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Intestinal health is closely associated with overall animal health and performance

and, consequently, influences the production efficiency and profit in feed and

animal production systems. The gastrointestinal tract (GIT) is the main site of the

nutrient digestive process and the largest immune organ in the host, and the gut

microbiota colonizing the GIT plays a key role in maintaining intestinal health.

Dietary fiber (DF) is a key factor in maintaining normal intestinal function. The

biological functioning of DF is mainly achieved by microbial fermentation, which

occurs mainly in the distal small and large intestine. Short-chain fatty acids (SCFAs),

the main class of microbial fermentation metabolites, are the main energy supply

for intestinal cells. SCFAs help to maintain normal intestinal function, induce

immunomodulatory effects to prevent inflammation and microbial infection, and

are vital for the maintenance of homeostasis. Moreover, because of its distinct

characteristics (e.g. solubility), DF is able to alter the composition of the gut

microbiota. Therefore, understanding the role that DF plays in modulating gut

microbiota, and how it influences intestinal health, is essential. This review gives an

overview of DF and its microbial fermentation process, and investigates the effect

of DF on the alteration of gut microbiota composition in pigs. The effects of

interaction between DF and the gut microbiota, particularly as they relate to SCFA

production, on intestinal health are also illustrated.

KEYWORDS
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1 Introduction

The gastrointestinal tracts (GITs) of mammals are home to abundant microorganism

communities. As the largest interface between internal and external environments, the GIT is

the habitat of the greatest number and diversity of microorganisms. It has been estimated that

pig gut contains approximately 110 species of microorganisms, across 40 families and nine
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phyla (1). These microorganisms, including their genomes and

extrachromosomal elements, interact with the host environment

and are defined as gut microbiota (2–5). The ecosystem of the gut

microbiota is complex and dynamic, and is involved in a symbiotic

relationship with the host environment (6). Moreover, it plays a

critical role in maintaining a healthy gut environment, further

affecting nutrient utilization and physiological and immune

function in the pig intestine (7, 8).

The gut microbiota composition of pigs varies and depends on

GIT segment and pig age, sex, and diet, etc. It was reported that, in

pigs from 11 to 12 weeks of age, the microbiota in the ileum was

dominated by members of Bacillota, accounting for 90% of bacteria.

In the cecum and colon, the proportion of Bacteroidota started to

grow and accounted for approximately 40% to 60% of bacteria (9, 10).

Apart from influencing the internal function of pigs, diet is also able

to influence gut microbiota composition during the nutrient

util ization process. Within the diet, dietary fiber (DF)

supplementation plays a key role in influencing the composition of

the gut microbiota, depending on its type, origins, and

physicochemical properties, mainly because it escapes the digestive

process in the small intestine and becomes available for microbial

fermentation when it enters the distal ileum and colon (11, 12).

Although DF is not efficiently digested by enzymes, it is an

integral part of the pig diet because it is a source of energy and has

beneficial effects on intestinal health. The products of microbial

fermentation of DF, short-chain fatty acids (SCFAs), are the main

energy source of intestinal cells and maintain intestinal health and

immune function (13). The benefits of DF and its fermentative

metabolites on intestinal health drive new insights in the search for

alternative strategies to antibiotic growth promoters (AGPs), which

was initiated because of the ban on antibiotics issued in animal and

feed systems worldwide (14). The objective of this review is to discuss

the impact of DF on pig gut microbiota alteration, and of SCFA-

mediated regulation on intestinal functioning and immunity. The
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conclusion will emphasize the importance of the interactive effects

between DF and gut microbiota in influencing intestinal health and

host health and performance.
2 Dietary fiber

A comprehensive understanding of DF has been developed thus

far, with extensive studies conducted mostly in relation to the effects

of DF on nutrient digestion, physiological and immune function,

and intestinal health, depending on various DF characteristics (13,

15, 16). DF can be defined in various ways. Generally, DF represents

the sum of carbohydrates that are undigestible by endogenous

enzymes, namely non-starch polysaccharides (NSPs) and lignin

(13, 16). These carbohydrates are mainly naturally present in

plant cell wall components, including cellulose, hemicellulose, and

pectin. Some non-cell wall components, such as resistant starch and

some non-digestible oligosaccharides, possess effects comparable to

those of NSP and lignin, and can therefore also be categorized as

DFs (16). Common feedstuffs rich in fiber content include oats,

wheat, barley, and by-products such as cereal hulls and distiller’s

dried grains with solubles (DDGS) (13). The composition and

physicochemical properties of DF vary widely in different

feedstuffs and, consequently, have distinct functions in nutrient

digestive processes. The composition of DF in different feedstuffs/

crops is listed in Table 1. The major concern about DF, associated

with its role in nutrient digestive processes, is related to its low

energy value and negative effects on nutrient digestibility, which can

also vary by DF characteristics. Despite its adverse effects on

nutrient utilization, however, DF should be included in the diet at

a minimum level to maintain normal physiological function and

intestinal health. This section will provide a general introduction to

DF to better understand the interaction between DF and the

gut microbiota.
TABLE 1 Composition of DF commonly used in feedstuffs/crops*.

Item MB OH RH WB PH SB RSH SBP

Chemical composition Unit

DM % as fed 88.70 90.30 91.90 87.00 91.60 89.10 87.50 24.30

CP % DM 11.90 5.20 3.70 17.30 7.00 13.10 16.10 8.70

CF % DM 12.30 30.60 42.60 10.40 65.90 38.90 27.30 20.80

NDF % DM 44.20 75.80 67.80 45.20 66.40 64.40 55.80 49.50

ADF % DM 14.50 36.00 51.70 13.40 56.40 46.20 42.20 24.80

Lignin % DM 2.20 7.10 14.20 3.80 22.40 2.30 22.70 1.80

EE % DM 4.60 2.20 1.50 3.90 2.00 2.20 13.20 0.50

Ash % DM 5.80 4.60 17.50 5.60 5.20 5.20 5.50 6.80

Starch % DM 35.00 9.90 5.30 23.10 – 5.20 6.00 0.50

Total sugars % DM 2.80 1.20 – 7.20 – 1.60 2.60 5.20

Gross energy MJ/kg DM 18.50 18.40 16.30 18.90 19.80 18.20 21.20 17.10
frontier
*Data were derived from Feedipedia. All the values represent the average or predicted value.
ADF, acid detergent fiber; CF, crude fiber; C, crude protein; DM, dry matter; EE, ether extract; MB, maize bran; NDF, neutral detergent fiber; OH, oat hull; PH, pea hull; RSH, rapeseed hull; SB,
soybean hull; SBP, sugar beet pulp; WB, wheat bran.
sin.org

https://doi.org/10.3389/fimmu.2023.1095740
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1095740
2.1 Classification of dietary fibers

DF can be classified according to its constituents, type of

oligosaccharides/polysaccharides, physicochemical properties, and

physiological role in digestion. However, these classification

methods do not completely cover all fiber categories (17), and,

generally, the most accepted classification of DF is based on its

solubility and fermentability. Fibers are classified into two

categories in terms of solubility: soluble and insoluble fibers. The

chemical structure of DF, and its interaction with water molecules,

determines its degree of solubility. The insoluble fraction includes

cellulose, part of hemi-cellulose, and lignin, forming a linear and

ordered crystalline structure in the solution. Fiber sources containing

a large insoluble fraction commonly utilized in swine diets include

wheat bran, soybean hull, oat hulls, and DDGS, which are mainly

plant co-products. The structure of soluble fractions, i.e., pectin, gum,

and b-glucan, is highly branched, contributing to the increased

solubility of DF (18). DFs with different degrees of solubility have

different impacts on nutrient digestive processes and microbial

fermentation metabolism (12, 15). It has been reported that soluble

fibers are, generally, fermentable, whereas insoluble fibers are hardly

fermented. Some soluble fibers are viscous, such as pectin,

galactomannan, b-glucan, and psyllium, and others, including

fructooligosaccharides (FOSs) and inulin, are non-viscous. Owing

to their insolubility in water, insoluble fibers do not form gels and

have little association with viscosity (19, 20).
2.2 Physicochemical properties

DF has different impacts on gut physiological function, largely

associated with its physicochemical properties, i.e., solubility,

viscosity, and water-holding/bonding properties (21). It has been

found that insoluble NSPs (e.g., wheat bran) increased the average

daily feed intake (ADFI) of weaned piglets by decreasing the mean

retention time (MRT) of digesta along the GIT, whereas soluble NSPs

(i.e., pectin and sugar beet pulp) tended to prolong the digesta MRT

and increase satiety, consequently reducing the piglets’ feed intake

(22, 23). Fermentation of soluble fibers starts in the ileum, whereas

insoluble fibers are hardly fermented until entering the hindgut.

Compared with insoluble fibers, soluble fibers are more easily

degraded by microbial enzymes, contributing to higher levels of

fermentation (24). Karr-Lilienthal et al. found that wheat bran

containing a large insoluble fiber fraction resulted in poor fiber

fermentation compared with sugar beet pulp with a high pectin

content and soybean hull containing a high soluble fraction (25,

26). Moreover, soluble fibers can increase the viscosity of digesta in

the small intestine (18). Thus, the viscosities of pectin and b-glucan
are generally higher than that of cellulose in pig diets (27). Viscous

fiber can bind water, leading to increased viscosity and modified

digesta transit time. Thus, viscosity is an important factor affecting

nutrient digestibility (28, 29). In addition, viscosity is likely to

influence microbial fermentation by affecting colonic cells, a key

source of energy, although it is not a dominant contributor to

energy absorption (13). Fibers with low and high viscosities

contributed to slow and rapid fermentation and SCFA production,

respectively, by variably affecting digesta transit (30). Furthermore,
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DF combines with water to form a colloidal suspension, which is

known as the water-holding capacity (31). Water-holding capacity, to

some extent, determines swelling, that is, the solubilization and

dispersion by the surrounding water of the DF structure (32). It has

been shown that high fermentability is associated with high solubility,

swelling, and water-holding capacity (33). Moreover, DF expansion

and dispersion lead to easier access to microbial enzymes and

promote fiber fermentation and SCFA production (34). In

conclusion, it is critical to understand the physicochemical

properties of DF, as they shed light on the mechanisms of DF that

affect the physiological function of pig intestines.
2.3 Alterative to AGPs

DFs have been regarded as a potential alternative to antibiotic

growth promoters (AGPs) since the use of AGPs has been banned or

restricted in several countries (13). AGPs are efficient tools that

increase the efficiency of transforming feed into animal products,

and improve animal health and performance (35). However, the

problem of increased resistance to bacteria of animal origin has

been a great concern for human health throughout the world (35).

Shang et al. have reported that DF can reduce diarrhea in postweaning

pigs and improve their intestinal health by modulating the gut

microbiota (36). Moreover, the metabolites of DF fermentation,

especially butyrate, have been shown to benefit mucosa growth and

increase water reabsorption in the large intestine by stimulating

sodium absorption (37). Thus, rapidly fermented fibers, e.g., sugar

beet pulp, might exert an anti-diarrheal effect (38). In addition, the

use of DFs in the place of AGPs largely mitigates concerns related to

the economic costs of producing the latter, particularly when

antibiotics are also required for therapeutic or health-promoting

purposes. Plant-derived compounds, such as tannins, are playing a

cost-effective role in animal nutrition and leading to the development

of a more demanding market (39). Overall, DF can be an effective

alternative to AGPs because it positively modulates the gut

environment and promotes the growth of beneficial bacteria,

consequently improves pig health.
3 DF fermentation

Unlike ruminants, in which extensive fermentation occurs in

the rumen, in monogastric animals, nearly all DFs escape the

digestive process in the stomach and small intestine and pass

into the colon, which is the major site of fermentation (13, 40).

Studies have also found that substantial fermentation occurs in the

distal ileum, where certain species of bacteria reside (14). Before

fermentation starts, polysaccharides are broken down into smaller

forms, or into monosaccharides, by microbial hydrolytic enzymes in a

depolymerization process (13, 41). The rate of depolymerization

largely determines how quickly carbohydrates become available for

microbial fermentation (13). In addition, the degree of fermentability

is associated with the physicochemical properties of the DF, that is, its

solubility, water-holding capacity, and viscosity (41). Highly

branched DF has been shown to have a larger surface area, which
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makes it more readily digestible by microbial enzymes, and, therefore,

is more rapidly fermented (42).

The end products of DF fermentation (i.e., SCFAs) are considered

the main energy sources of intestinal cells, and promote immune

function and maintain intestinal health. The major site of SCFA

absorption is the large intestine, where approximately 90% of SCFAs

are metabolized (41). Acetates, propionate, and butyrate are the SCFAs

most discussed when investigating microbial fermentation metabolites.

The production of these major fermentation metabolites through

microbial fermentation is illustrated in Figure 1. Acetate is the most

abundant SCFA, accounting for approximately 90% of total SCFAs

(13). Butyrate plays key roles in the proliferation of mucosal epithelial

cells, and in strengthening the intestinal barrier, and is regarded as the

main energy source for colonic cells (43). Butyrate can be synthesized

by acetate and lactate when utilized by specific bacteria (44).

Furthermore, the concentration of SCFAs varies along the GIT, with

a lower SCFA concentration present from the cecum to the distal colon

(45). A low amount of propionate was reported because most

propionate is metabolized in the liver (46). Acetate was reported to

be the most abundant SCFA in peripheral circulation, and to mediate

the glucose metabolism and fatty acids utilization in skeletal muscle

(47). The fiber fermentation process, and SCFA metabolism pathways,

are reported and illustrated well in the study by Jha and Berrocoso (13).

Various studies have revealed that distinct DF characteristics can

affect SCFA outcomes. A higher soluble fraction leads to an increased

SCFA concentration in the small intestine, as soluble fibers are easily

fermentable. Insoluble fibers, however, are fermented in the more distal

parts of the GIT (48). Bai et al. observed that a higher concentration of

acetate was produced by the microbial fermentation of xylan and

xylooligosaccharide, whereas propionate and butyrate were produced

in higher concentrations by the microbial fermentation of b-glucan and
inulin (49); Ellner et al. conducted a study to compare the production of

SCFAs when pigs were fed rye and rapeseed meal, and when they were

fed wheat and soybean meal. The results showed that rye and rapeseed

meal led to higher concentrations of SCFAs in the pigs’ jejunums and

colons (50).

In conclusion, through DF fermentation, SCFAs are released as an

energy source and help to maintain intestinal health. Fermentability

and SCFA production largely depend on DF physical structures and

chemical properties. DF fermentation enables the interaction between

DFs and gut microbiota, which will be reviewed in the next section.
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4 DF-microbiota interaction and
intestinal health
4.1 Gut microbiota in pigs

In monogastric animals, three phyla, Bacillota, Bacteroidota, and

Pseudomonadota, generally accounting for over 1,000 species of

bacteria, predominate (13, 51). The species of bacteria colonizing the

GIT vary in different gut segments. Zhao et al. analyzed the microbial

population in four gut segments of matured pigs. They found that the

predominant genera in the small intestine were aerobes, or facultative

bacteria, whereas in the large intestine, the majority of the bacterial

population were anaerobes. Pseudomonadota and Bacillota were the

predominant phyla in the jejunum and ileum, and accounted for 70%

and 20% of the total population, respectively. In turn, in the cecum and

colon, Bacillota was the predominant phylum (> 75%), and

Pseudomonadota accounted for approximately 13% of the total

population (52). In general, the predominant bacteria along the GIT

are Streptococcus, Eubacterium, Lactobacillus, Clostridium, and

Propionibacterium (10). The gut microbiota profile in pigs is related

to multiple factors, including their age, breed, health status, and diet.

For newborn piglets, microbiota colonization mainly depends on their

exposure to bacteria, including the sow and the gut environment.

Escherichia coli and Streptococcus spp. are the initial colonizers, creating

an anaerobic environment that favors the growth of Bacteroides,

Bifidobacterium, Clostridium, and Lactobacillus. Lactobacillus

dominates the microbiota profile because of its beneficial effect in

inhibiting colonization by pathogens (53, 54). There is a dramatic

alteration in the gut microbiota composition of weaning piglets when a

new cereal-based diet is introduced, and this leads to the gut microbiota

profile can becoming more specific, as it has been shown that Prevotella

is more abundant and has a higher growth rate (55).

Fibers are broken down by microbiota and fermented into SCFAs

for host utilization. DF acts as a substrate in the fermentation process

and contributes to selective microbiota proliferation, resulting in the

alteration of gut microbiota composition. The section below gives an

in-depth overview of the alteration of microbiota composition

affected by DF in terms of related studies in recent years.

Furthermore, the factors involved in the DF–microbiota interaction

will be discussed.
FIGURE 1

Microbial fermentation process and SCFA production.
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4.2 Effect of DF on microbiota composition

During the continuous digestion process of nutrients, a decreased

amount of digesta flow enters the distal part of the GIT, leading to the

alteration of fermentation metabolites and microbiota composition (56).

Bacteria colonizing different GIT segments have been shown to have

spatial heterogeneities that exert distinct effects on host health. It should

be noted that the benefits derived from colonized bacteria are a result of

the contributions of the whole microbiota community, rather than the

effect of a single species (13). Spatial heterogeneity can be ascribed to

different nutrient supplies for microbiota colonization in different

segments (30, 57). Various studies have reported that the alteration of

gut microbiota can be largely attributed to different DF characteristics.

Generally, DF promotes the growth of bacteria species that are more

capable of fermenting fibers than other species. In addition, a probable

mechanism by which fibers can alter gut microbiota composition is that

DF causes retained digesta; thus, more time is available for the

proliferation of selective microbiota (13).

Wu et al. observed that Bacteroidota and Turicibacter were more

abundant with increased crude fiber content in both the cecum and

jejunum of growing pigs when soybean was the main fiber source (58);

Ellner et al. also found a higher abundance of Bacteroidota in the colons

of growing pigs fed with rapeseed meal (RSM) than in those fed with

soybean meal (SBM) (50). This might be explained by the greater

insolubility of an RSM-based diet, contributing to the growth of

Bacteroidota, which in turn has been shown to increase with

increased contents of resistant starch and maize bran, both of which

contain large insoluble fractions (59). Moreover, there is evidence that a

higher abundance of Bacteroidota is associated with weight loss (59, 60).

In the study of Ellner et al., pigs fed an RSM-based diet were observed

with reduced weight gain and higher abundance of Bacteroidota (58).

Conversely, Luo et al. found a lower abundance of Bacteroidota in the

colons of weaning pigs with increased galactose in the diet content when

using pectin as the main fiber source. This might be explained by the

high viscosity of pectin, leading to damage to the mucosal surface, thus

modulating colonic morphology and bacterial colonization (61).

Heinritz et al. observed a higher abundance of Lactobacillus in the

hindguts of growing pigs fed on diets containing a high content of

NDF, which was similar to the results of Chen, Loo, and Heinritz (62–

64), whereas it was observed that a lower abundance of lactobacilli in

the ileum was associated with increased galactose (65). Chen et al.

found higher abundances of Lactobacillus and bifidobacteria in the

ileum and colon, respectively, with increased NDF content, in pigs fed

wheat bran and pea fiber diets than in those fed a soybean fiber diet.

Lower E. coli abundance was also observed in the ileum of pigs that

were fed the wheat bran diet than in those fed the soybean fiber diet.

The results showed that increasing DF modulates the gut microbiota,

possibly in a pattern of promoting the growth of beneficial bacteria

(i.e., Lactobacillus and bifidobacteria), and suppresses the growth of

pathogenic bacteria (i.e., E. coli) (66).

Thus, those fiber-degrading species associated with the particular

physicochemical properties of targeting fibers can also affect bacterial

colonization. For instance, actinobacteria and Bacteroidota are both

common insoluble DF-degrading species, and their presence affects

the performance and health of their hosts. It has been shown that an

increased ratio of Bacillota-to-Bacteroidota reduces the incidence of

diarrhea and infections (57). The results of recent studies related to
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the effect of different fibers on the alteration of gut microbiota

composition of pigs at different growth stages are shown in Table 2.

The effect of DF on the alteration of gut microbiota composition

is associated with fermentation metabolites, particularly SCFAs

(Figure 2). Higher abundances of actinobacteria, and Bacillota or

Fibrobacteres, could promote butyrate production, as Bacillota and

actinobacteria are the dominant bacteria that produce butyrate (68).

Heinritz et al. observed a positive correlation between acetate and

butyrate production and colonic bifidobacteria and Lactobacillus.

Moreover, decreased enterobacteria in feces and increased

production of butyrate in the colon were observed with the

addition of wheat bran to pigs’ diets (62). SCFA production

influences pigs’ physiological and immune functioning; thus, the

variation in individual SCFA concentrations due to distinct degrees

of DF fermentation could provide insights into improving pig health

and performance. Therefore, the gut microbiota varies depending on

the pig life stage and GIT segment, displaying a spatially

heterogeneous phenomenon. Bacteria exhibit substrate preference

toward specific fiber characteristics, regulating the gut microbiota

composition by promoting the growth of bacteria that are more

capable of fermenting specific fibers. This resulted in the further

variation in SCFA concentrations.
4.3 Health-promoted effect of DF via gut
microbiota manipulation

The gut microbiota community is composed of a specific ratio of

various bacterial species, in which species alternately restrict each

other’s function and depend on each other to create an ecological

balance. An imbalance in the microbiota community causes

gut dysbiosis, which contributes to the development of diseases

in pigs, including respiratory infection (73), postweaning diarrhea

(74), impairment of the gut–liver axis (75), and intestinal

barrier dysfunction (76). The fact that DF can alter microbiota

composition indicates that the gut microbiota can be manipulated

by DF as a way of improving the health of pigs. It has been reported

that insufficient DF intake disturbs the microbiota community,

leading to the damage of mucosal layers and increased pathogen

susceptibility (77). Wang et al. observed that DF deprivation caused

the consistent extinction of Bifidobacterium and Lactobacillus, and

decreased SCFA concentration in pig ileum and feces, whereas xylan

supplementation extenuated dysbiosis by selectively promoting the

growth of Bifidobacterium pseudocatenulatum in the large intestine.

Moreover, a positive correlation was observed between SCFA

concentration and B. pseudocatenulatum abundance (63), indicating

that the restoration of dysbiosis is induced by DF deprivation.

Onarma et al. have investigated the beneficial effects of a high-fiber

rapeseed diet by replacing soybean meal (SBM) with rapeseed meal

(RSF). The authors found that RSF favored the growth of beneficial

bacteria, including Lachnospira and Coprococcus, and suppressed the

growth of opportunistic pathogenic bacteria, suggesting that RSF has

an anti-inflammatory effect and that it reduces the risk of dysbiosis in

weaned pigs (78). Therefore, DF can act as a bioactive compound to

exert a regulative effect on gut microbiota by attenuating dysbiosis,

promoting or depressing specific microbial abundances, and

normalizing the gut environment.
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TABLE 2 Results of studies investigating the effect of fiber on alternation of gut microbiota composition.

Fiber
source Treatment Pig stage Sampling

site Alteration of microbiota
Health/
growth

outcomes
Reference

SB
CF + 1.8%, 3.1%, and

4.4%
Duroc × Bamei, averaging 3
months

Jejunum,
cecum

↑Bacteroidota and Turicibacter – (64)

WB
NDF + 150.5 g/

kg DM
German Landrace × Piétrain,
averaging 3 months

Rectum
↑Lactobacillus and bifidobacteria; and
↓Enterobacteriaceae

– (67)

WB NDF + 1.5%
Large
White × Landrace × Pietrain,
weaned early

Colon ↓Enterobacteria
↓Mortality;
and↓diarrheal
rate

(62)

PF and WB
+ xylose 6.92%,

arabinose 5.52%; and
+ glucose 5.89%

Duroc × Landrace × Yorkshire,
weaned at 28 ± 2 d

Cecum ↑Lactobacillus and bifidobacteria ↓F/G (25)

SB + galactose 1%
Duroc × Landrace × Yorkshire,
weaned at 28 ± 2 d

Ileum,
cecum

↓Lactobacillus (ileum); and ↑E. coli
(cecum)

↓ADFI (25)

CB and WB TDF + 20 g/kg DM
Duroc × Landrace × Yorkshire,
weaned at 28 days

Rectum
↑Actinobacteria, Bacillota or
Fibrobacteres

↑ADG; and↓F/G (68)

WB TDF + 2.4% Suhuai castrated boars
Cecum,
colon

↑Acetitomaculum and Butyrivibrio
↑ADG; and
↓F/G

(61)

PF NDF + 3%
Duroc × Landrace × Yorkshire,
weaned at 28 days

Colon ↑Lactobacillus
↑ADFI; and
↓F/G

(49)

Rye and wheat
SDF + 47%;
sNSP + 118%

German Landrace, weaned at 28
days

Jejunum,
colon,
rectum

↑Bacillota; and
↓Pseudomonadota

– (69)

RSM and SBM
iNSP + 15%; A/X-

ratio + 35%
German Landrace, weaned at 28
days

Jejunum,
colon, and
rectum

↓Bacillota;
↑actinobacteria, Pseudomonadota
(jejunum); and
↑Bacteroidota (colon)

– (69)

PH and OB
IDF + 86 g/kg, 80 g/

kg
Duroc × Landrace × Yorkshire,
32.42 ± 1.95 kg

Ileum, colon
↓Clostridiaceae (ileum) and
Streptococcus (colon)

↓BW, ADFI,
and ABWG;
and
↑intestinal
barrier and
immune
function

(61)

AG CF + 1.11%
Duroc × Landrace × Large
White, aged 35 days

Duodenum,
jejunum, and
cecum

↑Paenibacillus (duodenum);
↑Paenibacillus, Lactococcus,
Enterococcus, and ↓Mycoplasma;
(jejunum); and
↓Helicobacter (cecum)

↓Diarrheal rate (65)

OG CF + 1.1%
Duroc × Landrace × Large
White, aged 35 days

Duodenum,
jejunum, and
cecum

↑Paenibacillus (duodenum);
and↓Helicobacter (cecum)

↓Diarrheal rate (65)

PF, WB, and
SB

NDF + 8.2%
Duroc × Landrace × Yorkshire,
weaned at 28 days

Ileum, colon
↑Lactobacillus (ileum);
and↑Bifidobacterium (colon)

↑Intestinal
barrier
function

(70)

WB and SB NDF + 27.4%
Duroc × Landrace × Yorkshire),
weaned at 28 days

Ileum ↓E. coli
↑Intestinal
barrier
function

(70)

KF, LC, and CS SDF + 55%, 60% Lactating sows—in vitro Rectum ↑Anaerovibrio / (71)

Xylan Xylan + 5.59% Growing barrow, 59.7 ± 2.6 kg Colon ↑Bifidobacterium pseudocatenulatum
Prevent
dysbiosis

(63)

Phytolin + fiber Phytolin + fiber + 1 g Unknown Colon
↑Lactobacillus and Catenibacterium;
and↓Mogibacterium and Escherichia–
Shigella complex

– (72)
F
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ABWG, average body weight gain; ADG, average daily gain; ADFI, average daily feed intake; AG, alfalfa meal; AX, arabinoxylan; A/X ratio, arabinose/xylose; BW, body weight; CB, maize fiber; CL,
cellulose; F/G, feed-to-gain ratio; GM, glucomannan; KF, konjac flour; LC, lignocellulose; MCS, modified cassava starch; OB, oat bran; OG, concentrated fiber; PEC, pectin; PF, pea fiber; PH, pea hull;
phytolin + fiber, polyphenol-rich sugarcane extract, sugarcane fiber; RSF, rapeseed hulls; RSM, rapeseed meal; SB, soybean; SBM, soybean meal; WB, wheat bran.
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1095740
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1095740
4.4 A Hierarchical view of fiber specificity
related to microbiota accessibility

Fibers with high specificity can be accessed and fermented by only

a restricted number of bacteria, resulting in the promotion of specific

bacterial growths, regardless of the environmental condition (79).

Rogers et al. observed the response of Bacteroides thetaiotaomicron in

the human gut to 12 carbohydrates to investigate its utilization

preference. The results showed that certain carbohydrates were

prioritized in the utilization process of B. thetaiotaomicron (80).

Moreover, the selective accessibility and utilization of bacteria for

specific fibers enables bacterial growth. In terms of this fiber

specificity, a hierarchical view has been proposed to classify fibers

as either low hierarchy or high hierarchy. Low-hierarchy fibers, such

as inulin, can be accessed and fermented by a number of bacterial

species (79). Thus, competition is present among bacterial species in

the fermentation process, depending on their ability to ferment fibers.

In the case of high-hierarchy fibers, which generally contain a high

insoluble fraction, a limited number of bacteria can access and

effectively ferment them. DFs are classified as high hierarchy,

mostly because of their complex physicochemical structure, that is,

their insoluble matrices and linkage and branch types (81, 82). In

general, the more complex the structures are, the fewer bacteria can

access and ferment them. This can be explained by the physical

property, that is, their degree of insolubility, which can hinder the

accessibility and fiber degradation by enzymes (83). Complete

saccharification becomes more difficult when many microbial

enzymes are required, because of their complex chemical structure.

Among high-hierarchy fibers, competition was much less severe, and

the promotion of target bacterial growth was more pronounced than

that of low-hierarchy fibers (79).
5 DF–microbiota interaction and
intestinal health

Intestinal health is determined by a combination of factors,

including diet supplementation, mucosa integrity, gut microbiota,

and the immune system (13). Metabolites derived from microbial

fermentation can be considered a result of the interaction between DF

supplementation and gut microbiota, and play a critical role in
Frontiers in Immunology 07
facilitating intestinal health. In this section, we will primarily

discuss the effects of SCFAs on intestinal health.
5.1 Maintenance of intestinal integrity and
barrier function

SCFAs produced by microbial fermentation of specific DFs result

in distinct functions on host health. Cellulose present in oat hulls can

produce SCFAs to improve nutrient digestibility and intestinal

integrity, and modulate gut microbiota (14). SCFAs, particularly

butyrate, produced in the hindgut, can meet 60%–70% of the

energy requirements for colonic cells and are largely absorbed in

weaning and growing pigs (84, 85). The efficient utilization of energy

enabled by SCFAs requires the normal function of the intestinal

mucosa, largely depending on the colonic cells that exert the main

function. Therefore, the function of SCFAs is closely associated with

intestinal mucosa integrity. SCFAs can regulate colonic cell

proliferation and growth, thus maintain normal absorption and

metabolism functions (85). Furthermore, SCFAs, particularly

butyrate, are crucial in enhancing intestinal barrier function, which

acts as the first line of defense against pathogens (13). Maintaining the

intestinal physical barrier is achieved by promoting global cell

differentiation and mucin-related gene expression (86, 87), and

enhancing mucus excretion and thickness (88).
5.2 Enhancement of immune function and
prevention of inflammation

The potential mechanism of the anti-inflammatory effect of DF is

associated with the gut microbiota and microbiota-derived SCFAs. For

instance, it has been reported that DF was involved in addressing

inflammatory colonic damage, possibly via the activity of acetate,

which may play a role in the regulation of neutrophil recruitment, as

shown in an experimental model of colitis (89). SCFAs enhance immune

function by interacting with immune cells, such as enterocytes, dendritic

cells, and helper T cells, consequently affecting adaptive immunity and

the inflammatory response (84). In turn, SCFAs facilitate the

development of leukocytes and decrease colonic pH, which favor the

growth of beneficial bacteria that produce SCFAs (90). Fang et al. found

that supplementation with 1 g/kg sodium butyrate in the diet can lower
FIGURE 2

An example of gut microbiota alteration facilitated by the microbial fermentation of DF.
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the incidence of diarrhea in pigs and boost their immunity after

weaning. This can be explained by the fact that sodium butyrate

mitigates weaning stress by increasing the serum IgG concentration

and the IgA+ cell population in the distal small intestine, and maintains

mucosal integrity (91). The mRNA expression levels of tight junction

proteins associated with wound healing in the intestine were found to be

increased by sodium butyrate supplementation in the diet (92).

Furthermore, it was found that SCFAs initiate innate immune

responses when exposed to preadipocytes, implying that the presence

of SCFAs is beneficial to immune modulation during inflammation. To

prevent excessive inflammation, SCFAs promote the differentiation of

regulatory T cells that can suppress effector T-cell function and increase

IL-10 production (93). Thus, SCFAs could play an essential role in the

maintenance of a healthy intestine by regulating immune responses and

preventing inflammation.
5.3 Immunomodulatory effect
in microbial infection

A variety of studies have demonstrated the immunomodulatory role

of SCFAs in bacterial infections (94) (95). It was found that acetate could

enhance the innate immune response to Clostridium difficile by

interacting with neutrophils and innate lymphoid cells (96);

furthermore, hosts infected with C. difficile were detected to have

lower levels of butyrate-producing bacteria (97). An increase in

butyrate concentrations diminishes C. difficile colonization, suggesting

that butyrate has an effective role to play in the prevention of bacterial

infections (97, 98). The rate of butyrate-producing bacteria in fecal

samples was found to decrease under inflammatory bowel disease (IBD)

(99). When IBD occurs, intestinal macrophages are largely replaced by

monocyte cells circulating in the blood (99, 100). These monocytes

eventually achieve maturation in the intestinal lamina propria and

obtain bactericidal properties. Butyrate was reported to promote

bactericidal properties by stimulating the metabolic shifts of

macrophages, and initiating the production of antimicrobial peptides

to increase bactericidal activity (100). Studies conducted on human

subjects showed that butyrate could act as an anti-inflammatory factor

by suppressing nuclear factor kappa B (NF-kB) and interferon gamma

(IFN-g). NF-kB signaling pathways are crucial to the immune response

against microbial pathogens, as they are involved in the transcriptional

modulation of cytokines, that is, tumor necrosis factor alpha (TNF-a),
which actively interacts with the prevention of microbial

activity in infections such as Mycobacterium tuberculosis (101).

Furthermore, feeding fibers is an effective way to enrich the SCFA-

producing bacterial population via extensive microbial fermentation.

Overall, SCFAs have been shown to be indirectly involved in

immunomodulation via molecular pathways and cellular processes to

control and reduce the severity of microbial infection, suggesting the

vital role of SCFAs in host−pathogen interactions.
5.4 DF, gut microbiota, and
intestinal pathology

GIT impairments, including constipation, drooling, dysphagia,

and gastroparesis, have been reported in Parkinson’s disease (PD) in
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humans (102–104). Emerging studies have observed gut microbiota

alterations in patients with PD. For instance, Akkermansia and

Lactobacillus were increased (105, 106), and Prevotella and

Faecalibacterium were decreased (105, 106) in PD patients.

Prevotella and Faecalibacterium are SCFA-producing bacteria

species; hence, their decreased presence decreases SCFA

concentration in PD patients (107). This implies that there is a

potential correlation between gut microbiota alteration and

intestinal pathology that further impacts SCFA production.

Bishehsari et al. found that colon polyposis was associated with gut

microbiota dysbiosis, characterized by decreased SCFAs and bacteria,

in a rat model. High-fiber supplements have been regarded as an

effective treatment, leading to increased SCFA concentrations, and,

therefore, a reduction in the severity of symptoms associated with

polyposis (108). The protection against colon carcinogenesis could be

explained by the fact that DF exhibits a prebiotic effect and favors the

growth of beneficial bacteria. Furthermore, increased SCFA

production has been reported to modulate cancerous epithelial

cells, and exert anti-inflammatory effects in the colon (108).

Therefore, existing evidence has revealed the interplay between DF,

gut microbiota, and intestinal pathology, and has shown that

fermentation metabolites can act as regulatory compounds in the

intestinal pathological process.
5.5 Maintenance of an anaerobic
environment

Microbial fermentation is a process in which the gut environment

shifts from being aerobic to anaerobic. SCFAs, particularly butyrate,

play key roles in maintaining the gut anaerobic environment and gut

homeostasis. During dysbiosis in the gut environment, DF

supplementation provides an opportunity for anaerobic bacteria to

use fermentative substrates to produce butyrate (13). In homeostatic

situations, intestinal tissues utilize butyrate as an energy source

through b-oxidation, a process of consuming oxygen, contributing

to the maintenance of an anaerobic environment (109, 110).

Alternatively, intestinal cells gain energy by anaerobic glycolysis,

which can increase the oxygen concentration in the gut

environment, resulting in the proliferation of harmful facultative

bacteria, such as Salmonella (110).
6 Concluding remarks

In this review, we addressed recent findings regarding different

DFs’ alteration of the gut microbiota profile. The components and

physicochemical properties of DF, such as solubility, have been an

important factor affecting fiber-degrading bacterial growth, and,

consequently, influencing host performance and health. This

results in distinct SCFA production, which plays a vital role in

influencing intestinal health, since SCFAs maintain normal

intestinal function, participate in immune regulation against

inflammation and microbial infection, and maintain gut

homeostasis. A variety of studies have demonstrated the
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beneficial effect of DF, namely its promotion of SCFA-producing

bacteria, which in turn promotes intestinal health and pig health

and performance. This supportive evidence has driven us to gain

new insight into proper fiber selection when it is associated with

different pig life stages and health statuses to optimize the gut

microbiota profile. However, the adverse effects of fibers, such as

their anti-nutritional effects, binding toxins, and reduction of

nutrient digestibility, should also be taken into consideration.

Relevant future research could emphasize DF supply from the

perspective of optimizing the gut microbiota profile, thus

improving DF feeding strategies in future practice.
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