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Although breakthroughs in cancer treatment have been achieved, immunotherapy

yields only modest benefits in most patients. There is still a gap in clarifying the

immune evasiveness and immune-resistance mechanisms. Identifying other

candidate targets for cancer immunotherapy is therefore a clear unmet clinical

need. The complement system, a pillar of innate immunity, has recently entered

the limelight due to its immunoregulatory functions in the tumor

microenvironment (TME). In particular, gC1qR, a receptor for globular heads of

C1q, serves as a promising new target and has attracted more attention. gC1qR,

also named P32/C1qBP/HABP1, is amultifunctional protein that is overexpressed in

various cancers and holds prognostic value. It regulates the tumorigenic,

progression and metastatic properties of tumor cells through several

downstream signaling pathways, including the Wnt/b-catenin, PKC–NF-kB and

Akt/PKB pathways. A few preclinical experiments conducted through gC1qR

interventions, such as monoclonal antibody, chimeric antigen receptor T‐cell

(CAR‐T) therapy, and tumor vaccination, have shown encouraging results in

anticancer activity. The efficacy may rely on the regulatory role on the TME,

induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the

current understanding of the relationship between cancer immunotherapy and

gC1qR remains elusive and often contradictory, posing both opportunities and

challenges for therapeutic translation in the clinic. In this review, we focus on the

current understanding of gC1qR function in cancer immunology and highlight the

vital roles in regulating the TME. We also examines the rationale behind targeting

gC1qR and discusses the potential for translating into clinical practice.
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Introduction

Immune checkpoint inhibitors (ICIs) therapy targeting cytotoxic T lymphocyte antigen 4

(CTLA4) or programmed cell death-1 (PD-1) and its ligand PD-L1 has become the backbone

of treatment for many cancers (1–3). Immune checkpoints are mainly expressed on the

immune cells and tumor cells and inhibit the activation of immune system and help tumors
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escape from the host immune attack (4, 5). ICIs, therefore, could

block the negative signaling on T-cell activation from immune

checkpoints and potentiate antitumor T-cell activity (6, 7).

However, the majority of patients exhibit poor or limited responses

to these therapies even in combination, do not derive clinical benefit

regardless of the cancer type, which highlights the necessity for

finding alternative targets to gain optimal patient benefits (8, 9).

The complement system is an integral part of innate immunity that

consists of a network of plasma and membrane proteins (10).

Complement could protect against nonself material, such as

aberrant endogenous proteins and bacteria, by orchestrating the

immune response through opsonization, recruitment of immune

cells to the site of infection and causing cell lysis (11, 12). Recent

studies have revealed the immunoregulatory functions of

complement in cancer immunotherapy (13, 14). Complement

regulates signaling pathway of tumor cells, thus promoting tumor

growth, invasion and metastasis. Moreover, the complement system

also correlates with angiogenesis, stromal composition and immune

responses (15).

gC1qR, also named P32/C1qBP/HABP1, a receptor for globular

heads of C1q, has begun to garner significant interest in the immune-

oncology field as a novel potential target (16, 17). This protein bound

with high affinity to the globular heads of C1q under physiological

ionic strength (18). Under normal physiology, the gC1qR engages in a

wide range of physiological activities, including mitochondrial

metabolism and dynamics, apoptosis, splicing, immunological

response, and inflammation (18). It binds to a plethora of proteins

found in plasma, on the cell surface and on pathogenic

microorganisms. In contrast, in cancer conditions, gC1qR played a

vital role in cancer progression and correlated with patient prognosis

(19). gC1qR could reshape the tumor microenvironment (TME) by

modulating immune cells and cancer cells, resulting in poor anti-

tumor efficacy. The activity of targeting gC1qR has been explored in

CAR‐T therapy, monoclonal antibodies and cancer which showed

effective anti-tumour immune responses (20, 21). Here, we focus on

recent advances in the understanding of gC1qR in cancer, review

results supporting the role of gC1qR in cancer immunology and

illustrate its potential for translation into clinical practice.
Structure, expression, and function
of gC1qR

gC1qR has several names because it was discovered by three

distinct groups independently. HABP1 was first identified as a

glycoprotein containing sialic acid by D’Souza and Datta in 1985

(22). Subsequently, studies have established that the HABP1 was

involved in many regulatory processes related to hyaluronan (HA),

such as adhesive function and regulatory role in reproduction (23). In

1991, Krainer and collaborators described that P32, which co-purified

with the splicing factor SF2, had the same cDNA sequence as HABP1

(24). gC1q-R is a highly conserved, acidic protein (pI=4.15), which

was first isolated from membranes of the lymphoblastoid cell line Raji

and identified as a receptor for globular heads of C1q (25, 26). The

amino acid sequences of HABP1, P32, and gC1qR were identical, and

they were all codified by the same gene. The gC1qR gene is located on
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chromosome 17p13.3 in humans, and chromosome 11 in mice. The

gene is highly conserved and the cDNA sequence between the human

and rodent genes is almost identical (~89.9%) (27).

The molecular weight of gC1qR in SDS-PAGE is about 33 kDa.

Under non-denaturing and non-dissociating conditions, it is a

doughnut-shaped trimer of 3 identical chains with 97.2kDa (18).

The formation of multimers may be crucial to enhancing its affinity

for multivalent ligands, such as C1q and high molecular weight

kininogen (HK) (28). The doughnut-shaped quaternary structure

has two sides. The solution side contains a high distribution of

negatively charged residues, whereas the membrane face has a more

or less neutral net charge (29). The protein is synthesized as a prepro-

protein of 282 amino acid residues and then becomes a mature

protein of 209 residues through a site-specific cleavage and removal

during post-translational processing (30). It has one Cys at residue

186 and thus does not have any intrachain disulfide bonding (29).

Research on the translated amino acid sequence reveals there is no

conventional consensus motif or glycosylphosphatidylinositols

(GPIs) anchor present (31). Hence, it may transfer signals through

the association with partner transmembrane proteins (18). As

research has progressed, gC1qR has been identified as a

multicompartmental and multifunctional protein (32). gC1qR not

only presents in the mitochondrial matrix but also localizes at all

compartments of the cell, including the extracellular cell surface and

nucleus (33).

The ubiquitous distribution of gC1qR suggests that it may be

involved in a wide range of biological responses. In addition to

combining with C1q, gC1qR could bind multiple ligands including

thrombin, vitronectin, HK and factor XII (HF) (34–36). The interplay

between gC1qR and its binding partners leads to the classical

complement pathway activation, cell adhesion, and activation of the

kinin system (37, 38). Furthermore, it regulates the homeostatic and

thrombotic events (39). The contact system proteins HF, prekallikrein

(PK), and HK comprise the initiators of the so-called intrinsic blood

coagulation system (40). gC1qR could interact with HK and HF, and

then activate intrinsic coagulation and kinin pathways (39, 41, 42).

gC1qR also plays a critical role in the maintenance of phosphorylation

(43, 44). The disruption of the p30 gene (homolog of p32 in yeast)

impaired mitochondrial ATP synthesis, which could be restored by

introducing human p32 cDNA. gC1qR is necessary for functional

mitoribosome formation to synthesize proteins within mitochondria

and induce mitochondria-dependent cell death (45, 46). In addition,

gC1qR was correlated with cell apoptosis. The overexpression of

gC1qR in fibroblast cells induces inhibited cell growth, extensive

vacuolation, restricted entry to the S-phase, and finally leading to

apoptosis (47).

Moreover, a growing number of studies have shown the link

between gC1qR and virus, such as respiratory syncytial virus (RSV),

hepatitis C virus (HCV) and human immunodeficiency virus (HIV-

1). The gC1qR protein was present as a key factor for production of

RSV and the mitochondrial localized gC1qR contributes to RSV

infection (48). gC1qR has been identified as an HCV core-binding

protein. The combination of gC1qR on T cells and HCV core protein

suppressed the T-cell proliferation, thus further impacting the human

cell–mediated immune response (49). And the inhibition of gC1qR

could reverse the T-cell responsiveness. The gC1qR-mediated
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immune suppression in HCV also confirmed in other studies, the

interaction between gC1qR and HCV core protein also influenced the

Th1 differentiation of CD4+ T cells by inhibiting the dendritic cell IL-

12 production (50). In addition, the gC1qR also participated in the

HIV-1 pathogenesis (51). These results highlight the critical role

gC1qR plays in a growing list of diseases.
gC1qR in cancer

The role of gC1qR in cancer diagnosis,
prognosis, and putative signaling pathways

Recent researches have shown that gC1qR contributes to cancer

progression, invasion and metastasis, and correlates with

clinicopathological features of tumors (Figure 1) (23, 52–55). Its

overexpression was found in multiple cancer cells, including breast,

ovarian, prostate, melanoma, lung, pancreatic, colon cancer, and

malignant pleural mesothelioma (55–58). It has been reported the

expression level of gC1qR was correlated with tumor stage, grade,

tumor size, and clinical outcome (59, 60). In breast cancer, gC1qR

overexpression was significantly related to distant metastasis, higher

TNM stages, increased tumor size, axillary node metastasis and poor

survival (23, 60). A poor outcome was also found in patients with

ovarian cancer with gC1qR overexpression (61). Similar observations

were reported in patients with gastric cancer (62) and endometrial

cancer (63). Additionally, it is involved in cancer cell chemotaxis and

metabolism. gC1qR modulates the cancer cell chemotaxis through

binding to protein kinase C z (64, 65). Active caspase-1 cleaves gC1qR
and then promotes aerobic glycolysis in tumor cells and boosts

carcinogenesis (66). However, its roles may vary according to

different cancer types. In renal cell carcinoma (RCC), higher

expression levels of Y-box-binding protein 1 (YBX1) and lower

expression of gC1qR were found in tumor tissues (67). And the
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gC1qR negatively regulates the activation of YBX1 which is closely

associated with tumorigenesis.

In addition to tumor cellular gC1qR expression, soluble gC1qR

(sgC1qR) was also discovered. The researchers observed an increased

level of soluble gC1qR in metastatic pancreatic cancer patients were

noted with disease progression (68). Soluble gC1qR was also detected

in malignant pleural and peritoneal effusions and the level was higher

in malignant effusions than serum. Another finding demonstrated

that soluble gC1qR may serve as an autocrine growth signal for cancer

cell proliferation (69).

gC1qR is involved in multiple signaling pathways to modulate the

biological behavior of tumors. In HepG2 cells, gC1qR overexpression

boosts the cell proliferation through up-regulation of cyclin D1 in

AKT-dependent pathway (70). Sinha S et al. revealed the gC1qR

regulates cell proliferation, migration, and invasion in melanoma by

regulating AKT/PKB signaling and altering oncogenes as well as

epithelial to mesenchymal transition (EMT) markers in both mouse

and human melanoma (71). In addition, gC1qR also induced the NF-

kappa B dependent MMP-2 activation through integrin avb3
interaction to regulate the cell migration and tumor development

(72). Depletion of gC1qR in triple-negative breast cancer (TNBC)

inhibits hypoxia-induced activation of the PKC/NF-KB/VCAM-1

signaling pathway, resulting in cancer cell metastasis blocking (73).

The Wnt/b-catenin pathway also correlated with gC1qR. Circular

RNA MTCL1 could regulate the Wnt/b-catenin pathway through

interacting with gC1qR and cause the laryngeal squamous cell

carcinoma progression (74). Moreover, gC1qR mediates hepatic

metastasis of pancreatic cancer via IGF-1/IGF-1R signaling (57).

However, another contradictory study indicated that gC1qR may

serve as a tumor suppresser by modulating the p-GSK3/b-Catenin/
L1CAM expression in RCC (75).

To summarize, gC1qR plays a pivotal role in the growth, survival,

and metastasis of tumor cells. It also serves as a novel marker for

cancer prognosis and diagnosis, provides new opportunities for
FIGURE 1

gC1qR roles in tumor growth, invasion, and progression. EMT, epithelial to mesenchymal transition.
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cancer therapy although the regulatory mechanisms of gC1qR in

various cancers have not yet been elucidated.
gC1qR and the tumor microenvironment

TME, which consists of immune cells, non-tumorigenic stromal

cells, and tumor cells, is the key to carcinogenesis and associates with

immune resistance as well as immune evasion (76). Despite some

conflicting conclusions, accumulating evidence suggests that gC1qR

may serve as a potential regulator of TME interactions.

gC1qR has been proved to be essential for CD8+ T cell survival,

proliferation, and anti-tumor immune function (20, 77). It regulates

the epigenetic program and promotes the dynamic transcriptional

program of effector CD8+ T cells. gC1qR increases T cell proliferation

through regulating the AKT‐mTORC1 signaling pathway and

improving T cell survival by recruiting anti-apoptotic proteins such

as Bcl2 and BclXL, thereby inhibiting caspase3 cleavage and PARP

inactivation (20). gC1qR deficiency impedes T cell proliferation,

hinders the CD4+ and CD8+ T cell infiltration and aggravates

tumor infiltrating T cell exhaustion (20). Additionally, gC1qR

knockdown aggravated the exhausted phenotype of CD4+ and

CD8+ T cells through increasing co–inhibitory molecules such as

PD‐1, Tim‐3, and LAG‐3. gC1qR knockdown also impaired the

efficacy of CAR-T cells (20). gC1qR has been shown to be required

for the dendritic cells (DCs) metabolism and maturation (78). But the

relationship between DCs and gC1qR in cancer immunotherapy has

not been elucidated. Fogal et al. also demonstrated that the cell-

surface gC1qR could serve as the marker for tumor-associated

macrophages/myeloid cells. They found gC1qR is the receptor for

LyP-1 and the p32/LyP-1 positive cells were also positive for

macrophage/myeloid cell markers (79). gC1qR also acts on the

macrophages and leukocytes infiltration in TME and gC1qR

knockdown inhibits the infiltration of these cells (71).

Angiogenesis, a key component of the TME, is necessary for

tumor invasion and metastasis. Abnormal tumor blood vessels lead to

hypoxia and contribute to inhibitory TME (80). gC1qR was identified

to be expressed on the cell surface of activated (angiogenic)

endothelial cells and evidence showed that the gC1qR may

participate in tumor angiogenesis, thereby modulating the TME

(71, 81, 82). The neutralization of cell-surface gC1qR with antibody

inhibits vascular endothelial growth factor (VEGF) signaling and

prevents angiogenesis in human umbilical vein endothelial cells

(HUVECs) (81). Another study also revealed gC1qR-silenced

tumors showed decreased proliferation and angiogenesis compared

to control tumors in melanoma (71). Those results suggested the

gC1qR may function as an angiogenic-related protein and serve as a

potential therapeutic target for blocking tumor angiogenesis. Hypoxia

is a widely established factor of the TME that could upregulate the

hypoxia-inducible factor-1a (HIF-1a) and PD-L1 expression, and

promote immune escape and immune resistance (83). Studies showed

that the expression of gC1qR was enhanced by HIF-1a (73) and

increased expression of gC1qR was found in hypoxia area of tumor

(79). gC1qR, also a novel receptor of Hyaluronic acid (HA), could
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interact with HA and regulated HA-mediated cellular event as well as

affect behavior of tumor cells. The extracellular matrix (ECM) is a

dynamic network that serves as a highly active part of the TME (84).

HA is one of major ECM components which relates to the cell–cell

contacts such as adhesion, motility, and differentiation and cancer

metastasis (85).

These results serve to illustrate the conflicting role of gC1qR on

TME. gC1qR knockdown may modulate T cells’mitochondrial fitness

to decrease the infiltration and anti-tumor function, but the blockage

of cell-surface gC1qR could decrease the blood supply of tumor.

Although the exact role of gC1qR in TME has not been fully validated,

it shows potential to regulate tumor cells, immune cells, angiogenesis

and other components of the TME.
Potential for translating into clinic

Advances in preclinical research

The complex function of gC1qR in tumor regulation and

immunity poses opportunities for therapeutic translation in cancer

immunotherapy. Studies on preclinical mouse tumor models have

indicated that gC1qR can be considered as a suitable target for

different cancer therapy approaches, such as monoclonal antibody

therapy, small molecules, CAR-T technology, and tumor

vaccination (Figure 2).

In TNBC, gC1qR monoclonal antibody 60.11-treated mice have

smaller tumors than control mice. Mechanistically, mice in treatment

group had higher expression levels of apoptosis-related markers and

decreased CD31 (angiogenesis-related marker) expression (21). In

other words, the antibody targeting gC1qR promoted tumor cell

apoptosis and decreased angiogenesis. Potential toxicity was also

evaluated and the results showed that there was no evidence of

tissue damage observed on vital organs. As gC1qR was

overexpressed in malignant pleural mesothelioma and

mesothelioma (MSTO) cells lines, thus the antitumor efficacy

gC1qR monoclonal antibody 60.11 was also assessed in MSTO mice

models. The results indicated that gC1qR monoclonal antibody 60.11

reduced mesothelioma tumor volume via increasing apoptosis and

reducing neovascularization (19). Additionally, the gC1qR-

neutralizing antibody 3D9 could prevent the cells migration of

plenty of cancer cell lines, including A549, MCF7 and MDA-MB-

231. It also inhibits the growth factor-stimulated lamellipodia

formation and receptor tyrosine kinases (RTKs) signaling (81).

More importantly, 3D9 also had an anti-angiogenic effect and

prevented lamellipodia formation, cell migration and VEGF

signaling in HUVECs. In vivo, 3D9 significantly inhibited the

tumor growth in A549 tumor-bearing nude mice (81). Above

results confirmed the anti-tumor efficacy of gC1qR monoclonal

antibody in cancer immunotherapy, but it is worth noting that in

some specific tumors such as the glioblastoma, the blood–brain

barrier may decrease the antitumor activity. To solve this problem

and to specifically target the mitochondrial-localized gC1qR,

Yenugonda et al. identified a highly selective and brain-penetrant
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small molecule M36 (86). M36 was selective for gC1qR

overexpressing cells. It effectively impaired the growth of glioma

cells, and sensitized the tumor cells to glucose depletion.

CAR-T technology has developed rapidly in recent years and is

one of the most promising strategies in cancer therapy (87). Rousso-

Noori et al. designed gC1qR CAR T cells in glioma after confirming

that gC1qR was expressed in mice and human glioma. The novel

gC1qR CAR-T therapy significantly induces tumor regression in both

syngeneic and xenograft models, and extended the overall survival of

mice (88). Consistent with the above findings, the gC1qR CAR T cells

also had antiangiogenic activity in this study.

Cancer vaccines hold promise as an immunotherapeutic modality

and it could induce long-term immunological memory for antitumor

responses (89, 90). Dehghan-Manshadi et al. designed vaccine based

on peptides derived from mouse gC1qR protein and the results

showed that compared with the control group, mice in the

vaccinated group had higher levels of IFN-g and perforin, lower

tumor size and longer survival time (91). Additionally, they also

found that forkhead box P3 (Foxp3) gene was significantly down-

regulated and Fas ligand (FasL) gene expression was up-regulated in

splenocytes vaccinated mice group (91).

Nanotechnology has recently attracted significant attention

worldwide for cancer treatment (92). Previous research revealed the

gC1qR was the receptor for tumor-homing peptide LyP-1 which

could specifically bind to tumor lymphatics and tumor cells (79, 93,

94). LyP-1 has been used to deliver nanoparticles to breast cancer with

gC1qR overexpression and effectively reduced tumor growth in vivo
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(86, 95). Sharma S et al. also described a tumor-penetrating

nanosystem that strongly inhibits breast tumor growth in mice, in

which a homing component targets tumor vessels through binding

gC1qR (82). In this context, targeting gC1qR seems to be an

increasingly promising strategy in the field of cancer therapy.
Questions and challenges

Considerable insight into its function and therapeutic potential

have been gained until now. However, key questions remain

regarding fundamental gC1qR biology and translational application.

First, anti-gC1qR monotherapy has shown anti-tumor activity in pre-

clinical murine models, but such activity in humans is still unknown.

As animal models cannot mimic the complex environment of human

body, thus, well designed clinical trials are essential to demonstrate

the efficacy and safety of anti-gC1qR in human beings. Moreover,

monotherapy often displays important drawbacks and given the

promise of ICI-based combination therapy (96, 97), the efficacy of

ICIs and anti-gC1qR therapy also demand investigation. Second, the

exact role of gC1qR in the regulation of the TME is still not

sufficiently elucidated and current knowledge on this target is not

enough. Determination of gC1qR expression in human T-cell subsets

especially tumor-infiltrating lymphocytes and comprehensive

validation of related functional mechanisms in immune cells are

prerequisites for the development of anti-gC1qR therapeutics.

Additionally, gC1qR is also expressed on the normal cells (98), the
FIGURE 2

The gC1qR blockade can be largely classified into monoclonal antibody therapy, highly selective small molecules, CAR-T therapy, tumor vaccination and
used in nanosystem to kill tumors. Induction of tumor cells apoptosis and antiangiogenic activity are key element in successful and efficient gC1qR
targeting.
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safety of targeting gC1qR should be assessed carefully in human body,

although no obvious side effects were revealed in mice. Finally,

targeting gC1qR has just started as a new field within cancer

immunotherapy and further in vitro and in vivo studies are still

needed. Based on abundant and solid evidence, clinical trials are the

next step directions and targeting gC1qR might benefit selected

patient populations.
Conclusion

Despite ICIs having led to unprecedented breakthroughs in

cancer treatment, most patients do not respond well to ICIs. Such

results pave the way for targeting other promising immune

checkpoints. In this review, we provide a strong foundation for

targeting the gC1qR to be a novel anticancer therapeutic approach

and hold promise for translate into the clinic, although there still have

no related clinical trial to date. Accumulating evidence has shown that

gC1qR modulates tumor growth, invasion, and progression. It

participates in multiple signaling pathways and regulates the TME.

The gC1qR blockade can be largely classified into monoclonal

antibody therapy, highly selective small molecules, CAR-T therapy,

tumor vaccination and nanoparticle strategies for cancer therapy.

Considering the characteristics as presented here, it seems that the

regulation role on TME, induces the apoptosis of tumor cells and

antiangiogenic activity are key elements in successful and efficient

gC1qR targeting. However, the complex function of gC1qR poses

both opportunities and challenges for therapeutic translation in clinic.

More efforts should be devoted to accelerating the development of

gC1qR inhibitors for clinical use.
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