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Advanced immunophenotyping:
A powerful tool for immune
profiling, drug screening, and a
personalized treatment approach

Teresa Preglej , Marie Brinkmann, Günter Steiner,
Daniel Aletaha, Lisa Göschl*† and Michael Bonelli*†

Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna,
Vienna, Austria
Various autoimmune diseases are characterized by distinct cell subset

distributions and activation profiles of peripheral blood mononuclear cells

(PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is

easily accessible and allows for screening of multiple cell types. A detailed

understanding of the immune landscape is critical for the diagnosis of patients

with autoimmune diseases, as well as for a personalized treatment approach. In

our study, we investigate the potential of multi-parameter spectral flow

cytometry for the identification of patients suffering from autoimmune

diseases and its power as an evaluation tool for in vitro drug screening

approaches (advanced immunophenotyping). We designed a combination of

two 22-color immunophenotyping panels for profiling cell subset distribution

and cell activation. Downstream bioinformatics analyses included percentages of

individual cell populations and median fluorescent intensity of defined markers

which were then visualized as heatmaps and in dimensionality reduction

approaches. In vitro testing of epigenetic immunomodulatory drugs revealed

an altered activation status upon treatment, which supports the use of spectral

flow cytometry as a high-throughput drug screening tool. Advanced

immunophenotyping might support the exploration of novel therapeutic drugs

and contribute to future personalized treatment approaches in autoimmune

diseases and beyond.

KEYWORDS

immunophenotyping, drug screening, PBMC (peripheral blood mononucleated cells),
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1 Introduction

Autoimmunity is defined by an imbalance of activating and

inhibitory cascades of the immune system resulting in loss of self-

tolerance (1). So far, the diagnosis of autoimmune diseases relies on

the presence of certain autoantibodies, such as the anti-citrullinated

protein antibody (ACPA) or rheumatoid factor (RF) in rheumatoid

arthritis (RA). Although, autoantibodies are used as biomarkers

indicating accurate disease classification and treatment response (2,

3), their interpretability displays several shortcomings. Over the

past decade, markers found in serum, plasma, and whole blood have

been tested for their potential as biomarkers in autoimmunity (4–6).

Previously, cellular biomarkers from Peripheral blood mononuclear

cells (PBMCs) indicative of autoimmune disorders have moved into

the focus of science (7–15). PBMCs consist of many different cell

types with varying frequencies. They function as drivers and

regulators of physiological and pathological immune responses,

which can lead to autoimmunity and inflammation (16).

Alterations in PBMC subsets, and especially in T helper (Th) cells

are characteristic of various autoimmune disorders and contribute

to the pathogenesis, for instance of RA, multiple sclerosis (MS), or

systemic lupus erythematosus (SLE) (8, 11, 12). Several studies

demonstrated, that patients suffering from autoimmune disease

conditions exhibit elevated levels of antibody-secreting B cells and

CD4+ memory T cells, respectively, compared to healthy individuals

(17–19). Increased frequencies of distinct CD4+ T cell subsets, such

as Th1, Th17, T follicular helper cells (Tfh), regulatory T cells

(Treg), and CD4+CD25-Foxp3+ T cells, have been linked to aberrant

immune responses (7–15). Hence, certain PBMC compartments

might constitute promising cellular biomarkers for the application

as clinical parameters, as shown for CD19+ B cell numbers as an

indicator for RA relapse after B cell depletion therapy using

Rituximab (20–23). Further, the expression ratio of activation and

inhibitory surface receptors on immune cells can be used for the

identification of patients with autoimmune diseases (24). A

comprehensive understanding of the architecture and

inflammatory potential of immune cells is critical for the analysis

of autoimmune disorders (2, 3). In this regard, it is essential to

elucidate the homeostatic composition of the immune landscape,

and also the activation status. Thus, the characterization of PBMCs

that are easily accessible can serve as a tool for the diagnosis of

patients, the prediction of treatment responses, or the verification of

potential personalized treatment approaches.

Over the past decades, flow cytometry has been applied to

identify the presence and individual proportions of specific

leukocyte populations termed immunophenotyping. In a clinical

context, immunophenotyping is utilized for the identification of

autoimmune diseases, autoimmune deficiencies, and hematological

malignancies (25, 26). Therefore, flow cytometry constitutes the

most successful state-of-the-art method to detect extracellular and

intracellular proteins of interest on a single-cell level. Until recently,

the binding of fluorophore-labeled antibodies to their targets

enabled fast detection of protein levels and easy downstream

analysis of the generated data. However, conventional flow

cytometry suffers from the limited number of implemented
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detectors, resulting in a fluorescent overlap of the different

fluorescent dyes and compensation inaccuracies. Therefore, the

cap of available fluorophore combinations results in diminished

complexity of staining panels. Recent advancements constitute the

establishment of spectral flow cytometry. These novel multi-

detector approaches allow for the measurement of the entire

emission spectrum of individual fluorophores across all lasers.

The full spectrum technology produces a distinct spectral

fingerprint for every fluorophore, enabling the mathematical

separation of dyes with almost similar emission peaks (27–29),

which is inaccessible using a conventional flow cytometry approach.

An additional advantage over the conventional system constitutes

the possibility to extract the autofluorescence of cells, resulting in

increased population resolution of samples. Further, spectral flow

cytometry displays an elevated separation performance of

populations achieved by a reduction of the signal spreading error

(30, 31). Thus, the full spectrum technology allows for the

establishment of flexible and large staining panels that are capable

of expanding the application range by additional, highly

overlapping fluorophores (30, 31). Recently, the continuously

evolving field of spectral flow cytometry was able to establish a

40-color assay (32). Solely mass cytometry, a single-cell proteomics

approach using metal isotope labeled antibodies, possesses the

ability to acquire more markers in one staining panel. However,

this technique suffers from high costs and space requirements, as

well as the need for professional expertise to operate the

measurements (33). In contrast, the full spectrum technology,

using sophist icated panels composing more than 20

fluorochromes, can be established in the majority of laboratories.

In this context, spectral flow cytometry can serve as a powerful

broad screening tool, for instance assessing the entire composition

of PBMCs in a single measurement (32, 34–37). One potential

application beyond the use as a diagnostic tool might constitute

multi-parameter drug screening. So far, drug screening assays were

applied on tumor cells solely assessing the toxicity of the

compounds. However, there is a desperate urge to identify more

sophisticated approaches. Novel methodologies, either assess drug-

induced transcriptional changes or investigate alterations in cell-cell

contact by high-content microscopy (38, 39). These methods either

lack cell subset-specific information or suffer from a limited number

of measurable variables (38, 39).

The identification of new therapeutic agents for immune-

mediated diseases requires insight into their mode-of-action on

distinct immune cell compartments. Therefore, in the presented

study we introduce advanced immunophenotyping, a novel

approach linking an in vitro drug screening assay, multi-color

spectral flow cytometry, and comprehensive downstream analysis

using bioinformatics tools. The major advantage over previously

published flow cytometry studies is the combination of a detailed

identification of certain PBMC subsets and a functional

characterization of specific drug-induced alterations. We

established two 22-color staining panels to determine dynamics in

the expression of activation and inhibitory receptors among all

major PBMC populations, such as T cells, B cells, monocytes,

natural killer (NK) cells, and dendritic cells (DCs), as well as the
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respective subpopulations. Additionally, we demonstrated the

applicability of the established panels to assess changes in the

composition and activation status of distinct PBMC populations

in an in vitro drug screening assay, as well as for the identification of

patients suffering from autoimmune diseases.

In summary, we present a spectral flow cytometry-based high-

throughput approach for the detection of drug-induced effects in

PBMCs and suggest tools for downstream bioinformatics analysis.

Future studies are needed to validate the potential of this technique

to determine promising therapeutic biomarkers. In addition, we

demonstrate the capacity of immunophenotyping to serve as a

functional tool for the identification of patients suffering from

autoimmune diseases. Thus, the presented approach enables fast

and broad screening not only of patients, but also of different

immunomodulatory drugs providing comprehensive insights into

their efficacy and mode-of-action.
2 Results

2.1 Guidance for panel design strategies

Cell surface markers for the best discrimination of the

individual PBMC lineages, as well as activation and inhibitory

surface receptors covering the whole PBMC landscape, were

selected, following previously published approaches (24, 32, 34,

35, 37). Using a Cytek Aurora with a 3-laser configuration, at the

time of panel design, measurements of up to 28 fluorochromes in

one panel were possible, using commercially available antibody

reagents. Thus, two individual 22-color immunophenotyping

panels were generated: one immunophenotyping panel

encompassing the majority of PBMC populations, (PBMC panel;

Supplementary Figure 1A) and one panel for characterizing

different Th cell subsets (T cell panel; Figure 1A). 19

corresponding markers were included to assess the activation

state of the individual subtypes. Possible fluorophores were

identified based on the 3-laser configuration of the Cytek Aurora

spectral flow cytometer and considering the individual spectra of

the fluorescent dyes. Dyes possessing unique peak emissions and a

distinct spectral signature, respectively, were selected for the panels.

Subsequently, the depicted fluorophores were examined in the

“Similarity Matrix” of the SpectroFlo® software, where the

“SimilarityTM Index” reflects the uniqueness of the fluorophore

spectrum for every dye in the panel in comparison to other

fluorophores (Supplementary Figures 2A, B). The “SimilarityTM

Index” indicates possible combinations of fluorochromes used in a

panel. An index of 0 implies that the spectra are unique, whereas an

index of 1 describes identical spectral signatures (Supplementary

Figures 2A, B). In addition, the algorithm in the SpectroFlo®

software determines the “ComplexityTM Index”, a value that

summarizes all individual “SimilarityTM Indices” in the respective

panel. This implies that the more dyes bearing high similarities

indices exist in the panel, the higher the resulting “ComplexityTM

Index” is. Thus, the resulting “ComplexityTM Index” reflects a

measure of the global compatibility of the selected collection of

fluorophores. The lower the “ComplexityTM index”, the better the
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individual spectral signatures can be separated, resulting in

improved “unmixing” results, decreased spread, and optimal

resolution (Supplementary Figures 2A, B). A “ComplexityTM

Index” of 14.6 for the PBMC panel and 13.81 for the T cell panel

has been calculated (Supplementary Figures 2A, B). Of note, the

“ComplexityTM Index” just indicates the degree of the complexity to

analyze a certain panel, in this case, no specific threshold (only

reference values) exists. Key principles for panel establishment in

spectral flow cytometry are analogous to conventional flow

cytometry and have been detailed reviewed in other studies (32,

40). In brief, markers were categorized into three main groups based

on their expression level: Primary markers are highly expressed or

characteristic for main cell subsets, thus these markers are assigned

to dim fluorophores (e.g., CD45RA in PerCp). Secondary antigens

represent receptors possessing intermediate cellular densities or

depict differentiation markers for further subset discrimination and

are thus allocated to fluorophores with medium brightness (eg.

CCR4 in PerCp-eFluor®710). Tertiary markers depict proteins

expressed at low and unknown densities, respectively, or in

populations with low frequencies. Hence, these antigens are

assigned to very bright fluorophores (eg. CD25 in APC)

(Figure 1A). Next, the expression and co-expression of the

individual antigens in the different leukocyte populations were

assessed. A theoretical panel quality control was performed using

the antibody panel grid that shows possible areas of spillover/spread

between the different markers (Figure 1A and Supplementary

Figure 1A). In general, the spread is dependent on the expression

level of the respective marker on a specific cell type. Antigen

assignment was conducted to avoid highly expressed markers

being placed in adjacent cells in the same row and/or column as

co-expressed markers with low cellular density. Considering the

placement of markers within the grid minimizes “unmixing”

inaccuracies. Following these guidelines, we were able to

successfully design two 22 multi-color spectral flow cytometry

panels offering a maximal resolution of all antigens with

minimal spread.
2.2 Stepwise instruction for successful
panel verification

Following the thoughtful design of the panels for the

immunophenotyping, their performance regarding antibody

sensitivity, antigen separation, and “unmixing” accuracy were

evaluated and optimized. First, all antibody reagents were

carefully titrated in 2-fold serial dilutions, in line with the

manufacturer’s recommendations (for details we refer to the

Methods section). Optimal antibody concentrations were

determined by a combination of visual assessment of the

concatenated files of the distinct dilutions and calculation of the

stain index, respectively (Figure 1B). Antibody dilutions displaying

high separation between the positive and the negative populations,

as well as adequate values for the stain index were selected

(Figure 1B). Next, similar to compensation in conventional flow

cytometry, reference controls for qualitative “unmixing” were

evaluated applying a combination of single stained compensation
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FIGURE 1

Schematic illustration of the workflow for panel design and verification. (A) Theoretical panel design of the T cell immunophenotyping panel.
Readout of the Cytek Full Spectrum Viewer (Cytek Biosciences) displaying the spectral signatures of the 22 fluorophores in the 3L configuration of
the Cytek Aurora (left). Optical layout of the used markers and fluorophores showing the approximate peak emission wavelengths (nm) (right).
(B) Overview of the verification strategy for the T cell immunophenotyping panel. Representative example of the antibody titration depicting CD28
conjugated to BV650. Left: Pseudo-color plot of the concatenated files of the 1:2 serial dilutions of CD28. On the x-axis, the respective
concentration is shown as µl/test. The red box indicates the final titration result. Right top: The Stain Index (SI) is calculated as the difference
between the median fluorescence intensity (MFI) of the positive and negative populations, divided by two times the robust standard deviation (rSD)
of the negative population. MFI and rSD were extracted from FlowJo in.csv file format. Right bottom: Diagram depicting the calculated SI of CD28-
BV650 over 1:2 serial dilution steps. The x-axis displays the respective concentration as µl/test. The red circle indicates the final titration result.
(C) Dot plots showing an exemplary illustration of “unmixing” accuracy of CXCR5-BV750 and CCR6-BV711 utilizing single stained compensation
beads compared to single stained whole PBMCs. (D) NxN plots depicting the quality control of “unmixing” accuracy in the multi-color stained
sample, gated on lymphocytes. CCR7-BV421 is shown as a representative example of correct “unmixing”. In every NxN plot, CCR7 is represented on
the y-axis and all other fluorophores of the panel on the x-axis. (E) Staining resolution of the single stained (SS) tube compared to the fully stained/
multi-color (MC) tube on the example of CXCR5-BV750. (F) Loss of staining resolution resulted in fine-tuning of the staining protocol, such as
separate staining steps and changes in the antibody concentrations. (G) Immunophenotyping results were manually gated and compared to
published studies to evaluate the quality of the data.
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beads and PBMCs. Frequently “unmixing” inaccuracies were

observed using bead reference controls that could be avoided

utilizing single stained cells (Figure 1C). In the experiments

executed for the presented study, cells were utilized as reference

controls for accurate “unmixing”. Due to the low autofluorescence

of the cells, the “autofluorescence tag” was not included in the

“unmixing” (Supplementary Figure 1B). In order to verify the

“unmixing” accuracy of the fully stained sample, after the

removal of doublets, dead cells, and aggregates, the cleaned data

were subjected to NxN permutations (Figure 1D). By visual

screening of the NxN plots, we were able to assert correct

“unmixing” for the majority of the markers. Minor errors were

corrected directly in the SpectroFlo® software by carefully aligning

the negative and positive populations in the y-dimension. However,

the maximum correction did not exceed 1.5%. Subsequently, the

impact of “unmixing” on the resolution of the individual makers

was verified by comparing the fully stained sample to the single

stained tube. In case the fully stained tube (MC) displayed
Frontiers in Immunology 05
diminished separation of the positive and negative populations

compared to the single stained tube (SS), the concentration of the

respective antibody was adjusted or the staining protocol was

modified (Figures 1E, F). For example, the resolution of CXCR5

was elevated by the addition of this antibody in a separate staining

step of the protocol (Figures 1E, F). After fine-tuning of the staining

protocol, generated data were analyzed and evaluated by comparing

the obtained results to published studies (Figure 1G). In summary,

following the described protocol steps for panel design and

verification, allows the user to obtain high quality and

reproducible flow cytometry data.
2.3 Strategies for gating and presentation
of PBMC populations and frequencies

In order to identify the main populations within PBMCs,

manual gating was performed (see Tables 1, 2 for detailed
TABLE 1 Descriptive summary of PBMC panel.

Marker Fluorophore Alternative name Purpose

CD126 BV421 IL-6R1 Activation marker involved in stimulation of B and T cells, expressed on plasma cells, activated B
cells, T cells, monocytes

HLA-
DR

eFlour450 Activation marker expressed on B cells, T cells, APCs; marker for monocyte and DC lineage

IgD BV480 B cell differentiation

Live/
Dead

L/D Aqua

CD16 BV570 Monocyte and NK cell differentiation

IgG BV605 B cell differentiation

CD4 cFluorV610 CD4 T cell lineage

CD56 BV650 Neural cell adhesion molecule
(NCAM)

Pan NK cells

CD95 BV711 Fas Activation marker; involved in apoptosis, expressed on T cells, B cells, monocytes

CD11b BV750 Integrin alpha M DC phenotyping

CD279 BV785 Programmed cell death protein
1 (PD-1)

Inhibitory receptor expressed on activated T cells, B cells and myeloid cells

CD11c BB515 Integrin alpha X DC lineage marker

CD69 FITC Early activation marker expressed on leukocytes

CD27 PE T and B cell differentiation, expressed on T cells, B cells, NK cells

CD70 PE-Dazzle594 CD27 ligand Activation marker expressed on T cells, B cells, NK cells, pDCs

CD14 PerCp-Cy5.5 Monocyte differentiation

CD3 PE-Cy7 Pan T cells

CD25 APC IL-2R a chain Treg marker; activation marker expressed on T cells, B cells, monocytes/macrophages

CD169 Alexa Flour647 Siglec-1 DCs, macrophages, involved in cell interaction

CD86 BD Horizon APC-
R700

Activation marker on B cells, T cells, monocytes/macrophages, DCs; co-stimulation of T cell
activation

CD19 APC-Cy7 B cell lineage

CD38 APC-Fire810 Cyclic ADP ribose hydrolase Monocyte, DC, T cells, B cells and NK cell activation/differentiation
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information regarding the used markers). Following the exclusion

of debris, doublets, and dead cells utilizing the scatter profiles and

viability dye, respectively, CD3 and CD19 were used to

discriminate T cells and B cells (Figure 2A). In this context, we

could detect on average 70.6% (Interquartile range (IQR) =10.9)

of T cells and 7.5% (IQR=5.1) of B cells among viable PBMCs

(Figures 2A, C). Within the B cell compartment, subsets were

further distinguished by CD27 and IgD expression. The majority

of B cells, on average 59.4% (IQR=6.6), were classified as naïve B

cells (IgD+ CD27-), followed by unswitched memory (UM) B cells

(mean: 14.6%, IQR=3.4, IgD+ CD27+), switched memory (SwMe)

B cells (mean: 18.5%, IQR=5.6, IgD- CD27+) and double-negative

(DN) B cells (mean: 7.5%, IQR=1.0, IgD- CD27-) (Figures 2A, C).

The IgD- B cell population contains the plasmablasts and plasma

cells (PB/PC), respectively, which are characterized as CD38+

CD27+ and constitute on average 4.1% (IQR=5.8) of IgD- B cells

(Figure 2A). NK cells were identified within the CD3- CD19-

HLA-DR- gate and we observed on average 7.1% (IQR=6.9) of NK

cells among viable PBMCs (Figures 2A, C). They can be further

divided into early and mature NK cells based on the expression of

CD56 and CD16 (Figure 2A). Monocytes were gated within the

CD3- CD19- HLA-DR+ compartment, and constituted on average
Frontiers in Immunology 06
4.1% (IQR=2.3) among viable PBMCs (Figures 2A, C). They

could be classified into classical (mean: 43.5%, IQR=11.2,

CD14+ CD16-), intermediate (mean: 5.4%, IQR=4.1, CD14+

CD16+), and non-classical (mean: 2.1%, IQR=1.0, CD14-

CD16+) monocytes (Figure 2A). DCs were identified within the

CD3- CD19- HLA-DR+ CD14- CD16- population, and we

detected on average 2.1% (IQR=0.6) of DCs among viable

PBMCs (Figures 2A, C). DCs can be further separated into

plasmacytoid DCs (pDCs) (mean: 28.6%, IQR=13.7, CD11blow

CD11clow) and myeloid DC (mDCs) (mean: 45.3%, IQR=8.2,

CD11b+ CD11chigh) (Figure 2A). Furthermore, Uniform

Manifold Approximation and Projection (UMAP) was

performed to arrange phenotypically similar events into distinct

clusters for presenting similarities and differences inside each

population and for interior comparison of the different

populations (Figure 2B). This dimensionality reduction analysis

using the lineage discrimination parameters in the PBMC

population highlighted the distinct separation of the individual

subsets when manually gated clusters were projected on the

UMAP (Figure 2B). The results of these projections emphasize

not only the power of visualization approaches but also highlight

the quality of our panel design and manual gating approaches.
TABLE 2 Descriptive summary of T cell panel.

Marker Fluorophore Alternative name Purpose

CD197 BV421 CCR7 T cell differentiation

CD45RO Pacific Blue T cell differentiation, activated and memory T cell marker

TCRgd BD Horizon 480 Pan gd T cell

Live/Dead L/D Aqua

CD8a BV570 CD8 T cell lineage

CD134 BV605 OX40 Activation marker expressed on T cell subsets

CD28 BV650 T cell co-stimulation molecule

CCR6 BV711 Th17 lineage marker

CXCR5 BV750 Tfh lineage marker

CD279 BV785 Programmed cell death protein 1 (PD-1) T cell inhibitory receptor

CD69 FITC Early activation marker

CD152 PE Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) T cell inhibitory receptor

CXCR3 PE-Dazzle594 Th1 lineage marker

CD45RA PerCP T cell differentiation, marker for naïve and effector T cells

CD71 PerCP-Cy5.5 Transferrin receptor; marker for proliferating cells

CCR4 PerCP-eFlour710 Th2 lineage marker

CD4 PE-Cy7 CD4 lineage marker

CD25 APC IL-2R a chain Treg marker; activation marker

CD278 Alexa Fluor 647 Inducible T-cell COStimulator (ICOS) Activation marker, co-stimulation of T cell proliferation

CD127 BD Horizon APC-R700 IL-7Ra T cell differentiation

CD3 APC-Cy7 Pan T cells

CD38 APC-Fire810 Cyclic ADP ribose hydrolase Activation marker
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FIGURE 2

Gating strategy and presentation of PBMC and T cell subsets (A, D) Manual gating approaches of the major (A) PBMC subsets and (D) T cell subsets,
respectively, following 24 hours of in vitro cultivation. Red arrows depict the relationships across plots. Numbers indicate the percentages of cells in
the quadrants or gates. Individual parent gates are referred to on top of the plots when necessary. One representative donor is shown. (B, E, G)
High-dimensional data analysis using Uniform Manifold Approximation and Projection (UMAP) trained on (B) whole PBMCs, (E) CD3+ T cells, and
(G) CD4+ T cells, respectively, of concatenated donors depicting the accurate separation of the manually gated subsets following 24 hours in vitro
cultivation. UMAPs were generated in FlowJo. (C, F, H) Bar charts illustrating the percentages of indicated subsets within (C) viable PBMCs (left),
CD19+ B cells (right), (F) CD3+ T cells (top), CD4+ and CD8+ T cells (bottom), as well as (H) CD4+ T cells of 6 donors following 24 hours in vitro
cultivation. Each symbol indicates 1 independent biological sample. Horizontal bars indicate the mean, error bars show the standard deviation.
(A–H) Data are representative (A, D) or show a summary (B, C, E–H) of at least 6 independent experiments. DC, dendritic cells; pDC, plasmacytoid
DC; mDC, myeloid DC; NK cells, natural killer; Bc, B cells; N, naïve; UM, sunswitched memory; SwMe, witched memory; DN, double-negative; DP,
double-positive; PB/PC, plasmablasts/plasma cells; Mo, monocytes; int, intermediate; non-c, non-classical; Tc, T cells; TN, naïve T cells; TCM,
central memory T cells; TEMRA, terminally differentiated effector T cells; TEM, effector memory T cells; Th, T helper cells; Treg, regulatory T cells;
Tfh, T follicular helper cells; Tph, T peripheral helper cells.
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Due to the complexity of the T cell compartment, a separate

staining panel and gating strategy was established. After the

exclusion of debris, doublets, and dead cells, T cells were

classified into TCRgd and CD3+ (TCRab) cells (Figure 2D). The

CD3+ population was then further divided into CD4+ and CD8+ T

cells, as well as double-negative and double-positive (DP) T cells

(Figure 2D). In summary, we detected on average 54.5% (IQR=12.7)

of CD4+ T cells, 32.6% (IQR=5.1) of CD8+ T cells, 5.1% (IQR=1.8)

of DN T cells, 1.3% (IQR=0.4) of DP T cells, and 3.2% (IQR=3.2) of

TCRgd T cells (Figures 2D, F). CD45RA and CCR7 within the CD4+

and CD8+ T cell gates allow for the separation of cells into the

different effector/memory states (Figure 2D). Thus the following

populations were identified within CD4+ T cells: naïve (TN) (mean:

49.1%, IQR=20.3, CCR7+ CD45RA+), central memory (TCM)

(mean: 24.4%, IQR=10.7, CCR7+ CD45RA-), effector memory

(TEM) (mean: 19.3%, IQR=16.9, CCR7- CD45RA-) and

terminally differentiated effector (TEMRA) (mean: 7.2%, IQR=5.8,

CCR7- CD45RA+) CD4+ T cells; as well as within the CD8+ T cells:

naïve (TN) (mean: 46.5%, IQR=24.3, CCR7+ CD45RA+), central

memory (TCM) (mean: 16.7%, IQR=7.6, CCR7+ CD45RA-),

effector memory (TEM) (mean: 20.7%, IQR=13.9, CCR7-

CD45RA-) and terminally differentiated effector (TEMRA) (mean:

16.2%, IQR=10.9, CCR7- CD45RA+) CD8+ T cells (Figures 2D, F).

However, the individual donors showed a higher degree of

biological variance in the T cell effector states. In addition,

dimensionality reduction was trained on CD3+ T cells, and

applying the manually gated populations on the generated UMAP

resulted in distinct clusters of the T cell subsets described above

(Figure 2E). Further, within the CD3+ CD4+ population, the

different Th cell subsets were classified as follows: Th1 (mean:

32.9%, IQR=13.1, CCR4- CXCR3+), Th2 (mean: 2.0%, IQR=1.2,

CCR4+ CXCR3-), Th17 (mean: 7.0%, IQR=1.2, CCR4- CXCR3-

CXCR5- CCR6+), regulatory T cells (Treg) (mean: 7.0%, IQR=1.2,

CD127low CD25+), T follicular helper (Tfh) (mean: 10.1%, IQR=6.6,

CD45RA- CXCR5+) and T peripheral helper (Tph) (mean: 3.4%,

IQR=1.4, CXCR5- PD-1high) cells (Figures 2D, H). Again high-

dimensionality data analysis of CD3+ CD4+ PBMCs generated a

UMAP depicting accurately the manually gated CD4+ effector/

memory states (Supplementary Figure 4A) and the individual Th

cell subsets (Figure 2G) except for Tph cells that are scattered within

the Th2, Th1 and Treg clusters. The described gating hierarchy is

following published reports (24, 32, 34, 35, 37), and demonstrates a

state-of-the-art strategy for the identification of the major

PBMC subsets.
2.4 Multi-color flow cytometry allows to
detect stable PBMC subset distribution
upon Phytohaemagglutinin
(PHA) stimulation

Thawed PBMCs from 6 HCs were cultured in the presence/

absence of PHA for 24 hours and subsequently subjected to

immunophenotyping (Supplementary Figure 3A). After the

exclusion of debris, doublets, and apoptotic cells by using viability

dye staining, all main PBMC subsets, in detail B cells, T cells,
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monocytes, (DCs), and NK cells were detectable. The frequencies

within the PBMC subtypes between the subjects differed slightly due

to biological variance (Supplementary Figure 3B). Activation by

PHA did not induce significant changes in the cell composition of

the PBMC compartments within the individual donors, indicating

that PHA is not inducing apoptosis of a specific cell subset

(Supplementary Figure 3B, top). Similar tendencies were observed

within the B cell compartment, displaying unaltered proportions of

DN, switched memory, unswitched memory, and naïve B cells

between non-activated and activated states (Supplementary

Figure 3B, bottom). Investigating the effector states among T

cells, we observed unaltered frequencies of CD4+ and CD8+ naïve

and effector (central memory, terminally differentiated effector,

effector memory) T cells upon PHA stimulation (Supplementary

Figure 3C). Remarkably, the individual donors showed variability in

the individual ratios of naïve to effector T cells (Supplementary

Figure 3C). Th cell subsets were defined by the expression of surface

markers, as described in Figure 2D. Overall, the detected

percentages are comparable to the existing literature (24),

showing a high abundance of Th1 cells and lower frequencies of

Th2 and Tph cells. Upon activation with PHA, only slight

differences in the percentages of Th subsets among CD4+ T cells

were assessed.

All in all, by utilizing these immunophenotyping panels we

could demonstrate that PHA did not alter the distribution of the

individual subsets nor induced subtype-specific apoptosis.
2.5 Activating and inhibitory receptors are
differentially expressed in individual PBMC
compartments and are modulated by
PHA stimulation

Heatmaps are a valid tool to globally visualize alterations in the

activation marker landscape of immune cells. Thus, we calculated

heatmaps using the median fluorescent intensity (MFI) of all

included surface markers for the respective subsets. First, we

observed a subset-specific distribution of activating and inhibitory

receptor expression. CD27 is highly expressed in SwMe and UM B

cells (Figure 2A). Accordingly, B cells display the highest baseline

levels compared to other subsets (Supplementary Figure 3D). The

ligand of CD27, CD70, is most abundant in pDCs (Supplementary

Figure 3D). In line with the literature, CD27 and CD70 were not

detected in monocytes (Supplementary Figure 3D). In general,

monocytes show elevated expression of several markers, including

CD169, CD69, PD-1, CD126, CD95, and CD86 in the non-

stimulated condition, that were further induced by PHA

activation (Supplementary Figures 3D, F, G). Furthermore,

monocytes upregulated CD38, HLA-DR, and CD25. Overall, we

detected a strong induction of CD69 among all PBMC subsets upon

stimulation with PHA reflecting a global activation (Supplementary

Figures 3D, F). In contrast, CD27 and CD70 are down-regulated in

B cells and NK cells upon PHA treatment.

Within the T cell compartment, naïve CD4+ and CD8+ T cells

exhibit the highest abundance. Accordingly, high levels of CD45RA

and low expression of CD45RO were illustrated in the heatmap
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(Supplementary Figure 3E). Furthermore, we detected the highest

levels of Inducible T-cell costimulatory (ICOS) in Th2 cells in

response to PHA (Supplementary Figures 3E, I). As Tph cells are

defined by high Programmed cell death protein 1 (PD-1)

expression, elevated expression of this molecule compared to

other subsets was observed that was also induced upon activation

(Supplementary Figures 3E, I). Interestingly, Tph cells display an

elevated activation phenotype, characterized by strong upregulation

of CD134 (OX-40) and CD25 in the stimulated condition. In

addition, CD25 is an indispensable molecule for the

characterization and function of Tregs, accordingly high levels

were identified in this subset in the non-stimulated condition, as

well as upon PHA treatment (Supplementary Figure 3E). Overall,

CD69 and CD38 were strongly enhanced in all T cell subsets in the

activated state compared to the baseline (Supplementary Figure 3E).

CCR7, being responsible for the afferent trafficking of

leukocytes to lymph nodes, was upregulated in response to

PHA. Interestingly, the inhibitory receptor CTLA-4 was solely

weakly expressed in Tregs, when compared to Th1 cells and total

CD4+ T cells (Supplementary Figure 4B). CTLA-4 was up-regulated

in the majority of T cell compartments upon stimulation

(Supplementary Figure 3E).

In summary, we demonstrate that PHA constitutes an adequate

method for the stimulation of PBMCs. Furthermore, the established

panels allow to detect an overview of the activation status of

different leukocyte subtypes induced by PHA.
2.6 Advanced immunophenotyping of
PBMCs allows to detect drug-induced
effects on cell activation

To demonstrate the power of our approach for drug screening, we

activated PBMCs in the presence of different immunomodulating

compounds for 24 hours (Figure 3A). Following immunophenotyping,

changes in the median fluorescent intensity (MFI) compared to DMSO

for the individual markers of every subset were extracted. To interrogate

and visualize specific activating/inhibitory signatures of the compounds

and the corresponding relation to the individual subsets, we generated a

heatmap plot. Hierarchical clustering revealed 2 groups possessing

similar activation signatures: cluster 1 (drugs 3 and 5) demonstrated a

rather mixed or even activation-promoting phenotype, while the second

cluster (drugs 1, 2 and 4) displayed a tendency for an inhibitory mode-

of-action (Figure 3B). Of note, we observed a strong induction of CD169

in DCs upon treatment when compared to DMSO. Interestingly, in B

cells upregulation of CD169 was observed in response to drugs 2, 3, and

5 (Figure 3B). Of note, the modulation of CD25, PD-1, and CD126

appeared to be more inconsistent when comparing the different

conditions. In general, CD69 was upregulated in the majority of

PBMC compartments after culturing in the presence of different

drugs. Contrary, CD38 displayed reduced expression levels in response

to the various tested compounds. To highlight the different potential of

individual drugs on these markers, we selected one compound per the

above-mentioned clusters and generated dimensionality reduction

approaches using tSNE, comparative histograms, and statistical

analysis (Figures 3C–E). First, we performed dimensionality reduction
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of the dataset using tSNE, and then explored the generated plot by 3rd

parameter color mapping (Figure 3C). This t-SNE map allowed us to

illustrate the different PBMC compartments, as well as the drug-induced

modulation of the expression of two selected receptors, namely CD69

and CD38. Although the tSNE plots show a global picture of the marker

expression (Figure 3C), a comprehensive analysis of individual

alterations in the activation marker profile is difficult to extract. In

order to enable a quantitative assessment, manual validation utilizing

approved flow cytometry analysis tools and statistical validation were

performed. In the corresponding histograms, the downregulation of

CD38 in monocytes when treated with drugs 4 and 5 could be

demonstrated (Figure 3D). In response to drug 4, CD69 tended to be

downregulated in monocytes but was induced in B cells (Figure 3D).

Statistical analysis showed significant down-modulation of CD38 in

response to drug 4 and drug 5 in the majority of analyzed PBMC

compartments when compared to the DMSO-treated control. Of note,

the overall distribution of the individual cell subsets was not significantly

impaired (Supplementary Figure 4C).

In summary, we detected individual signatures, highlighting the

usability of the presented method to assess compound-induced

effects. Furthermore, we show state-of-the-art techniques to enable

fast and clear visual and statistical validation of the observed

modes-of-action.
2.7 Alterations in expression profiles define
drug-induced effects in Th-cell subsets

To compare differential marker expression across all subsets, the

MFIs of the respective T cell populations were extracted and visualized

in a heatmap (Figure 4A). Hierarchical clustering uncovered 2 distinct

clusters, group 1 contained drugs 1, 2, and 4, whereas group 2 included

drugs 3 and 5. However, complementary to the previous heatmap, no

obvious activation pattern distinguished the groups. The strongest

induction was observed for CD69 expression among all T cell subsets in

both clusters. Admittedly, the extreme effects on CD69 and the

resulting visual scaling of the heatmap might mask the modulation

of other markers (Figure 4A). A strategy to avoid these scaling effects

would include the individual visualization and scaling of subgroups

dependent on the requirements of the analysis. Interestingly, treatment

with drug 3 induced decreased expression of CD71 compared to

DMSO, showing the most substantial effect on CD8+ T cells. In

contrast, treatment with drugs 1, 2, and 4 resulted in a strong

upregulation of CD71 in CD8+ T cells, and also, to a slighter degree,

in the CD4+ T cell subsets. This highlights the potential of the

presented method to detect selective drug-specific effects (Figure 4A).

High-dimensional analysis using t-SNE generated a global landscape of

the expression patterns of CD69 and CD25 (Figure 4B). As an additive

analysis tool, drugs from the 2 different clusters were selected for

visualization in the 3rd parameter color-mapped plots. Although the

plots highlighted drug-induced differences in the marker expression

profile in the peripheral CD4+ and CD8+ T cells, further investigation

of specific subsets remained elusive (Figure 4B). To fill this gap,

comparative histograms allowed detailed analysis of distinct

expression signatures, and box plots enable statistical analysis of the

MFIs (Figures 4C, D). In line with results extracted from the heatmap,
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drug 4 induced upregulation of CD69 and CD25, whereas drug 5

showed only moderate effects on CD69 expression and downregulated

CD25 in CD4+ and CD8+ T cells (Figures 4C, D). Similarly, drug 4 and

drug 5 caused differential regulation of CD25 in the different Th cell

subsets (Figures 4A, C, D). Of note, the global distribution of the

particular T cell subsets was not altered by drug treatment

(Supplementary Figure 4D). Together, these data demonstrate the

power of the presented approach to elucidate drug-specific effects in

different Th cell subsets.
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2.8 Immunophenotyping exposes disease-
specific expression marker profiles in
RA patients
In order to demonstrate the applicability of the presented

immunophenotyping panels for the screening and diagnosis of

patients, we analyzed 5 naïve, untreated RA patients and 5 age-

matched and sex-matched HCs using the established spectral
B C

D E

A

FIGURE 3

Drug screening approach for whole PBMCs. (A) Schematic illustration of the workflow. PBMCs of 6 healthy controls (HCs) were PHA-stimulated and
cultured for 24 hours in the presence of 5 immunomodulatory drugs and DMSO as control, respectively. (B) Summary heatmap depicting fractional
differences (FD) of the marker expression as median fluorescent intensity (MFI) of drug-treated PBMCs compared to DMSO control in the indicated
PBMC subsets of 6 pooled HCs. Each column represents the individual drugs (drugs 1-5), and rows show the marker expression in the distinct PBMC
compartments. Heatmaps were generated in R using the “Complex Heatmap” package; data are represented as the FD in percentages of the marker
MFI of the individual compounds compared to DMSO and clustered by column. DMSO control was set to 0. Outliers (x<-150%, x>150%) were
removed from the matrix. The color code depicts activation (green), inhibitory (purple), and lineage-specific (black) markers. (C) High-dimensional
data analysis on viable PBMCs from concatenated HCs using the t-Stochastic Neighbor Embedding plot (tSNE) plugin in FlowJo displaying manually
gated clusters of the respective PBMC subsets (first row) and density plots illustrating the global marker expression of CD69 and CD38, respectively,
in the DMSO condition and in response to treatment with drug 4 and drug 5 (second and third row). Yellow-orange colors depict areas of high
marker expression, whereas dark green-blue areas indicate areas of lower marker expression. (D) Histograms showing CD69 and CD38 expression,
respectively, in the indicated PBMC subsets. Colors illustrate the treatment condition, as DMSO is green, drug 4 treatment is blue and drug 5
treatment is red. (E) Summary box plots showing the FD of the marker MFI of drug 1-5 compared to DSMO in the indicated PBMC subsets. The
intercept line equates to DMSO control. (*P < 0.05, **P < 0.01, and ***P < 0.001). (A–E) The DC subset encompasses pDCs and mDCs. Data are
representative (D) or show a summary (B, C, E) of at least 6 independent experiments. DC, dendritic cells; pDC, plasmacytoid DC; mDC, myeloid
DC; Mo, monocytes; NKs, natural killer cells; Bc, B cells.
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flow cytometry approach (Figure 5A). First, alterations in the

PBMC subset composition between RA patients and HCs were

assessed. RA patients displayed no significant changes in the

major PBMC subtypes, such as T cells, B cells, monocytes, DCs,

and NK cells, but showed elevated levels of plasmablasts and

TCRgd T cells compared to HCs (Figure 5B). Within the Th cell

compartment, RA patients displayed decreased percentages of
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Th2 cells, while levels of Tfh, Tph, and Treg cells were enhanced

compared to HCs (Figure 5B). Furthermore, naïve and TEMRA

CD4+ and CD8+ T cells were reduced in RA patients (Figure 5B).

3-dimensional Principal Component Analysis (PCA) of the

combined datasets of activation and inhibitory marker

expression displayed a clear separation of the RA cohort from

the HC, suggesting a different immunological activation profile
B

C
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FIGURE 4

Drug screening approach for T cell subsets. (A) Summary heatmap depicting fractional differences (FD) of the marker expression as median
fluorescent intensity (MFI) of drug-treated PBMCs compared to DMSO control in the indicated T cell/Th cell subsets of 6 pooled HCs. Each column
represents the individual drugs (drugs 1-5), and rows show the marker expression in the distinct PBMC compartments. Heatmaps were generated in
R using the “Complex Heatmap” package; data are represented as the FD in percentages of the marker MFI of the individual compounds compared
to DMSO and clustered by column. DMSO control was set to 0. Outliers (x<-150%, x>150%) were removed from the matrix. The color code depicts
activation (green), inhibitory (purple), and maturation (turquoise) markers. (B) High-dimensional data analysis on CD3+ T cells of PBMCs from
concatenated HCs using the t-Stochastic Neighbor Embedding plot (tSNE) plugin in FlowJo displaying manually gated clusters of the respective T
cell subsets (first row) and density plots illustrating the global marker expression of CD69 and CD25, respectively, in the DMSO condition and in
response to treatment with drug 4 and drug 5 (second and third row). Yellow-orange colors depict areas of high marker expression, whereas dark
green-blue areas indicate areas of lower marker expression. (C) Histograms showing CD69 and CD25 expression, respectively, in the indicated T
cell/Th cell subsets. Colors illustrate the treatment condition, as DMSO is green, drug 4 treatment is blue and drug 5 treatment is red. (D) Summary
box plots showing the FD of the marker MFI of drugs 1-5 compared to DSMO in the indicated T cell/Th cell subsets. The intercept line equates to
DMSO control. (*P < 0.05, **P < 0.01, and ***P < 0.001) (A–D) Data are representative (C) or show a summary (A, B, D) of at least 6 independent
experiments. Th, T helper; Treg, regulatory T cells; Tfh, T follicular helper and Tph, T peripheral helper.
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in patients suffering from autoimmune diseases (Figure 5C and

Supplementary Figure 5C). Overall, RA patients displayed an

elevated expression of several activation markers compared to

HCs (Supplementary Figures 5A, B), corresponding to the

inflammatory immune status in individuals suffering from

autoimmune diseases. For instance, increased percentages of

CD69 were detected in B cells, monocytes, NK cells, DCs, as

well as CD4+ and CD8+ T cells in the RA cohort (Figures 5D, F;
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Supplementary Figures 5A, B). Further, CD95 expression was

enhanced in B cells, monocytes, NK cells and DCs of RA patients

(Figure 5E). CD4+ and CD8+ T cells expressed higher

percentages of ICOS in the RA cohort, while the naïve marker

molecule CD45RA was decreased compared to HCs (Figure 5G;

Supplementary Figure 5B).

In summary, the presented immunophenotyping approach

allows to characterize and identify individuals suffering from
B
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FIGURE 5

Immunophenotyping of patients suffering from autoimmune diseases. (A) Schematic illustration of the workflow. Frozen PBMCs of 5 naïve,
untreated, female RA patients and 5 sex-matched and age-matched HCs were thawed and directly subjected to immunophenotyping using the
established PBMC and T cell panel. (B) Bar charts depicting the percentages of the indicated subsets within viable PBMCs (left, top), CD19+ B cells
(middle, top), CD3+ T cells (right, top), CD4+ T cells (left, bottom), CD4+ T cells (middle, bottom), and CD8+ T cells (right, bottom). Each symbol
indicates 1 independent biological sample. Statistical comparisons were done by Student’s t-test, comparing the 5 individual replicates of RA patients
to HC. Significance was defined as p-value (*P < 0.05 and ***P < 0.001). (C) 3-dimensional PCA depicting the combined activation marker
expression levels resulting from the immunophenotyping using the PBMC and T cell panel. Each symbol indicates 1 independent biological sample.
Blue dots show HCs and red dots illustrate RA patients. (D, F) Spectral flow cytometry analysis showing CD69 expression in the indicated (D) PBMC
and (F) T cell subsets of 1 representative HC and RA patient, respectively. Numbers indicate the percentage of cells in the quadrants or gates.
(E, G) Histograms showing (E) CD95 expression or (G) ICOS expression in the indicated (E) PBMC and (G) T cell subsets of 1 representative HC and
RA patient, respectively. (B–E) The DC subset encompasses pDCs and mDCs. Data are representative (D–G) or show a summary (B, C) of at least 3
independent experiments. DC, dendritic cells; Mos, monocytes; NKs, natural killer cells; Bc, B cells; Tc, T cells; N, naïve; UnMe, unswitched memory;
SwMe, switched memory; DN, double-negative; DP, double-positive; TN, naïve T cells; TCM, central memory T cells; TEMRA, terminally differentiated
effector T cells; TEM, effector memory T cells; Th, T helper cells; Treg, regulatory T cells; Tfh, T follicular helper cells; Tph, T peripheral helper cells;
RA, Rheumatoid arthritis; HC, healthy control; PCA, Principal Component Analysis.
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autoimmune diseases, such as RA, and can thus serve as a potential

tool for the diagnosis of patients.
3 Discussion

In the presented study, we established an in vitro drug screening

assay based on readouts from spectral flow cytometry, which offers

the possibility to simultaneous measure more than 20

fluorochromes using a 3-laser configuration. Two 22-color

immunophenotyping panels thereby enabled an in-depth

characterization of B cells, monocytes, DCs, and NK cells and one

panel examined T cells, their effector/memory subsets, as well as the

different Th cell compartments. Further, 19 different activation and

inhibitory markers outlining the whole PBMC landscape were

included in the panels. The established system allowed to define

differences between HCs and RA patients, suggesting a potential use

of this assay for the identification of patients with autoimmune

diseases. In addition, the spectral flow cytometry approach was

advanced by combining immunophenotyping with an in vitro

screening assay for immunomodulatory drugs detecting

alterations in cellular compositions and activation profiles

in PBMCs.

Although whole blood might be technically easier to obtain and

constitutes a potentially useful approach to identify certain disease

entities, PBMCs possess several additional advantages and serve as a

convenient tool to assess the effects of compound treatment. For

immunophenotyping assays frozen PBMCs enable the constant

availability of sex-matched and age-matched samples, thus

reducing variability between donors and experiments. In addition,

PBMCs provide the possibility for more complex functional studies,

as they can be utilized to detect pathogenic profiles in patients with

autoimmune diseases (24), as well as to investigate drug-induced

effects by high-content microscopy (39).

To identify drug-induced changes in the expression profile of

activation and inhibitory receptors, PBMCs were in vitro

stimulated. PHA was utilized as an activation stimulant, since it

adequately stimulates different immune cells, including T cells (41–

43). In the presented study, we titrated the concentration of PHA to

exclude apoptosis and to adequately activate leukocytes. We

observed high levels of viable cells (around 80% of total PBMCs),

as well as no difference in PBMC subset distribution upon 24 hours

of PHA activation, excluding apoptosis of one specific

compartment. Furthermore, we detected stable activation in all

PBMC subsets, indicated by the upregulation of several markers in

response to PHA treatment. These results demonstrate that PHA

efficiently stimulates human leukocytes, and in particular Th cells.

Specific T cell lineages are characterized by the expression of

activation markers, as Tregs are defined by the expression of

CD25 and Tph cells can be distinguished from other subsets by

expressing high levels of PD-1 and ICOS (44). This raises concerns

in the identification of these subsets. However, we could not observe

significant alterations in the distribution of the Th cell subsets

comparing prior and post 24 hours activation with PHA. Thus, the

presented approach allows us to identify and characterize the

distinct Th cell subsets irrespective of the used PHA stimulation.
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The appropriate detection and activation of the different Th cell

lineages are pivotal for studies elucidating the effects of

immunomodulatory drugs since they are dysregulated in various

autoimmune disorders and contribute to the pathogenesis of these

diseases (8, 11, 12). In this context, particularly Th1, Th17, and Tfh

cells have been linked to the pathophysiology of autoimmune

conditions, such as RA, SLE, and MS; whereas Tregs and Th2

cells are considered to exert immune-suppressive functions (8, 11,

12, 14). In the presented study we detected decreased proportions of

Th2 and increased levels of Tfh, Tph and Tregs in RA patients

compared to HCs, corresponding to current reports (8, 13–15).

However, further insight into the activation profile of immune cells

is essential for a more detailed characterization of patients suffering

from autoimmune diseases, as well as for the screening of

immunomodulatory drugs (24).

In order to assess the activation status of the immune cell

subsets, several activation markers covering the whole range of the

immune landscape were included. CD69 and CD25 are broadly

expressed and rapidly induced following activation of leukocytes,

thus representing state-of-the-art activation markers used in

(spectral) flow cytometry (45–48). Indeed, we were able to

confirm the excellent performance of these markers in

immunophenotyping of patients, as well as in an in vitro drug

screening approach. Contrary to CD69 and CD25, which were

induced in the majority of assessed populations, other markers

exhibit more specific expression patterns in the presented study.

Elevated expression levels of HLA-DR were detected on monocytes,

as well as B cells. HLA-DR is a member of MHC class II molecules

and is known to be expressed on B cells, activated T cells, and APCs

(49–51). HLA-DR molecules are upregulated in response to

mitogenic or antigenic stimulation (52, 53). In response to PHA,

HLA-DR is strongly induced in monocytes, but not in CD56+ NK

cells. In general, HLA-DR expression on NK cells is primarily

considered a late activation marker, and so far, it is not clear

whether HLA-DR expression is linked to NK cell differentiation

or can be induced by PHA (54, 55). Similarly, CD169, also known as

Siglec-1, is solely expressed on macrophages and dendritic cells in

response to type I interferon-signaling (56, 57) and mediates cell-

cell adhesion (58). Surprisingly, in the presented study, CD169 was

expressed in monocytes in response to treatment with PHA.

Considering that PHA binds to sugars on glycosylated surface

proteins and crosslinks them, one might speculate that PHA can

bind directly to receptors of type I interferon-signaling or to certain

pattern recognition receptors (PRRs). Monocytes/macrophages and

DCs, secrete type I interferons in response to PRR-mediated

signaling (59–61). This might explain an indirect mechanism of

CD169 induction in monocytes by PHA. However, further studies

are warranted to investigate the effect of PHA on the upregulation

of CD169 in monocytes. The different T cell subsets were

characterized by stable expression of CD28, whereas particularly

strong upregulation of ICOS in Th2; CD38 in CD8+, Th1, Th2, Treg

and Tph; and CD134 (OX40) in Treg and Tph was induced by PHA

stimulation. Similar patterns were observed in PBMCs of RA

patients, as ICOS, CD134 and CD71 were elevated in several Th

cell subsets of RA patients compared to HCs. Interestingly, at

steady-state CTLA-4 was higher expressed in Th1 and total CD4+
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1096096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Preglej et al. 10.3389/fimmu.2023.1096096
T cells compared to Tregs, which is in line with published datasets

(24). Notably, in the presented study the CTLA-4 staining was

applied solely extracellularly compared to reports describing

additional intracellular staining, which might also influence the

levels of detectable CTLA-4 (62).

To demonstrate the applicability of the presented methodology

for in vitro drug screening, we investigated the effects of 5 different

immunomodulatory compounds. In general, the results obtained by

such immunophenotyping studies constitute complex multi-

parameter datasets containing a variety of different variables and

thus require high-dimensional computational analysis. In the

presented study, we show state-of-the-art techniques to enable

fast and clear visual and statistical validation of the measured

alterations. Heatmaps have emerged as a compelling tool to

visualize global changes in the expression patterns of different

populations. Throughout our analysis, heatmaps and hierarchical

clustering provided an overview of drug-induced effects on the

distinct PBMC subsets. However, there are limitations in the

interpretation of heatmaps, since data scaling of extreme outliers

can create a visual bias, resulting in a misleading understanding of

the results. Thus, heatmaps should be complemented by

quantitative and statistical analysis (63). We confirmed the results

from the heatmap analysis by including comparative histograms of

the MFIs and statistical analysis using box plots and one-sample t-

tests. Considering the experimental setup of this study combining

flow cytometry-based drug screening and bioinformatics

downstream analysis, effortless upscaling to high-throughput

concepts can be achieved. Computational automation of multi-

parameter screening datasets can be performed by applying R-based

toolkits combing quality control, visualization methods, and

preliminary algorithm-based analysis (64).

In summary, we have established a robust and reproducible

state-of-the-art spectral flow cytometry approach and an in vitro

drug screening tool. Advanced immunophenotyping constitutes a

novel combination of flow cytometry-based characterization of

PBMCs, functional drug testing by detecting dynamics in the

cellular activation profile, and comprehensive computational

analysis. Further, this study provides detailed information on

spectral flow cytometry panel design, gating strategies,

percentages of individual PBMC subsets, and potential

application spectra of immunophenotyping. Based on the

possibility to detect cellular alterations in autoimmune diseases,

as well as drug-induced effects, advanced immunophenotyping

might constitute a promising strategy for personalized treatment

approaches in autoimmune diseases and beyond.
4 Methods

4.1 Human subjects and ethical aspects

Blood samples from 6 female healthy individuals were collected at

the Division of Rheumatology at the Medical University of Vienna.

Healthy donors are age-matched (35 years ± 3.1), with no drugs at the

time of collection and no laboratory detectable parameters indicating

an autoimmune disease. For immunophenotyping of patients, blood
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samples from 5 naïve, untreated, female RA patients (50 years ± 10.4)

and 5 female age-matched healthy donors were collected. Written

informed consent was obtained from all participants (age ≥18 years)

according to the Declaration of Helsinki. Ethical approval for this

study was granted by the ethics committee of the Medical University

of Vienna, Austria (2071/2020; 1073/2021; 1075/2021; 1448/2019).

All research was conducted in compliance with fundamental ethical

principles, as stated in the Charter of Fundamental Rights of the

European Union (2010/C/83/2), in agreement with Horizon 2020

Ethics guidelines.
4.2 PBMC isolation and freezing

Blood was collected into blood collection tubes containing

heparin. Mononuclear cells were isolated from whole blood

utilizing Pancoll density gradient centrifugation. Briefly, 10 mL of

whole blood were diluted at a ratio of 1:1 with PBS, carefully added

on top of 15 ml Pancoll (PAN-Biotech) solution, and centrifuged at

530 g for 22 minutes at room temperature (RT) without break. After

centrifugation, a clearly separated white layer containing PBMCs

was carefully transferred in a new 50 mL Falcon tube, washed with

PBS, and centrifuged at 400 g for 8 min at 4°C. Cell pellets were

resuspended in 5 mL PBS. Human PBMCs were counted at a 7 – 15

µm diameter range utilizing a Z2 Coulter Particle Count and Size

Analyzer (Beckman Coulter). Following a spin (400 g, 8 min, 4°C),

PBMCs were resuspended at a concentration of 10 – 20 x 106 cells/

mL with freezing medium (RPMI-1640 supplemented with 20%

FCS (Gibco) and 15% DMSO (Sigma)) in cryovials and stored in a

CoolCell FTS30 cell freezing container for 24 hours. Afterward,

cryovials were transferred to liquid nitrogen for long-term storage.
4.3 Thawing of PBMCs

Up to 3 cryovials, containing each 5 – 10 x 106 PBMCs in

freezing medium, were incubated at 37°C for 5 minutes and after

thawing transferred to a 50 mL Falcon tube. Cell culture medium

(RPMI-1640 supplemented with 10% FCS (GIBCO), 1% Penicillin/

Streptomycin (GIBCO), and 1% GlutaMAX (GIBCO)) was added

drop-wise up to a total volume of 50 mL, with a 1 min incubation

and mixing step after each duplication of the volume. Following a

spin (400 g, 5 min, 4°C) and removal of the supernatant, cell pellets

were resuspended in 1 mL PBS and counted utilizing a Coulter

counter, as described above.
4.4 Cell culture and drug screening

In the presented study, immunomodulatory drugs, which are in

development to target epigenetic modifications, were used. After

spinning, PBMCs were adjusted to a final concentration of 2 x 106

cel ls/mL with cel l cu lture medium, with or without

supplementation of 750 ng/mL PHA-L (Roche) for cellular

activation, and 100 µl cell suspension were seeded in 96-well

plates. Compounds or DMSO were diluted in twofold of the
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desired concentrations in the cell culture medium, and 100 µl were

directly added to the cells. PBMCs were cultured at 37°C, 5% CO2,

and 95% rH for 24 hours. Then 96-well plates were placed on ice for

10 minutes and cells were directly harvested in 1.4 mL FACS tubes.

To prevent attachment of monocytes, the wells were additionally

rinsed with PBS supplemented with 10 mM EDTA (Gibco).
4.5 Titration of viability dye and
staining antibodies

To avoid antibody aggregates during measurements, antibody

vials were centrifuged at 10.000 g for 5 min at RT prior first

application. All reagents were titered using 250.000 thawed,

unactivated PBMCs of the same donor per test in a final

suspension volume of 100 µL. Prior to antibody staining, 1 µL

Human TruStain FcX™ (BioLegend) per sample was added,

carefully mixed, and cells were incubated for 10 min on ice.

All antibodies were tested in a 2-fold serial dilution ranging from

20 µL to 0.25 µL per test, according to the manufacturer’s

recommendations. For titration of the viability dye staining,

PBMCs were spiked with dead cells. Therefore, PBMCs were

heat-killed at 65°C for 10 minutes and mixed in a 1:1 ratio with

viable cells. Live Dead Aqua dye was prepared according to the

manufacturer’s recommendation, and titered in a 2-fold serial

dilution ranging from 1:500 to 1:2000. PBMCs were stained for

30 min at 4°C in the dark, washed with PBS, and subsequently

subjected to spectral flow cytometry measurements. Files were

concatenated and analyzed in FlowJo (Version 10). For

calculating the stain index/separation index (SI) (see Results

section), for every antibody dilution values for the median

fluorescence intensity of the positive and negative peak,

respectively; as well as the standard deviation of the negative

population were directly exported from FlowJo in .csv file format

and SI was calculated and visualized in Excel.
4.6 Blocking and viability staining
of PBMCs

For PBMC and T cell immunophenotyping, 300 000 PBMCs

were stained in 1.4 mL FACS tubes in a final suspension volume of

100 µL. Reagents and antibodies were titrated beforehand, and

staining protocols were optimized for ideal resolution and

separation of all markers (details provided above, in the Results

section and Tables 3, 4). First, following the harvesting step and a

spin (400 g, 5 min, 4°C), cell pellets were resuspended in 25 µL PBS.

Then 1 µL Human TruStain FcX™ (BioLegend) per sample was

added, carefully mixed, and cells were incubated for 10 min on ice.

Next, Live Dead Aqua dye was prepared according to the

manufacturer’s recommendations; diluted 1:250 in PBS, and 25

µL were added to each sample. Subsequently, samples were mixed

and incubated for 10 min on ice. Afterwards, PBMCs were stained

according to the PBMC and T cell immunophenotyping

protocols, respectively.
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4.7 Staining for PBMC immunophenotyping

Following viability staining, as described above, an antibody

cocktail was prepared for a total volume of 50 µL per sample

containing all antibodies from the panel in the evaluated final

concentrations (described in Table 3) diluted in PBS supplemented

with 2% FCS. 50 µL of the antibody cocktail were added to each

sample and incubated for 30 min at 4°C in the dark. Following

washing with 1 mL PBS and a spin (400 g, 5 min, 4°C), pellets were

resuspended in 70 µL PBS supplemented with 2% FCS and spectral

flow cytometry measurements were performed subsequently.
4.8 Staining for T cell immunophenotyping

After viability staining, as described above, 1.25 µL of the

BV750-CXCR5 antibody was added separately to each sample,

carefully mixed, and incubated for 10 min at 4°C in the dark.

Then, 1.25 µL BV785–PD1 per sample was applied, mixed, and

incubated for another 10 min at 4°C in the dark. Subsequently, an

antibody cocktail was prepared for a total volume of 47.5 µl per

sample containing the remaining antibodies from the

immunoph eno t yp i n g p an e l i n t h e e v a l u a t e d fina l

concentrations (described in Table 4) diluted in PBS

supplemented with 2% FCS. 47.5 µL of the antibody cocktail

were added to each sample and incubated for 30 min at 4°C in the

dark. Following washing with 1 mL PBS and a spin (400 g, 5 min,

4°C), pellets were resuspended in 70 µL PBS supplemented with

2% FCS and spectral flow cytometry measurements were

performed subsequently.
4.9 Spectral flow cytometer
instrument setup

Spectral flow cytometry measurements were executed utilizing

an Aurora spectral flow cytometer (Cytek), equipped with a 3-laser

configuration (405 nm, 488 nm, and 640 nm). Prior to every

measurement, calibration was performed using Cytek SpectroFlo®

QC beads (Cytek Biosciences). For spectral flow cytometry

measurements the “gain settings” from the CytekAssaySetting of

the SpectroFlo® software (Cytek Biosciences) were used as a

starting point, and the scatter profiles were optimized for PBMCs.

All fluorescence signals were on scale and all tubes were recorded

utilizing the same gain settings. The minimum forward scatter

threshold was adjusted to 50 000 units to eliminate debris from the

measurement. Events were recorded at a rate of fewer than 6 000

events per second and in total 250 000 events were acquired for

every tube. After the measurement, the experimental file was “live

unmixed” in the SpectroFlo® software. For setting up the

“unmixing” settings in the SpectroFlo® wizard, single-stained

PBMCs and single-stained UltraComp eBeads™ (Invitrogen,

Thermo Fisher) were recorded (details for “unmixing” are

provided in the Results section). Data were exported in .fcs

file format.
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4.10 Data import and clean up

Data were imported into FlowJo™ software (version 10) in. fcs

file format. First, all samples were subjected to data cleanup using

the FlowAI plugin in FlowJo. FlowAI was applied on all

uncompensated parameters and FlowAI settings were as follows:

Anomalies to exclude = Flow rate & dynamic range, Second fraction

FR = 0.100, Alpha FR = 0.0100, Maximum changepoints = 3,

Changepoint penalty = 200, Dynamic range check side = Both; in

addition outliers were directly removed by the software. Using

FlowAI, in all samples less than 5% of events were removed by the

software. “Good events” calculated by the FlowAI software were

used for further analysis.
4.11 Data analysis in FlowJo™

Following data cleanup, all samples were manually pre-gated to

remove remaining aggregates, debris, and doublets by evaluating the

scatter profiles (see Results section, Figure 2). Further manual gating

for individual PBMC subsets and T cell populations, respectively, was
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performed in accordance with the literature and is displayed in

Figure 2. Next, the proper scaling of the data were inspected in

FowJo™ to ensure the positive and negative population of every

fluorophore was stretched across the axis. In addition, dimensionality

reduction was performed using the UMAP and tSNE plugins by

FlowJo™. Before dimensionality reduction, paired samples were

concatenated including metadata. First, to visualize main

subpopulations in the samples of the PBMC immunophenotyping

(Figure 2B), UMAP analysis was trained on viable cells utilizing the

following compensated fluorescent parameters: HLA-DR, IgD, CD16,

CD56, CD11b, CD11c, CD27, CD14, CD19, and CD3; and settings:

Euclidean; Nearest Neighbors = 15; Minimum Distance = 0.5;

Number of Components = 2. In samples of the T cell

immunophenotyping, a UMAP of CD3+ cells was calculated

utilizing CD4, CD8, TCRgd, CCR7, and CD45RA; and settings as

described above (Figure 2E). The UMAP analysis of CD4+ T cells was

performed using CCR7, CCR6, CXCR5, CXCR3, CD45RA, CCR4,

CD25 and CD127 (Figure 2G). For visualizing global alterations of

the expression of activation markers by dimensionality reduction,

tSNE analysis was trained on the viable population in the samples of

the PBMC and T cell immunophenotyping, respectively. tSNE
TABLE 3 Reagents and dilutions used for the PBMC panel.

Fluorophore Marker Supplier Clone Catalogue number Con.
(µL/test)

BV421 CD126 BD Biosciences M5 564163 1,25

eFlour450 HLA-DR Thermo Fisher L243 48-9952-42 1,25

BV480 IgD Bd Bioscience IA6-2 566138 0,5

L/D Aqua Live/Dead Thermo Fisher L34957 0,1

BV570 CD16 BioLegend 3G8 302036 1,25

BV605 IgG BD Biosciences G18-145 563246 2,5

cFluorV610 CD4 Cytek SK3 R7-20073 1,25

BV650 CD56 BioLegend 5.1H11 362532 0,5

BV711 CD95 BioLegend DX2 305644 1,25

BV750 CD11b BioLegend M1/70 101267 1,25

BV785 PD-1 BioLegend EH12.2H7 329930 1,25

BB515 CD11c BD Biosciences B-ly6 564490 1,25

FITC CD69 BioLegend FN50 310904 1,25

PE CD27 BioLegend O323 302808 1,25

PE-Dazzle594 CD70 BioLegend 113-16 355124 5

PerCp-Cy5.5 CD14 Thermo Fisher 61D3 45-0149-42 2,5

PE-Cy7 CD3 BioLegend SK7 344816 0,5

APC CD25 Thermo Fisher BC96 17-0259-42 2,5

Alexa Flour647 CD169 BioLegend 7-239 346006 2,5

BD Horizon APC-R700 CD86 BD Bioscience 2331 565149 1,25

APC-Cy7 CD19 BioLegend SJ25C1 363010 0,5

APC-Fire810 CD38 BioLegend HIT2 303550 2,5
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1096096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Preglej et al. 10.3389/fimmu.2023.1096096
settings were as follows: all fluorescent parameters used besides Live/

Dead, iterations = 1000, perplexity = 30, learning rate = 50400, KNN

algorithm = Exact (vantage point tree), gradient algorithm = Barnes-

Hut (Figures 3C, 4B). From each specified subset, the percentages of

the respective population and the median fluorescence intensity

(MFI) of the individual activation marker expression in the

depicted subsets were extracted and exported in .csv file format.
4.12 Data analysis and statistics in R

All subsequent analysis was performed in RStudio (R

Development Core Team). Data from. csv files were imported

into the R environment utilizing standard import functions.

Heatmaps were created using the “Complex heatmap” R package,

facet boxplots were generated utilizing the R package “ggplot”; for

the 3-dimensional Principal Component Analysis (PCA) and the

corresponding Loadings Plot the “plotly” R package was used (lower

10% of variables were removed based on variance); and for the bar
Frontiers in Immunology 17
charts “ggplot2” and “plotly” R packages were used. Statistical

significance was calculated in RStudio using the “rstatix” R

package. The fractional difference (FD) of every marker was

calculated by dividing the marker median fluorescence intensity

(MFI) of the compound by the respective marker MFI of the DMSO

control and subtracting 1 (FD = MFIcompound/MFIDMSO) – 1). The

activation profile expression matrix for the 3-dimensional PCA was

generated by integrating the min-max normalized values of every

marker-cell type combination of the PBMC and T cell panel in one

dataset. Except where otherwise indicated, statistical comparisons

were done by one-sample t-test, comparing the 6 individual

replicates of every condition to 0 (DMSO). Significance was

defined as p-value (*P < 0.05, **P < 0.01, and ***P < 0.001).
Data availability statement
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TABLE 4 Reagents and dilutions used for the T cell panel.

Fluorophore Marker Supplier Clone Catalogue number Con.
(µL/test)

BV421 CCR7 BioLegend G043H7 353208 1,25

Pacific Blue CD45RO BioLegend UCHL1 304216 2,5

BD Horizon 480 TCRgd BD Bioscience 11F2 746498 2,5

L/D Aqua Live/Dead Thermo Fisher L34957 0,1

BV570 CD8a BioLegend RPA-T8 301038 0,5

BV605 CD134 BioLegend Ber-ACT35 350028 1,25

BV650 CD28 BioLegend CD28.2 302946 1,25

BV711 CCR6 BioLegend G034E3 353436 1,25

BV750 CXCR5 BioLegend J252D4 356942 1,25

BV785 PD-1 BioLegend EH12.2H7 329930 1,25

FITC CD69 BioLegend FN50 310904 1,25

PE CTLA-4 BioLegend BNI3 369604 2,5

PE-Dazzle594 CXCR3 BioLegend G025H7 353736 2,5

PerCP CD45RA BioLegend HI100 304156 0,5

PerCP-Cy5.5 CD71 BioLegend CY1G4 334114 2,5

PerCP-eFlour710 CCR4 Thermo Fisher D8SEE 46-1949-42 1,25

PE-Cy7 CD4 BD Bioscience SK3 557852 0,5

APC CD25 Thermo Fisher BC96 17-0259-42 2,5

Alexa Fluor 647 ICOS BioLegend C398.4A 313516 5

BD Horizon APC-R700 CD127 BD Bioscience HIL-7R-M21 565185 1,25

APC-Cy7 CD3 BD Bioscience SK7 557832 1,25

APC-Fire810 CD38 BioLegend HIT2 303550 2,5
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SUPPLEMENTARY FIGURE 1

Panel design for the PBMC immunophenotyping panel (A) Readout of the
Cytek Full Spectrum Viewer (Cytek Biosciences) displaying the spectral

signatures of the 22 fluorophores in the 3L configuration of the Cytek
Aurora (top). Optical layout of the used markers and fluorophores showing

the approximate peak emission wavelengths (nm) (bottom). (B)
Autofluorescence of unstained cells. Spectral fingerprint exported from the

SpectroFlo® software (Cytek Biosciences) of viable unstained non-activated

PBMCs and unstained activated PBMCs of 1 representative healthy control.

SUPPLEMENTARY FIGURE 2

Similarity indices of the immunophenotyping panels. (A, B) Similarity Index

Matrix of the (A) PBMC immunophenotyping panel and (B) T cell
immunophenotyping panel obtained from the “Similarity™ & Complexity™”

resources of the Cytek Full Spectrum Viewer (Cytek Biosciences). A value of

“0” implies unique spectral signatures of the fluorophores; a value of “1”
indicates fluorophores with identical signatures. The Complexity Index at the

bottom of the matrix illustrates the overall complexity of all fluorophores in
the respective panel.

SUPPLEMENTARY FIGURE 3

Comprehensive activation of different PBMC subsets by PHA. (A) Schematic

illustration of the workflow. PBMCs of 6 healthy controls (HCs) were stimulated
in the presence/absence of PHA for 24 hours. Immunophenotyping was

performed subsequently. (B, C) Bar charts depicting the percentages of
indicated subsets within (B) viable PBMCs (top), CD19+ B cells (bottom), (C)
CD4+ T cells (left, top), CD8+ T cells (left, bottom), and CD4+ T cells (right, top).
Each symbol indicates 1 independent biological sample. Statistical comparisons

were done by Student’s t-test, comparing the PHA-stimulated (+) to the non-

stimulated (-) condition of the individual PBMC subsets in 6 replicates.
Significance was defined as p-value (*P < 0.05, **P < 0.01, and ***P < 0.001).

(D, E) Summary heatmap depicting the marker expression as median
fluorescent intensity (MFI) in the indicated (D) PBMC and (E) T cell subsets of

6 pooled HCs. Each column represents either the non-stimulated (-) or the
PHA-stimulated (+) condition of every subset. Heatmaps were generated in R

using the “Complex Heatmap” package; data were scaled by row and clustered

by row. (F, H) Spectral flow cytometry analysis showing CD69 expression in the
indicated (F) PBMC and (H) T cell subsets of 1 representative donor in the

absence (-) and presence (+) of PHA, respectively. Numbers indicate the
percentage of cells in the quadrants or gates. (G, I) Histograms showing (G)
CD95 expression or (I) ICOS and PD-1 expression in the indicated (G) PBMC and
(I) T cell subsets, respectively, in the non-stimulated (-, green) or PHA-

stimulated (+, purple) condition. (A–G) The DC subset encompasses pDCs

and mDCs. Data are representative (F–I) or show a summary (B–E) of at least 6
independent experiments. Abbreviations are used as follows: dendritic cells

(DC), monocytes (Mos), natural killer cells (NKs), B cells (Bc), T cells (Tc), naïve
(N), unswitched memory (UnMe), switched memory (SwMe), double-negative

(DN), double-positive (DP), naïve T cells (TN), central memory T cells (TCM),
terminally differentiated effector T cells (TEMRA), effectormemory T cells (TEM),

T helper cells (Th), regulatory T cells (Treg), T follicular helper cells (Tfh), T

peripheral helper cells (Tph).

SUPPLEMENTARY FIGURE 4

Subset distribution. (A) High-dimensional data analysis using Uniform

Manifold Approximation and Projection (UMAP) trained on CD4+ T cells of
concatenated non-stimulated healthy controls depicting the accurate
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separation of the manually gated subsets. UMAPs were generated in FlowJo.
(B) CTLA-4 expression on different T cell compartments. Spectral flow

cytometry analysis depicting CTLA-4 expression on CD4+ CD25+, CD4+

CD25- T cells and Th1 cells in 3 representative healthy controls after 24-
hour cultivation without PHA. (C, D) Summary bar diagrams depicting the

percentages of indicated (C) PBMC and (D) T cell subsets, respectively,
activated for 24 hours in the presence of drug 1-5 or DMSO as control. Bar

charts show percentages within (C) viable PBMCs or (D) CD3+ T cells (for
CD4+ and CD8+ T cells) and CD4+ T cells (for Th1, Th2, Th17, Tfh, Tph and

Treg), respectively. Statistical comparisons were done by one-sample t-test,

comparing the 6 individual replicates of every condition to DMSO.
Significance was defined as p-value (*P < 0.05, **P < 0.01, and ***P <

0.001). (D) The DC subset encompasses pDCs and mDCs. Abbreviations are
used as follows: dendritic cells (DC), monocytes (Mo), natural killer cells (NKs),

B cells (Bc), T cells (Tc), naïve T cells (TN), central memory T cells (TCM),
terminally differentiated effector T cells (TEMRA), effector memory T cells

(TEM), T helper cells (Th), regulatory T cells (Treg), T follicular helper cells

(Tfh), T peripheral helper cells (Tph).
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SUPPLEMENTARY FIGURE 5

Immunophenotyping of RA patients. (A) Summary heatmap depicting the
marker expression as median fluorescent intensity (MFI) in the indicated (A)

PBMC and (B) T cell subsets of 5 pooled RA patients and 5 pooled HCs,

respectively. Each column represents the indicated subsets in either HCs or
RA patients, each row depicts the marker expression. For the expression

values of every marker - cell type combination a min-max normalization was
applied. Heatmaps were generated in R using the “Complex Heatmap”

package, k-means clustering was applied imposing (A) 4 clusters and (B) 5
clusters, respectively; data were scaled by row and clustered by rows. (C)
Loadings plot for the corresponding PCA in depicting the individual

component loadings of the marker – cell type combinations in PC1, PC2
and PC3. (A–C) The DC subset encompasses pDCs and mDCs. Abbreviations

are used as follows: Principal Component Analysis (PCA), principal
component (PC), healthy control (HC), rheumatoid arthritis (RA), dendritic

cells (DC), monocytes (Mo), natural killer cells (NKs), B cells (Bc), T cells (Tc), T
helper cells (Th), regulatory T cells (Treg), T follicular helper cells (Tfh), T

peripheral helper cells (Tph).
References
1. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human
autoimmunity. J Clin Invest. (2015) 125(6):2228–33. doi: 10.1172/JCI78088

2. Lino C, Barrias S, Chaves R, Adega F, Martins-Lopes P, Fernandes JR. Biosensors
as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer. (2022)
1877(3):188726. doi: 10.1016/j.bbcan.2022.188726

3. Zhang X, Zambrano A, Lin ZT, Xing Y, Rippy J, Wu T. Immunosensors for
biomarker detection in autoimmune diseases. Arch Immunol Ther Exp (Warsz). (2017)
65(2):111–21. doi: 10.1007/s00005-016-0419-5

4. Jog NR, James JA. Biomarkers in connective tissue diseases. J Allergy Clin
Immunol (2017) 140(6):1473–83. doi: 10.1016/j.jaci.2017.10.003

5. Prince HE. Biomarkers for diagnosing and monitoring autoimmune diseases.
Biomarkers (2005) 10 Suppl 1:S44–9. doi: 10.1080/13547500500214194

6. Shi G, Zhang Z, Li Q. New biomarkers in autoimmune disease. J Immunol Res
(2017) 2017:8702425. doi: 10.1155/2017/8702425

7. Bonelli M, Goschl L, Bluml S, Karonitsch T, Steiner CW, Steiner G, et al. CD4(+)
CD25(-)Foxp3(+) T cells: A marker for lupus nephritis? Arthritis Res Ther (2014) 16(2):
R104. doi: 10.1186/ar4553

8. Luo P, Wang P, Xu J, Hou W, Xu P, Xu K, et al. Immunomodulatory role
of T helper cells in rheumatoid arthritis: A comprehensive research review.
Bone Joint Res (2022) 11(7):426–38. doi: 10.1302/2046-3758.117.BJR-2021-
0594.R1

9. Walker LSK. The link between circulating follicular helper T cells and
autoimmunity. Nat Rev Immunol (2022) 22(9):567–75. doi: 10.1038/s41577-022-
00693-5

10. Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells
in humans and mice. Nat Immunol (2015) 16(2):142–52. doi: 10.1038/ni.3054

11. Krishnarajah S, Becher B. TH cells and cytokines in encephalitogenic disorders.
Front Immunol (2022) 13:822919. doi: 10.3389/fimmu.2022.822919

12. Tenbrock K, Rauen T. T Cell dysregulation in SLE. Clin Immunol (2022)
239:109031. doi: 10.1016/j.clim.2022.109031

13. Deng J, Fan C, Gao X, Zeng Q, Guo R, Wei Y, et al. Signal transducer and
activator of transcription 3 hyperactivation associates with follicular helper T cell
differentiation and disease activity in rheumatoid arthritis. Front Immunol (2018)
9:1226. doi: 10.3389/fimmu.2018.01226

14. Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells
in rheumatoid arthritis. Front Immunol (2021) 12:626193. doi: 10.3389/
fimmu.2021.626193

15. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, et al.
Pathologically expanded peripheral T helper cell subset drives b cells in rheumatoid
arthritis. Nature (2017) 542(7639):110–4. doi: 10.1038/nature20810

16. Sen P, Kemppainen E, Oresic M. Perspectives on systems modeling of human
peripheral blood mononuclear cells. Front Mol Biosci (2017) 4:96. doi: 10.3389/
fmolb.2017.00096

17. Raphael I, Joern RR, Forsthuber TG. Memory CD4(+) T cells in immunity and
autoimmune diseases. Cells (2020) 9(3):531. doi: 10.3390/cells9030531

18. Jin W, Luo Z, Yang H. Peripheral b cell subsets in autoimmune diseases: Clinical
implications and effects of b cell-targeted therapies. J Immunol Res (2020) 2020:9518137. doi:
10.1155/2020/9518137

19. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T, Gregoretti I, et al.
Diversity, cellular origin and autoreactivity of antibody-secreting cell population
expansions in acute systemic lupus erythematosus. Nat Immunol (2015) 16(7):755–
65. doi: 10.1038/ni.3175

20. Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of
peripheral blood b cells after depletion with rituximab in patients with rheumatoid
arthritis. Arthritis Rheumatol (2006) 54(2):613–20. doi: 10.1002/art.21617

21. Trouvin AP, Jacquot S, Grigioni S, Curis E, Dedreux I, Roucheux A, et al.
Usefulness of monitoring of b cell depletion in rituximab-treated rheumatoid arthritis
patients in order to predict clinical relapse: A prospective observational study. Clin Exp
Immunol (2015) 180(1):11–8. doi: 10.1111/cei.12481

22. Vancsa A, Szabo Z, Szamosi S, Bodnar N, Vegh E, Gergely L, et al. Longterm
effects of rituximab on b cell counts and autoantibody production in rheumatoid
arthritis: Use of high-sensitivity flow cytometry for more sensitive assessment of b cell
depletion. J Rheumatol (2013) 40(5):565–71. doi: 10.3899/jrheum.111488

23. Mitchell C, Crayne CB, Cron RQ. Patterns of b cell repletion following
rituximab therapy in a pediatric rheumatology cohort. ACR Open Rheumatol (2019)
1(8):527–32. doi: 10.1002/acr2.11074

24. Murphy KA, Bhamidipati K, Rubin SJS, Kipp L, Robinson WH, Lanz TV.
Immunomodulatory receptors are differentially expressed in b and T cell subsets
relevant to autoimmune disease. Clin Immunol (2019) 209:108276. doi: 10.1016/
j.clim.2019.108276

25. Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow
cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int (2018)
67(1):43–54. doi: 10.1016/j.alit.2017.06.003

26. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, et al. 2006
Bethesda International consensus recommendations on the immunophenotypic
analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and
reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B
Clin Cytom (2007) 72 Suppl 1:S14–22. doi: 10.1002/cyto.b.20363

27. Sanders CK, Mourant JR. Advantages of full spectrum flow cytometry. J BioMed
Opt. (2013) 18(3):037004. doi: 10.1117/1.JBO.18.3.037004

28. Nolan JP, Condello D. Spectral flow cytometry. Curr Protoc Cytom (2013)
Chapter 1:Unit1 27. doi: 10.1002/0471142956.cy0127s63

29. Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, et al. Novel
full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and
fluorochromes and visualization of in vivo cellular movement. Cytometry A. (2015) 87
(9):830–42. doi: 10.1002/cyto.a.22725

30. Niewold P, Ashhurst TM, Smith AL, King NJC. Evaluating spectral cytometry
for immune profiling in viral disease. Cytometry A. (2020) 97(11):1165–79. doi:
10.1002/cyto.a.24211

31. Robinson JP. Flow cytometry: Past and future. Biotechniques (2022) 72(4):159–
69. doi: 10.2144/btn-2022-0005

32. Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow
cytometry panel for deep immunophenotyping of major cell subsets in human
peripheral blood. Cytometry A. (2020) 97(10):1044–51. doi: 10.1002/cyto.a.24213

33. Jaimes MC, Leipold M, Kraker G, Amir EA, Maecker H, Lannigan J. Full
spectrum flow cytometry and mass cytometry: A 32-marker panel comparison.
Cytometry A. (2022) 101(11):942–59. doi: 10.1002/cyto.a.24565

34. Nogimori T, Sugawara Y, Higashiguchi M, Murakami H, Akita H, Takahama S,
et al. OMIP 078: A 31-parameter panel for comprehensive immunophenotyping of
multiple immune cells in human peripheral blood mononuclear cells. Cytometry A.
(2021) 99(9):893–8. doi: 10.1002/cyto.a.24490
frontiersin.org

https://doi.org/10.1172/JCI78088
https://doi.org/10.1016/j.bbcan.2022.188726
https://doi.org/10.1007/s00005-016-0419-5
https://doi.org/10.1016/j.jaci.2017.10.003
https://doi.org/10.1080/13547500500214194
https://doi.org/10.1155/2017/8702425
https://doi.org/10.1186/ar4553
https://doi.org/10.1302/2046-3758.117.BJR-2021-0594.R1
https://doi.org/10.1302/2046-3758.117.BJR-2021-0594.R1
https://doi.org/10.1038/s41577-022-00693-5
https://doi.org/10.1038/s41577-022-00693-5
https://doi.org/10.1038/ni.3054
https://doi.org/10.3389/fimmu.2022.822919
https://doi.org/10.1016/j.clim.2022.109031
https://doi.org/10.3389/fimmu.2018.01226
https://doi.org/10.3389/fimmu.2021.626193
https://doi.org/10.3389/fimmu.2021.626193
https://doi.org/10.1038/nature20810
https://doi.org/10.3389/fmolb.2017.00096
https://doi.org/10.3389/fmolb.2017.00096
https://doi.org/10.3390/cells9030531
https://doi.org/10.1155/2020/9518137
https://doi.org/10.1038/ni.3175
https://doi.org/10.1002/art.21617
https://doi.org/10.1111/cei.12481
https://doi.org/10.3899/jrheum.111488
https://doi.org/10.1002/acr2.11074
https://doi.org/10.1016/j.clim.2019.108276
https://doi.org/10.1016/j.clim.2019.108276
https://doi.org/10.1016/j.alit.2017.06.003
https://doi.org/10.1002/cyto.b.20363
https://doi.org/10.1117/1.JBO.18.3.037004
https://doi.org/10.1002/0471142956.cy0127s63
https://doi.org/10.1002/cyto.a.22725
https://doi.org/10.1002/cyto.a.24211
https://doi.org/10.2144/btn-2022-0005
https://doi.org/10.1002/cyto.a.24213
https://doi.org/10.1002/cyto.a.24565
https://doi.org/10.1002/cyto.a.24490
https://doi.org/10.3389/fimmu.2023.1096096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Preglej et al. 10.3389/fimmu.2023.1096096
35. Payne K, Li W, Salomon R, Ma CS. OMIP-063: 28-color flow cytometry panel
for broad human immunophenotyping. Cytometry A. (2020) 97(8):777–81. doi:
10.1002/cyto.a.24018

36. Wang HW, Lin P. Flow cytometric immunophenotypic analysis in the diagnosis
and prognostication of plasma cell neoplasms. Cytometry B Clin Cytom. (2019) 96
(5):338–50. doi: 10.1002/cyto.b.21844

37. Wang SR, Zhong N, Zhang XM, Zhao ZB, Balderas R, Li L, et al. OMIP 071: A
31-parameter flow cytometry panel for in-depth immunophenotyping of human T-cell
subsets using surface markers. Cytometry A. (2021) 99(3):273–7. doi: 10.1002/
cyto.a.24272

38. Lau LMS, Mayoh C, Xie J, Barahona P, MacKenzie KL, Wong M, et al. In
vitro and in vivo drug screens of tumor cells identify novel therapies for high-
risk child cancer. EMBO Mol Med (2022) 14(4):e14608. doi: 10.15252/
emmm.202114608

39. Vladimer GI, Snijder B, Krall N, Bigenzahn JW, Huber KVM, Lardeau CH, et al.
Global survey of the immunomodulatory potential of common drugs. Nat Chem Biol
(2017) 13(6):681–90. doi: 10.1038/nchembio.2360

40. Mahnke YD, Roederer M. Optimizing a multicolor immunophenotyping assay.
Clin Lab Med (2007) 27(3):469–85, v. doi: 10.1016/j.cll.2007.05.002

41. Ceuppens JL, Baroja ML, Lorre K, Van Damme J, Billiau A. Human T cell
activation with phytohemagglutinin. the function of IL-6 as an accessory signal. J
Immunol (1988) 141(11):3868–74.

42. Holl V, Schmidt S, Aubertin AM, Moog C. The major population of PHA-
stimulated PBMC infected by R5 or X4 HIV variants after a single cycle of infection is
predominantly composed of CD45RO+CD4+ T lymphocytes. Arch Virol (2007) 152
(3):507–18. doi: 10.1007/s00705-006-0873-1

43. Lin Z, Huang Y, Jiang H, Zhang D, Yang Y, Geng X, et al. Functional differences
and similarities in activated peripheral blood mononuclear cells by lipopolysaccharide
or phytohemagglutinin stimulation between human and cynomolgus monkeys. Ann
Trans Med (2021) 9(3):257. doi: 10.21037/atm-20-4548

44. Marks KE, Rao DA. T Peripheral helper cells in autoimmune diseases. Immunol
Rev (2022) 307(1):191–202. doi: 10.1111/imr.13069

45. Letourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent
immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin
Immunol (2009) 123(4):758–62. doi: 10.1016/j.jaci.2009.02.011

46. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell
(1993) 73(1):5–8. doi: 10.1016/0092-8674(93)90152-G

47. Testi R, D’Ambrosio D, De Maria R, Santoni A. The CD69 receptor: A
multipurpose cell-surface trigger for hematopoietic cells. Immunol Today (1994) 15
(10):479–83. doi: 10.1016/0167-5699(94)90193-7

48. Waldmann TA. The interleukin-2 receptor. J Biol Chem (1991) 266(5):2681–4.
doi: 10.1016/S0021-9258(18)49895-X

49. Grouard G, Durand I, Filgueira L, Banchereau J, Liu YJ. Dendritic cells capable
of stimulating T cells in germinal centres.Nature (1996) 384(6607):364–7. doi: 10.1038/
384364a0
Frontiers in Immunology 20
50. Terstappen LW, Hollander Z, Meiners H, Loken MR. Quantitative comparison
of myeloid antigens on five lineages of mature peripheral blood cells. J Leukoc Biol
(1990) 48(2):138–48. doi: 10.1002/jlb.48.2.138

51. van Es A, BaldwinWM, Oljans PJ, Tanke HJ, Ploem JS, van Es LA. Expression of
HLA-DR on T lymphocytes following renal transplantation, and association with graft-
rejection episodes and cytomegalovirus infection. Transplantation (1984) 37(1):65–9.
doi: 10.1097/00007890-198401000-00018

52. De Gassart A, Camosseto V, Thibodeau J, Ceppi M, Catalan N, Pierre P, et al.
MHC class II stabilization at the surface of human dendritic cells is the result of
maturation-dependent MARCH I down-regulation. Proc Natl Acad Sci U S A. (2008)
105(9):3491–6. doi: 10.1073/pnas.0708874105

53. Salgado FJ, Lojo J, Fernandez-Alonso CM, Vinuela J, Cordero OJ, Nogueira M.
Interleukin-dependent modulation of HLA-DR expression on CD4and CD8 activated
T cells. Immunol Cell Biol (2002) 80(2):138–47. doi: 10.1046/j.1440-1711.2002.01055.x

54. Lucia MB, Rutella S, Rumi C, Cauda R. Lack of correlation between HLA-DR
and CD25 “activation” related antigens on CD16+ NK cells in HIV infection. Eur J
Histochem (1997) 41 Suppl 2:31–2.

55. Erokhina SA, Streltsova MA, Kanevskiy LM, Telford WG, Sapozhnikov AM,
Kovalenko EI. HLA-DR(+) NK cells are mostly characterized by less mature phenotype
and high functional activity. Immunol Cell Biol (2018) 96(2):212–28. doi: 10.1111/
imcb.1032

56. Liu Y, Xia Y, Qiu CH. Functions of CD169 positive macrophages in human
diseases (Review). BioMed Rep (2021) 14(2):26. doi: 10.3892/br.2020.1402

57. Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu X, Reinhard BM, et al.
Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is
dependent on siglec-1/CD169. PloS Pathog (2013) 9(4):e1003291. doi: 10.1371/
journal.ppat.1003291

58. Crocker PR, Varki A. Siglecs, sialic acids and innate immunity. Trends Immunol
(2001) 22(6):337–42. doi: 10.1016/S1471-4906(01)01930-5

59. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev
Immunol (2014) 14(1):36–49. doi: 10.1038/nri3581

60. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal
Transduct Target Ther (2021) 6(1):291. doi: 10.1038/s41392-021-00687-0

61. Ali S, Mann-Nuttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of type I
interferons in infectious immunity: Plasmacytoid dendritic cells not always in the
driver’s seat. Front Immunol (2019) 10:778. doi: 10.3389/fimmu.2019.00778

62. Tai X, Van Laethem F, Pobezinsky L, Guinter T, Sharrow SO, Adams A, et al.
Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood (2012)
119(22):5155–63. doi: 10.1182/blood-2011-11-388918

63. Bojko A ed. Informative or misleading? Heatmaps deconstructed. Berlin,
Heidelberg: Springer Berlin Heidelberg (2009).

64. Chalabi Hajkarim M, Karjalainen E, Osipovitch M, Dimopoulos K, Gordon SL,
Ambri F, et al. Comprehensive and unbiased multiparameter high-throughput
screening by compaRe finds effective and subtle drug responses in AML models.
Elife (2022) 11. doi: 10.7554/eLife.73760.sa2
frontiersin.org

https://doi.org/10.1002/cyto.a.24018
https://doi.org/10.1002/cyto.b.21844
https://doi.org/10.1002/cyto.a.24272
https://doi.org/10.1002/cyto.a.24272
https://doi.org/10.15252/emmm.202114608
https://doi.org/10.15252/emmm.202114608
https://doi.org/10.1038/nchembio.2360
https://doi.org/10.1016/j.cll.2007.05.002
https://doi.org/10.1007/s00705-006-0873-1
https://doi.org/10.21037/atm-20-4548
https://doi.org/10.1111/imr.13069
https://doi.org/10.1016/j.jaci.2009.02.011
https://doi.org/10.1016/0092-8674(93)90152-G
https://doi.org/10.1016/0167-5699(94)90193-7
https://doi.org/10.1016/S0021-9258(18)49895-X
https://doi.org/10.1038/384364a0
https://doi.org/10.1038/384364a0
https://doi.org/10.1002/jlb.48.2.138
https://doi.org/10.1097/00007890-198401000-00018
https://doi.org/10.1073/pnas.0708874105
https://doi.org/10.1046/j.1440-1711.2002.01055.x
https://doi.org/10.1111/imcb.1032
https://doi.org/10.1111/imcb.1032
https://doi.org/10.3892/br.2020.1402
https://doi.org/10.1371/journal.ppat.1003291
https://doi.org/10.1371/journal.ppat.1003291
https://doi.org/10.1016/S1471-4906(01)01930-5
https://doi.org/10.1038/nri3581
https://doi.org/10.1038/s41392-021-00687-0
https://doi.org/10.3389/fimmu.2019.00778
https://doi.org/10.1182/blood-2011-11-388918
https://doi.org/10.7554/eLife.73760.sa2
https://doi.org/10.3389/fimmu.2023.1096096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach
	1 Introduction
	2 Results
	2.1 Guidance for panel design strategies
	2.2 Stepwise instruction for successful panel verification
	2.3 Strategies for gating and presentation of PBMC populations and frequencies
	2.4 Multi-color flow cytometry allows to detect stable PBMC subset distribution upon Phytohaemagglutinin (PHA)&#146;stimulation
	2.5 Activating and inhibitory receptors are differentially expressed in individual PBMC compartments and are modulated by PHA&#146;stimulation
	2.6 Advanced immunophenotyping of PBMCs allows to detect drug-induced effects on cell activation
	2.7 Alterations in expression profiles define drug-induced effects in Th-cell subsets
	2.8 Immunophenotyping exposes disease-specific expression marker profiles in RA&#146;patients

	3 Discussion
	4 Methods
	4.1 Human subjects and ethical aspects
	4.2 PBMC isolation and freezing
	4.3 Thawing of PBMCs
	4.4 Cell culture and drug screening
	4.5 Titration of viability dye and staining antibodies
	4.6 Blocking and viability staining of PBMCs
	4.7 Staining for PBMC immunophenotyping
	4.8 Staining for T cell immunophenotyping
	4.9 Spectral flow cytometer instrument setup
	4.10 Data import and clean up
	4.11 Data analysis in FlowJo&trade;
	4.12 Data analysis and statistics in R

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


