients with high CLS (Figure 5E). The

definition of HRD was that cells were uncapable to repair DNA

double-strand breaks via homologous recombination repair pathway

(26). As a characteristic of tumor tissue, HRD was positively
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correlated with CLS, and patients with high CLS had higher HRD

score than patients with low CLS (Figure 5F). Intratumor

heterogeneity, one of the reasons for the failure of cancer treatment

and the determinative factor of the tumor microenvironment (27),

was positively correlated with CLS. Intratumor heterogeneity was

higher in high CLS patients (Figure 5G). Above all, patients with high

CLS may have higher invasive and treatment resistance.
Mutational analysis of the CLS model

We detected the correlation and mutation counts in high and low

CLS samples. However, we did not find any significance in all

mutation counts (Figure 6A) and non-synonymous mutation

counts (Figure 6B). Then, we exhibited a mutational waterfall plot

in high and low CLS samples, and the top 20 genes with the most

mutational frequency are listed (Figure 6C). The most frequently

mutated gene was TP53 in all samples (26%), followed by TTN (22%)

and CTNNB1 (23%). In addition, we compared the mutants between

high and low CLS samples (Figure 6D). The results revealed that

TP53, CSMD1 and RB1 had more mutants in high CLS samples. Since

TP53 was found to be the most significantly mutated gene between

the two groups, we illustrated the mutational types of TP53 in high

and low CLS samples by generating a lollipop chart (Figure 6E). We

found that 25.2% of mutations in high CLS samples were missense

mutations, which was only 9% in low CLS samples. The percentage of

other mutational types was higher in high CLS samples. Subsequently,

we analyzed the mutation signatures in the two groups. By comparing

five mutational signatures, we found that a difference existed between

high and low CLS samples (Figures 6F, G). For instance, in signature

B, many mutations occurred in the low CLS group but not in the high
A

B D

E

F

C

FIGURE 4

Functional analyses of the CLS model. (A) The correlation between CLS and the Hallmark cancer-related pathways. (B) The enriched items in high CLS
samples in Metascape. (C) The enriched items in low CLS samples in Metascape. (D) The top five enriched items in high CLS samples by GSEA. (E) The
top five enriched items in low CLS samples by GSEA. (F) The expression of the interested pathways in each sample and the correlation between
interested pathways and CLS.
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CLS group. In addition, we detected the frequency of amplification

and deletion in each arm (Figure 6H). The results indicated that many

deletions were existed in high CLS samples. In arms 3q, 12p, 12q and

22q, the mutational frequency of amplification was higher in high

CLS samples but lower in the 5q and Xq arms. By detecting the total

frequency of amplification (Figure 6I) and deletion (Figure 6J), we

revealed that samples with high CLS showed higher amplification and

deletion frequencies.
Application of the CLS model in
clinical treatment

Neoantigens, which are specifically expressed in tumor tissue,

have been proved to be the vital T cell-mediated immunotherapy
Frontiers in Immunology 07
targets for tumor patients (28). The expression of neoantigens were

detected in high and low CLS samples (Figure 7A). We observed a

negative correlation between CLS and neoantigens; moreover, the

neoantigens was upregulated in low CLS samples. The results

demonstrated that the patients with low CLS may have a

satisfactory response to immunotherapy. By detecting the

proliferation score, we concluded that the correlation was

significantly positive between CLS and proliferation, and the

proliferation score was higher in high CLS samples (Figure 7B),

which indicated that high CLS patients had a higher capacity of

proliferation. Next, we detected the estimated IC50 of four

chemotherapeutic drugs, which are normally used in HCC

treatment (Figure 7C). The results showed that patients with high

CLS had better sensitivity to 5-fluorourcil, gemcitabine and

doxorubicin in the TCGA dataset. The same result was obtained in
A B

D

E F G

C

FIGURE 5

Immune analyses of the CLS model. (A) The expression and correlation between the TICs and CLS. (B) The ESTIMATE score (including immune and
stromal score) and tumor purity in high and low CLS samples. (C) The relative expression of six immune checkpoints in high and low CLS samples. (D)
The correlation between CLS and immune checkpoints/ESTIMATE. (E) The correlation between the CTA score and the CLS, and the level of CTA score in
high and low CLS samples. (F) The correlation between the HRD score and the CLS, and the level of HRD score in high and low CLS samples. (G) The
correlation between the intratumor heterogeneity and the CLS, and the level of the intratumor heterogeneity in high and low CLS samples. *P-value <
0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001. ns, not significant
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the ICGC dataset (Figure S2A). In addition, we calculated the IPS in

each patient in two datasets (Figures 7D, S2B). The results showed

that the low CLS patients had a higher IPS, which indicated that

patients with low CLS may have a better response against

immunotherapy. Moreover, the subclass mapping displayed that

patients with low CLS had a better PD-1 response (Figure 7E), and

a similar result was found in the ICGC dataset (Figure S2C).

Furthermore, we used the TIDE algorithm to predict the

immunotherapeutic sensitivity, and we detected the response rate in

two subgroups in the TCGA dataset (Figure 7F). Patients with a low

CLS had a better percentage of response than those with a high CLS.

In the ICGC cohort, however, the response rate was higher in low CLS

patients, with a P-value = 0.05 (Figure S2D). Finally, we performed

the ROC analysis to compare our CLS model to five widely utilized
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biomarkers in the TCGA (Figure 7G) and ICGC databases (Figure

S2E). The results uncovered that the CLS model had great accuracy

for immunotherapeutic prediction and may act as a novel biomarker

for HCC patients. Moreover, we predicted some potential small

molecule drugs with related mechanisms by using MoA analysis

(Figure S3), and the results may lead us to identify possible

therapeutic methods for HCC patients.
Discussion

In our study, we constructed and validated a novel prognostic

signature based on CLS for HCC patients. We assessed our CLS

model systematically. In the functional assessment, we confirmed that
A

B

D E

F G

IH J

C

FIGURE 6

Mutational analyses of the CLS model. (A) The correlation between the all mutation counts and the CLS, and the number of all mutation counts in high
and low CLS samples. (B) The correlation between the non-synonymous mutation counts and the CLS, and the number of all mutation counts in high
and low CLS samples. (C) The waterfall plot of the top 20 altered mutation in high and low CLS samples. (D) The differentially mutated genes between
high and low CLS samples. (E) The proportion and the types of the TP53 mutation in high and low CLS samples. (F) The number of mutations in five
mutational signatures in high CLS samples. (G) The number of mutations in five mutational signatures in low CLS samples. (H) The amplification and
deletion frequency in each arms between high and low CLS samples. (I) The total frequency of amplification in high and low CLS samples. (J) The total
frequency of deletion in high and low CLS samples. TMB, Tumor mutational burden.
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CLS had a high correlation with cancer-related pathways. In addition,

cell cycle and immune related pathways were enriched. By performing

immune analysis, we announced that the tumor characteristics were

more obvious in high CLS samples, which was related to invasion and

resistance to the treatment. In mutational evaluation, more

mutational frequency was found in high CLS samples, and the

same went for amplification and deletion. We utilized our CLS

model for predicting the clinical treatment response. We revealed

that 5-florouracil, gemcitabine and doxorubicin had more sensitivity

in high CLS patients. Nevertheless, patients with low CLS showed a

better response to immunotherapy.
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Thirteen lncRNAs were selected and was verified to be highly

expressed in hepatocellular carcinoma. A previous article also

reported that C10orf91 was upregulated in HCC and correlated

with poor prognosis (29). One published article demonstrated that

the lncRNA CECR7 was upregulated in HCC and related to OS (30).

Other published research uncovered that lncRNA SNHG4 was

highly expressed in liver cancer tissues compared to normal liver

tissues; moreover, the expression of lncRNA SNHG4 was associated

with OS (31). LncRNA BPESC1 was also reported to correlate with

OS, and HCC patients with high expression of BPESC1 had worse

OS (32).
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FIGURE 7

The clinical application of CLS model. (A) The expression and the correlation of the neoantigens in high and low CLS samples. (B) The expression and
correlation of the proliferation score in high and low CLS samples. (C) The estimated IC50 of 5-fluorouracil, cisplatin, gemcitabine and doxorubicin in high
and low CLS samples. (D) The IPS of each patients with high or low CLS. (E) TIDE analysis of the PD1 and CTLA4 response in patients with high and low CLS.
(F) The proportion of the TIDE response in high and low CLS patients. (G) The AUC analysis of the CLS and biomarkers. IPS, Immunophenoscore.
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By performing correlation analysis, we revealed that CLS was

highly correlated with some cancer-related pathways, such as mitotic

spindle, DNA repair, G2/M checkpoint, PI3K-AKT-MTOR signaling,

MTORC1 signaling, E2F targets and MYC targets. The source of our

CLS model was the cuproptosis-related lncRNAs, which had a high

correlation with the level of copper. Currently, studies have proven

that the level of copper correlates with various biochemical processes.

One published article pointed out that a high level of copper enhanced

the drug resistance and was involved in DNA damage repair in cancer

cells (33). One previous article demonstrated that copper

accumulation reduced the proportion of cells in G2/M phase via

Ras/PI3K/Akt signaling (34). In addition, another article reported

that a novel copper nanocomplex inhibited cell proliferation and

caused the cell death via the PI3K/AKT/mTOR signaling pathway in

cervical cancer cells (35). These results were consistent with

our findings.

We analyzed the tumor microenvironment and the enrichment of

TICs in each sample. Many tumor immune cells were enriched. M2

macrophages, for example, were reported to have tumor-promoting

activities promoting cell proliferation, migration, angiogenesis and

immunosuppression, subsequently resulting in poor outcome of HCC

(36). This result coincided with our findings that M2 macrophages

were significantly enriched in high CLS samples, which had

unfavorable outcomes of HCC. Previous research illustrated that

infiltration of regulatory T cells inhibit the anti-tumor immune

response and is correlated to unsatisfactory prognosis (37).

Neutrophils have been proved to promote the progress of

tumorigenesis and associated to poor prognosis (38). Our result

showed that regulatory T cells and neutrophils were enriched in

high CLS patients, which was a good explanation of high CLS patients

with a poor overall survival. According to the analysis of the tumor

microenvironment, the tumor purity was higher and the immune and

stromal scores were lower in the high CLS samples. The result was

corresponded to the findings that the high CLS patients had higher

progression of HCC and worse survival status. By detecting the

relative expression, we revealed that immune checkpoints were

highly expressed in low CLS samples except PD-L2. The results

indicated that the checkpoint inhibitors may have a better response

in low CLS patients. In addition, in the analysis of clinical application

of this article, we predicted the effect of chemotherapy and

immunotherapy in high and low CLS patients. The results

demonstrated that the chemotherapy was sensitive in high CLS

patients, while immunotherapy was better in low CLS patients. The

reversed result can be explained by the treatment chosen according to

the progress of the HCC. Low CLS patients may be in the early stage

of the HCC, patients may get more benefits from immunotherapy

because of the easier mobilization of the immune system. However,

the effect of immunotherapy may decreased in advanced HCC

patients because of the immune escape and T cell exhaustion.

Moreover, in TIDE analysis, the response of PD-1 and CTLA4 was

better in low CLS patients with HCC. Currently, some

immunotherapy trials have been performed, which have shown

similar results. One of them demonstrated that anti-CTLA-4

monoclonal antibody had promising outcomes in HCC patients

(39). Another study reported that an antibody against PD-1 was
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well tolerated and had an acceptable objective response rate (40). In

addition, the combination of an anti-CTLA-4 monoclonal antibody

(tremelimumab) and an anti-PD-L1 monoclonal antibody

(durvalumab) was found to be tolerable and enhanced the

antitumor effect (41). Overall, the immunotherapy is a potential

method for HCC patients, especially for the patients with low CLS.

We know that instability of the gene is one of the characteristic of

most carcinomas. Mutation drives the occurrence and development of

the most type of cancers (42). In our study, we revealed three genes

that had more mutations in high CLS samples. TP53, which is the one

of the most frequently mutated genes in HCC, plays a vital role in

apoptosis and cell cycle regulation (43). Studies have indicated that

TP53 mutation may cause cancer progression (44). Moreover,

patients with mutated TP53 had worse OS and relapse-free survival

times (45). CSMD1 is considered to be a tumor suppressor gene in

many types of cancer, such as breast cancer (46), colorectal cancer

(47), gastric cancer (48) and HCC (49); thus, the mutation of the

CSMD1 may cause the proliferation of the cancer. One published

article revealed that the mutation of CSMD1 may promote the

progression of esophageal cancer (50). Interestingly, one article

demonstrated that CSMD1 mutation co-occurred with TP53

mutation (51). In our research, we also detected the concurrent

mutation of TP53 and CSMD1 in high CLS samples. As a tumor

suppressor gene, RB1 is a negative regulator in the progression of the

cell cycle via the regulation of the E2F transcription factors (52, 53).

Mutation of RB1 may cause cancer genesis (54). Together, the result

was sensible that the patients with a high frequency of mutated genes

TP53, CSMD1 and RB1 may have a worse survival status.

We were aware of the study having some limitations. First, our

results were obtained based on the online databases, and clinical trials

with large samples are necessary. Second, we could not find the

immunotherapy information for HCC; instead, we verified the results

in a melanoma cohort. Thus, a novel HCC cohort is needed for the

further analyses.

In this article, we established and verified a novel prognostic CLS

model by machine learning. Meanwhile, We performed systematic

analyses, including function, mutation, immunity and clinical

application, to ensure the stability and value of the constructed

model for the purpose of utilization of our model in the clinical

assessment and treatment.
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SUPPLEMENTARY FIGURE 1

Prognostic signature based on CLS in ICGC database. A. The AUC of CLS, age,

gender and stage in ICGC database. B. The survival status and the expression of
the 13 cuproptosis-related lncRNAs of each sample ranked from high to low

CLS in ICGC database. C. Kaplan-Meier analysis of the high and low CLS patients
in ICGC database. D. The 1-, 3- and 5-year AUC of the CLS-based prognostic

signature in ICGC.

SUPPLEMENTARY FIGURE 2

The clinical application of CLS model in ICGC database. A. The estimated IC50
of 5-fluorouracil, cisplatin, gemcitabine and doxorubicin in high and low CLS

samples in ICGC. B. The IPS of each patients with high or low CLS in ICGC. C.
TIDE analysis of the PD1 and CTLA4 response in patients with high and low CLS

in ICGC. D. The proportion of the TIDE response in high and low CLS patients in

ICGC. E. The AUC analysis of the CLS and biomarkers in ICGC.

SUPPLEMENTARY FIGURE 3

MoA analysis in HCC.
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