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T cells, T-follicular, T-regulatory
and T-follicular regulatory cells
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Introduction: Germline CARD11 gain-of-function (GOF) mutations cause B cell

Expansion with NF-kB and T cell Anergy (BENTA) disease, whilst somatic GOF

CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to

30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma

(ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their

frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF

mutations are poorly understood.

Methods: Here, we studied B and T lymphocytes in mice with a germline Nethyl-

N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation

identified in DLBCL and modifying a conserved region of the CARD11 coiled-

coil domain recurrently mutated in DLBCL and PTCL.

Results and discussion: Our results demonstrate that CARD11.M365K is a GOF

protein that increases B and T lymphocyte activation and proliferation following

antigen receptor stimulation. Germline Card11M365K mutation was insufficient

alone to cause B or T-lymphoma, but increased accumulation of germinal center

(GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused

cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T

follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels

of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as

an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They

highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is
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recurrently mutated in T cell malignancies that are often aggressive and

associated with variable clinical outcomes.
KEYWORDS
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1 Introduction

Nuclear factor-kB (NF-kB) signaling downstream of the B or T

cell receptor (BCR or TCR) requires the MAGUK family member

Caspase Recruitment Domain-containing protein 11 (CARD11) (1)

and its phosphorylation by protein kinase C (PKC) (2, 3). CARD11

forms a scaffold to recruit signaling partners B cell lymphoma/

leukemia 10 (BCL10) and mucosa-associated lymphoid tissue

lymphoma translocation protein 1 (MALT1) (4) into the CBM

complex, which relays antigen receptor signals to NF-kB and

activator protein 1 (AP1)-cJUN (1, 5–8).

CARD11 function is required for B and T cell immunity. In

mice, germline CARD11 deficiency or loss-of-function (LOF)

disrupt B cell development and humoral immunity (9–12),

disrupt T cell NF-kB activation, proliferation and IL-2 production

following TCR and CD28 stimulation (9–12) and perturb thymic

(though not peripheral [13)] Treg development in response to TCR

(13, 14) and IL-2 signaling (15). In hypomorphic Card11

“unmodulated” mice, partial reduction of TCR-NF-kB signaling

causes a recessive phenotype of hyper-IgE and atopy (10) driven by

reduced Treg numbers and a gradual and selective expansion of IL-

4-producing TH2 cells (16). Similarly, dominant-negative

heterozygous CARD11 mutations in humans skew T cells towards

a TH2 phenotype and cause severe atopic disease (17, 18) as well as

common variable immunodeficiency (CVID), cutaneous viral

infections, lung disease and characteristics reminiscent of immune

dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX)

(19). Homozygous germline CARD11 truncations cause combined

immunodeficiency, a developmental block at the B cell transitional

stage and hypogammaglobulinemia (20, 21).

CARD11 gain-of-function (GOF) mutations also cause

pathology. Heterozygous germline GOF CARD11 mutations cause

B cell Expansion with NF-kB and T cell Anergy (BENTA), a rare

monogenic disease characterized by B cell lymphocytosis and

aspects of primary immunodeficiency including recurrent and

opportunistic infections (22–29). In addition, somatic CARD11

GOF mutations recur in germinal center B cell-type (GCB) and

activated B cell-like (ABC)-diffuse large B cell lymphoma (DLBCL)

(30, 31), an aggressive subset of DLBCL (32) characterized by

constitutive NF-kB activation (33, 34). ABC-DLBCL harbor

recurrent somatic GOF mutations in the BCR-NF-kB pathway

(30, 35), including CARD11 (31), and require CARD11 and the

CBM complex for their survival in vitro (34). The recurrent

B-lymphoma CARD11 mutations cluster in the CARD and
02
coiled-coil (CC) domains and disrupt the intrinsic ‘auto-inhibited’

conformation of CARD11 (36), uncoupling it from activating

signals and causing it to form aggregates with other CARD11

proteins, MALT1 and BCL10, and thus activate NF-kB and AP1/

cJUN (31, 36, 37).

CARD11 is the fourth most mutated gene in adult T cell

leukemia/lymphoma (ATL (38, 39);), a CD4 T cell neoplasm (40)

that arises exclusively in individuals previously infected with

Human T cell Lymphotropic Virus type 1 (HTLV-1 (41, 42);). Up

to 90% of ATL (38) harbor somatic mutations in TCR-NFkB
signaling molecules including PLCG1, PRKCB, VAV1 and

CARD11. 24% of ATL harbor CARD11 mutations predicted to

constitutively activate CARD11, and clustered in the CC domain or

around the E626 hotspot in the PKC-responsive inhibitory domain

(38). Moreover, 12% of ATL harbor CARD11 gene amplifications

and 8% harbor small intragenic deletions in the CARD11 inhibitory

domain (38). Up to 22.5% of Cutaneous T Cell Lymphomas (CTCL)

harbor CARD11 amplifications (43) and up to 24% of Sezary

syndrome, the aggressive form of CTCL, harbor CARD11 GOF

mutations clustered in the CC domain or surrounding the E626

hotspot (44–46). PTCL are often associated with very poor

outcomes (47, 48) and are thought derived from activated CD4

and TREG cells (49, 50).

The study of CARD11 mutations in B- and T-lymphomas is

complicated by the many genomic alterations acquired by these

cancer cells (38, 51). Previous studies have used mouse models to

reveal B cell-intrinsic effects of GOF CARD11.L232LI (52),

CARD11.L251P (53), CARD11.K215M or CARD11.E134G (54).

These studies reported variable effects on B cells of different Card11

mutations, and the wide spectrum of GOF CARD11mutations have

diverse biochemical effects (55). The graded, variable effects of

hypomorphic Card11 mutation within distinct T cell populations

could not be predicted from knockout studies (16). The effects of

hypermorphic CARD11 mutations are thus similarly hard to predict

a priori. Collectively, the above observations highlight open

questions regarding qualitative differences in NF-kB activation by

CARD11mutations, and possible discontinuity in the graded effects

of CARD11 GOF mutations within different cell types. Crucially, to

our knowledge, no studies have reported T cell-intrinsic effects of

CARD11 GOF, despite the striking recurrence of somatic CARD11

GOF mutations in PTCL.

Here, we addressed these open questions by analyzing B and T

lymphocytes in mice with a germline Card11M365K mutation

identical to CARD11M365K previously identified in DLBCL (30)
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FIGURE 1

Gain-of-function Card11M365K germline mutant mice have increased numbers of germinal center B cells. (A). Schematic of CARD11 protein domains
showing location of germline GOF mutations in healthy donors from the MGRB database (grey) or individuals with BENTA disease (red (23–29);), and
somatic GOF mutations identified in adult T cell leukemia/lymphoma (ATL (38, 56–58); black), cutaneous T cell lymphoma not otherwise-specified
(CTCL-NOS) or Sezary syndrome (orange (43–46, 59–61);), diffuse large B cell lymphoma (DLBCL (30, 31, 51, 62–64); green) or in one individual
with primary Sjögren’s syndrome (pink (65);). Stars indicate the Card11M365K or other, previously published (52–54), mouse models of CARD11 GOF.
(B). Top, Expected and observed numbers and percentages of offspring of the indicated genotypes from intercrossed heterozygous parents.
Statistical testing for no difference relative to an expected 1WT:2HET:1HOM ratio p=0.4328 by Chi-Square test with n=2 degrees of freedom.
Bottom, Kaplan-Meier survival curve for mice of the indicated genotypes, calculated using the product-limit method accounting for censored mice.
(C). Symbols denote total number of B cells in the inguinal lymph nodes (top) or spleen (bottom) from individual mice of the indicated genotypes.
(D). Left, Representative flow cytometric analysis showing the percentage of CD38low CD95+ germinal center (GC) B cells gated on splenic B cells in
non-immunized mice. Right, percentage or total number of GC B cells in the inguinal lymph nodes (iLN; top) or spleen (bottom) from mice of the
indicated genotypes. (E). Left: Schematic of experimental workflow. Middle: Representative flow cytometric analysis showing the percentage of GC B
cells gated on splenic B cells in mice 7 days post-immunization with sheep red blood cells (SRBCs). Right: Total number per spleen of GC B cells 5,
7, 12 or 15 days post-SRBC immunization. (F). Rag1KO/KO Card11+/+ mice were irradiated and reconstituted with Ptprca/a Card11+/+ (black fill) bone
marrow in a 1:1 mixture with Ptprcb/b Card11+/+ (grey fill) or Card11M365K/M365K (red fill) bone marrow, and sacrificed 7 days post-SRBC immunization.
Graphs show B cells as a percentage of Ptprca/a or Ptprcb/b splenic leukocytes, or GC B cells as a percentage of Ptprca/a or Ptprcb/b B cells, in mice
that received bone marrow of the indicated genotypes. (C-E). Statistical comparisons made by t-test, corrected for multiple comparisons using the
Holm-Sidak method. Data are representative of n > 2 independent experiments with n > 5 mice per group. (E). Data are pooled from 3 independent
experiments. Comparison made after excluding the one high outlier. (F). Statistical comparisons made by paired t-test. not significant (n.s) p > 0.05;
* p < 0.05; ** p < 0.01; *** p < 0.001.
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and modifying a conserved region of the CC domain recurrently

mutated in B-lymphomas (31) and T-lymphomas (38, 39, 44–46)

(Figure 1A). CARD11.M365K increased activation and

proliferation of B and T lymphocytes following antigen-receptor

stimulation. Card11M365Kmice had increased numbers of GC B cells

before and at multiple timepoints during a T cell-dependent

response to immunization. Card11M365K mutation was insufficient

to cause lymphoma, or B cell lymphocytosis as observed in

individuals with BENTA disease. However, Card11M365K mutation

caused mutant allele dose-dependent, cell-autonomous

accumulation of T follicular (TFH), T regulatory (TREG) and T

follicular regulatory (TFR) cells over-expressing stimulatory and

inhibitory checkpoint molecules. Our findings add to our

understanding of CARD11 as a critical signaling protein in

lymphocytes. They reveal TFH, TREG and TFR cells as T cell

populations particularly sensitive to CARD11 signaling, and help

to explain the recurrence of somatic GOF CARD11 mutations in

aggressive human T-lymphomas arising from CD4, TREG and

TFH cells.
2 Materials and methods

2.1 Mice

All animals care, housing and experiments were performed in

accordance with approved protocols of: (1) the ANU National

University Animal Experimentation Ethics Committee, for mice on a

C57BL/6 NCrl background; (2) the Garvan Institute of Medical

Research/St Vincent’s Hospital Animal Ethics Committee, for mice on

a C57BL/6 JAusb background. All experiments conformed to the current

guidelines from the Australian Code of Practice for the Care and Use of

Animals for Scientific Purposes. Within independent experiments,

Card11 wild-type and mutant animals were sex- and age-matched.

Card11M365K mice harbor a germline A to T nucleotide

substitution at position 140,889,709 on chromosome 5, resulting

in a methionine to lysine M365K substitution in the highly

conserved region of the coiled-coil domain of CARD11.

Card11M365K mice were obtained by exome sequencing of first-

generation offspring of C57BL/6 mice exposed to N-ethyl-N-

nitrosourea (ENU; databases.apf.edu.au/mutations) and bred to

homozygosity on a C57BL/6 Ncrl background. Card11M365K mice

were rederived onto a C57BL/6 JAusb background upon transfer

from the Australian National University (ANU) Australian

Phenomics Facility (APF) to Australian BioResources (ABR;

MossVale, Australia).

Card11loco mice harbor 3 distinct single-nucleotide variants in

Card11 introns 2, 10 and 20 that cause a complete loss of CARD11

protein expression (56). Card11loco mice were also identified by

exome sequencing of first-generation offspring of C57BL/6 mice

exposed to ENU (databases.apf.edu.au/mutations). The mice were

bred to homozygosity and maintained on a C57BL/6

NCrl background.

C57BL/6 NCrl, C57BL/6 JAusb, B6.JSL-PtprcaPepcb (CD45.1)

and B6.129S7-Rag1tm1Mom/J (Rag1KO/KO) mice were purchased

from ABR.
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2.2 Flow cytometry

Single-cell suspensions were prepared from mouse spleen, bone

marrow, inguinal lymph nodes, peritoneal cavity and blood. 1-4 x

106 cells in PBS 2% FCS were transferred into appropriate wells of a

96-well U bottom plate. To prevent non-specific antibody binding,

cells were incubated with Fc blocking antibody for 20 min at 4°C in

the dark. Cells were then incubated with antibodies for 30 min, on

ice and in the dark. To fix cells, they were incubated in 10% formalin

(Sigma-Aldrich) for 15 min at 4°C, and washed and resuspended in

PBS 2% FCS. To stain for intracellular nuclear proteins, cells were

fixed and permeabilised using the manufacturer’s instructions and

the eBioscience Transcription Factor Staining kit. Stained single-cell

suspensions were acquired on the BD LSRFortessa™.

Where appropriate, following extracellular antibody staining,

immune populations were sorted by fluorescence-activated cell

sorting (FACS) on a FACS Aria III (BD Biosciences).
2.3 Antibodies used for flow cytometry

Antibodies used for flow cytometric study of mouse organs are

listed in Table 1.
2.4 Retroviral gene transfer system

To evaluate the effect of the CARD11.M365K substitution, we

used a retrovirus gene transfer and culture system to introduce into

primary activated B cells the following: CARD11.M365K or as

controls wild-type CARD11, BENTA-associated (27–29)

CARD11.G123S, CARD11.E134G or empty vector expressing

EGFP only.

Briefly, replication-defective retrovirus particles were produced

by the Pheonix ecotropic helper-free retrovirus packaging cell line

(ATCC; CRL-3214), and transduction efficiency measured by flow

cytometric measurement of EGFP expression. C57BL/6 B cells were

stimulated with 10µg/mL goat anti-mouse IgM (Jackson

ImmunoResearch) and 10µg/mL anti-CD40 (FGK4.5; BioXCell)

for 24 hours, followed by spin-infection with retrovirus supernatant

containing DOTAP (Roche). The cells were then cultured in fresh

RPMI 10µg/mL anti-CD40 for 36 hours, washed with RPMI and

resuspended in cRPMI at a density of 106 cells/mL.

The number of live EGFP+ cells was determined by

hemocytometer counting of trypan blue–negative cells in each

culture, and flow cytometric analysis of the same cells.
2.5 T cell proliferation assays

Approximately 20 x 106 total splenocytes were incubated for 5

min at room temperature in 1 mL RPMI-1640 (Gibco) containing

Cell Trace Violet (CTV; Invitrogen) at a final concentration of 20

mM, followed by three washes in complete RPMI (RPMI-1640
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TABLE 1 Antibodies used for flow cytometric analyses of mouse hematopoietic cells.

Cat. number Antibody Fluorochrome Company Clone

122007 CD28 FITC BioLegend E18

100204 CD3 FITC BioLegend 17A2

100217 CD3 PerCP Cy5.5 BioLegend 17A2

563331 CD4 BV786 BD Biosciences GK1.5

564306 CD4 BUV737 BD Biosciences SK3

17-0051-81 CD5 APC Thermo Fischer 53-7.3

563796 CD8 BUV395 BD Biosciences 53-6.7

557654 CD8 APC Cy7 BD Biosciences 53-6.7

45-0114-82 CD11c PerCP/Cy5.5 eBioscience N418

115546 CD19 BV510 BioLegend 6D5

553818 CD21/35 FITC BD Biosciences 7G6

101614 CD23 PE/Cy7 BioLegend B3B4

101820 CD24 Pacific Blue BD Biosciences M1/69

102030 CD25 PerCP Cy5.5 BioLegend PC61

558642 CD25 PE BD Biosciences 7D4

557192 CD25 APC BD Biosciences PC61

562768 CD38 BV421 BD Biosciences Ab90

553270 CD43 FITC BD Biosciences S7

563058 CD44 BV605 BD Biosciences IM7

103020 CD44 Pacific Blue BioLegend IM7

553133 CD44 FITC BD Biosciences IM7

564449 CD45R/B220 BUV737 BD Biosciences RA3-6B2

104438 CD62L BV605 BioLegend MEL-14

560513 CD62L PerCP Cy5.5 BD Biosciences MEL-14

104508 CD69 PE BioLegend H1.2F3

740877 CD86 BV786 BD Biosciences GL1

17-5892-83 CD93 APC eBioscience AA4.1

17-1522-80 CD152 (CTLA-4) APC Thermo Fischer UC10-4B9

12-9949-81 CD278 (ICOS) PE Thermo Fischer C398.4A

313529 CD278 (ICOS) APC/Cy7 BioLegend C398.4A

25-9985-82 CD279 (PD1) PE Cy7 Thermo Fischer J43

551892 CD279 (PD1) PE BD Biosciences J43

551961 CXCR5 Purified BD Biosciences 2G8

551960 CXCR5 Biotin BD Biosciences 2G8

126406 FoxP3 AF488 BioLegend MF-14

25-5773-82 FoxP3 PE/Cy7 Thermo Fischer FJK-16s

48-5773-80 FoxP3 eF450 Thermo Fischer FJK-16s

565988 IgD BUV395 BD Biosciences 11-26c.2a

559750 Ig, k light chain Biotin BD Biosciences 187.1

(Continued)
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containing 10% heat-inactivated fetal calf serum (HI-FCS), 2%

Penicillin-Streptomycin-Glutamine (Gibco), 0.1% 50 mM 2-

Mercaptoethanol). CTV-labelled splenocytes were plated at a

density of 1 x 106 cells per mL and incubated for 3 to 5 days in

complete RPMI alone or containing 10 mg/mL anti-CD3 and 10 mg/
mL anti-CD28. Cell divisions were enumerated by flow cytometric

measurements of the fluorescence intensity of CTV.
2.6 In vitro analysis of CARD11M365K and
CARD11G123S function

CARD11 mutations M365K and G123S were introduced into

the corresponding mouse Card11 sequence using PCR-based site-

directed mutagenesis. The coding sequences for Card11 and its

variants were fused with the mutant ecDHFR sequence (kindly

provided by Dr Wandless, Stanford university) in mammalian

expression vector pcDNA3.1+ (66). HEK293 cells were

transfected with expression vectors for ecDHFR-CARD11

mutants and reporter plasmids expressing firefly luciferase and

Renilla luciferase under NF-kB and thymidine kinase promoters,

respectively (pGL4.32 and pGL4.74 from Promega). The expression

of CARD11 variants was induced by the addition of 10 mM

trimethoprim (TMP). The transfected cells were lysed 5 hr after

TMP addition, and luciferase activity was measured by Dual-

Luciferase Reporter Assay (Promega).
2.7 Th differentiation assay

Sorted Card11M365Kmutant or wild-type naïve CD4 T cells were

sorted to high purity by FACS, and cultured in flat bottom 96-well

plates coated with 4 mg/mL anti-CD3 (BioLegend), in RPMI1640

(Life technologies) supplemented with 10% heat inactivated FCS

(Life technologies), 5×10-5 M 2-ME, 0.1mM non-essential amino

acids, 1mM sodium pyruvate, 10mM HEPES, 100u/mL penicillin,

100ug/mL Streptomycin, 100ug/mL Noromycin (all from Sigma) at

a density of 0.5 ×106 cells/mL.

The naïve CD4 T cells were cultured for 4 days in the following

polarizing conditions: Th0 (1 mg/mL anti-CD28, 5 mg/mL anti-

TGFb, 5 mg/mL anti-IL-4, 5 mg/mL anti-IFNg); Th1 (1 mg/mL anti-

CD28, 5 mg/mL anti-TGFb, 5 mg/mL anti-IL-4, 10ng/mL IL-12);

Th2 (10ng/mL IL-4, 1 mg/mL anti-CD28, 5 mg/mL anti-TGFb, 5 mg/
Frontiers in Immunology 06
mL anti-IFNg); Th17 (20ng/mL IL-6, 1ng/mL human TGFb, 5 mg/
mL anti-IFNg, 5 mg/mL anti-IL-4, 1 mg/mL anti-CD28).

After 4 days of culture, cells were stimulated with PMA (50ng/

mL) and ionomycin (375ng/mL) for 6 hrs. Brefeldin A (10 mg/mL)

was added to each well after 2 hours of stimulation. Cells were

harvested, washed and stained with Zombie Aqua Viability dye

(BioLegend), fixed with 2% formalin, permeabilized with saponin

(0.1%), and stained intracellularly with mAbs directed against

TNFa, IFNg, IL17A, IL-2, IL5, IL-4.
2.8 Mixed bone marrow chimeras

Age- and sex-matched Card11+/+ Rag1KO/KO C57BL/6J

recipient mice were irradiated with one dose of 425 Rad from an

X-ray source (X-RAD 320 Biological Irradiator, PXI). Recipient

mice were then intravenously injected with 4 x 106 bone

marrow cells consisting of a 1:1 mixture of Card11+/+ C57BL6

CD45.1+ (Ptprca/a) bone marrow cells and CD45.2+ (Ptprcb/b)

bone marrow cells that were Card11+/+ or Card1M365K/M365K.

7 weeks were allowed for immune reconstitution before

intravenous immunization of recipient mice with 2 x 108 SRBCs.

The immunized chimeric mice were sacrificed 7 days

post-immunization.
2.9 CD4 T cell adoptive transfer and anti-
PD-1 treatment

8-12 weeks old Card11M365K mice were sacrificed and single-cell

suspensions prepared from their spleens. Splenic CD4 T cells were

isolated by incubation with anti-CD4 biotin antibody and positive

enrichment by manual magnetic-activated cell sorting (MACS)

using LS columns (Miltenyi Biotec). 3-4 x 106 Card11+/+ or

Card11M365K/M365K CD4 T cells were intravenously transferred

into each recipient mouse: either into C57BL6.CD45.1+ recipients

where donor cells could be isolated based on CD45.1/2 expression,

or in an independent experiment into Rag1KO/KO mice that lack

mature B and T cells (67). Recipient mice were treated with

intraperitoneal (i.p.) injection of 200 mg anti-mouse PD-1 (clone

RMP1-14; BioXCell) or rat IgG2a anti-trinitrophenol isotype

control (clone 2A3; BioXCell) at days 0, 2 and 5 post-CD4 T cell
TABLE 1 Continued

Cat. number Antibody Fluorochrome Company Clone

407308 Ig, l light chain PE BioLegend RML-42

406515 IgM APC/Cy7 BioLegend RMM-1

405229 Streptavidin BV605 BioLegend N/A

109220 TCRb APC Cy7 BioLegend H57-597

109227 TCRb PerCP Cy5.5 BioLegend H57-597
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transfer. Recipient mice were sacrificed 7 days post-injection, and

blood and spleen harvested for analysis.
2.10 Statistical analysis

Statistical analysis of flow cytometric experiments was

performed using the GraphPad Prism 6 software (GraphPad, San

Diego, USA). A one-tailed unpaired Student’s t-test with Welch’s

correction was used for comparisons between two normally

distributed groups. An unpaired student’s t-test, corrected for

multiple comparisons using the Holm-Sidak method, was used

for comparisons of more than two groups. Differences between

paired measurements were analyzed by paired t-test. In all graphs

presented, the error bars represent the mean and standard

deviation. * p < 0.05, ** p < 0.01, *** p < 0.001.
3 Results

3.1 CARD11.M365K is a GOF protein that
increases BCR-induced activation and
proliferation in vitro

We identified the novel Card11M365K mouse strain by exome

sequencing offirst-generation offspring of C57BL/6 mice exposed to

the mutagen N-ethyl-N-Nitrosourea (ENU). Card11M365K mutant

mice carry an A to T nucleotide substitution at position 140,889,709

on Chromosome 5, resulting in a methionine to lysine change at

amino acid 365 (Figure 1A).

To determine the effects in mouse B cells of Card11M365K

mutation relative to known GOF Card11 mutations, we used a

retroviral gene transfer and culture system to transduce

Card11M365K into primary activated B cells (Supplementary

Figure 1). As controls, B cells were otherwise transduced with an

empty vector expressing EGFP only, expressing wild-type Card11

or Card11G123S, found in patients with BENTA disease, DLBCL and

ATL (27–29, 31), or expressing Card11E134G found in several

patients with BENTA disease (27–29). Card11M365K-transduced B

cells expressed lower B220 and higher CD86 (Supplementary

Figure 1A) cell-surface levels compared to control vector-

transduced B cells, indicative of increased NF-kB activation in

these cells. Card11M365K-transduced B cells expressed CD86 and

B220 at levels intermediate between Card11E134G- and Card11G123S-

transduced cells, and over a period of four days in culture,

Card11M365K-transduced B cells accumulated in numbers

intermediate between Card11E134G- and Card11G123S-transduced

cells (Supplementary Figure 1B). CARD11M365K was previously

shown to enhance NF-kB activity in a luciferase assay (30). To

validate this and directly measure the effects of M365K and G123S

mutations on NF-kB signalling, we utilized our previously

published (65) luciferase reporter method. Following

trimethoprim-induced expression, M365K and G123S mutant

CARD11 caused a mean 5-fold and 11-fold higher induction of

the NF-kB luciferase reporter, respectively, relative to that induced

by wild-type CARD11 (Supplementary Figure 1C). Collectively,
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intermediate between that caused by E134G or G123S.

To test the effects on B cells of Card11M365K mutation within an

otherwise normal gene, we measured survival and proliferation of

splenic B cells from Card11M365K/+ relative to Card11+/+mice. As an

additional control, we included splenic B cells from homozygous

Card11loco/loco mice harboring 3 distinct single-nucleotide variants

that cause a complete loss of CARD11 protein expression (68). Over

a period of 5 days in the absence of stimulation, the percentage of

live Card11+/+ versus Card11M365K/+ B-lymphocytes decreased at

the same rate, whilst live Card11loco/loco B cells decreased in

frequency more rapidly (Supplementary Figure 1D).

CARD11.M365K therefore does not enhance B cell survival in

absence of stimulation. Similar results were obtained following

stimulation with a 1 mg/mL sub-mitogenic dose of anti-IgM

(Supplementary Figure 1E).

To measure proliferation following stimulation, we labelled

splenic B cells with Cell Trace Violet (CTV). Relative to Card11+/

+ B cells, Card11M365K/+ cells increased in size faster and Card11loco/

loco cells more slowly, following stimulation with different

concentrations of anti-IgM (Supplementary Figure 1E). B cells

stimulated with 10 mg/mL anti-IgM divided up to 5 times and a

mildly increased percentage of Card11M365K/M365K B cells divided 3

or more times relative to Card11+/+ cells, whereas 80% of

Card11loco/loco B cells failed to divide at all (Supplementary

Figure 1F). The mean percentage of divided cells was 70% for

Card11M365K/M365K, 62% for Card11M365K/+ and 57% for Card11+/+

B cells. By contrast, only 27% of Card11loco/loco B cells had divided

(Supplementary Figure 1G). Given the small number of WT CD4 T

cells assessed, we were unable to conclude that these effects were

statistically significant.

CARD11.M365K is thus a mild GOF protein that increases

BCR-s t imula ted act iva t ion , surv iva l and to a smal l

extent proliferation.
3.2 Germline Card11M365K mutation causes
accumulation of germinal center B cells

To determine the effects of Card11M365K mutation in vivo, we

analyzed Card11M365K mice on a C57BL/6 JAusb or C57BL/6 Ncrl

background. All results presented herein were consistent between

backgrounds and unless specified otherwise, all figures present data

from C57BL/6 JAusb mice. Following inter-cross of heterozygous

mutant mice, Card11M365K/+ and Card11M365K/M365K mice were

detected at expected Mendelian frequencies at time of weaning

and genotyping (Figure 1B). Heterozygous and homozygous

mutant mice developed no obvious pathologies and had

comparable weight and survival to wild-type mice over a period

of up to 50 weeks (Figure 1B). Germline Card11M365K mutation

therefore appears insufficient to cause overt pathology in mice.

Given the recurrence of somatic CARD11 GOF mutations in B

lymphomas (31), and the effects of germline CARD11 GOF

mutations on B cells in mice and humans (22–29, 52–54), we

assessed B cell populations in the bone marrow, spleen and lymph

nodes of wild-type and Card11M365K mutant mice. Card11+/+,
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Card11M365K/+ and Card11M365K/M365K mice had comparable

percentages of Linneg Sca-1pos c-Kitpos (LSK) stem cells in the

bone marrow (Supplementary Figure 2A). 5-7 week-old

Card11M365K mutant mice had a reduced percentage of CD5pos

CD11bpos CD23low CD43high peritoneal cavity B1a cells.

Interestingly, this difference waned with age (Supplementary

Figure 2B). Card11M365K mutant mice also had comparable

percentages of bone marrow leukocytes of the B220pos B-lineage,

and within these of IgMneg IgDneg precursor, IgMpos IgDint

immature or IgMlow IgDpos mature recirculating B cells

(Supplementary Figure 2C), and comparable percentages of

precursor B cells with a CD43high CD24neg pre-pro-, CD43int

CD24 in t pro- or CD43low CD24pos pre-B phenotype

(Supplementary Figure 2C).

Notably, Card11M365K mutant mice had increased cellularity

and increased percentage of B leukocytes in the spleen and inguinal

lymph nodes (Figure 1C, Supplementary Figure 2D). Card11M365K

mutant mice had normal numbers of CD93+ transitional and CD93-

mature B cell populations (Supplementary Figure 2E), but though

unimmunized, had an increased percentage and number of

germinal center (GC) B cells in both spleen and lymph nodes

(Figure 1D). We therefore studied the effect of Card11M365K

mutation on T cell-dependent GC responses, by immunizing

Card11M365K mice with sheep red blood cells (SRBCs) and

sacrificing them 5, 7, 12 or 15 days later. Relative to wild-type

controls, Card11M365K/M365K mice had increased numbers of

B220pos CD38low CD95pos GC B cells at days 7, 12 and 15 post-

immunization (Figure 1E).

To test whether CARD11.M365K drives GC B cell

accumulation cell-autonomously or rather secondary to

dysregulation of T cells or other hematopoietic cells, we generated

mixed chimeras wherein a fraction of all hematopoietic cells had

mutant Card11M365K/M365K and the remainder had wild-type

Card11. Card11+/+ Rag1KO/KO mice were irradiated and

transplanted with an equal mixture of Card11M365K/M365K Ptprcb/b

and control Card11+/+ Ptprca/a bone marrow. As an additional

control, another set of mixed chimeras received an equal mixture of

Card11+/+ Ptprca/b and Card11+/+ Ptprca/a bone marrow. All

chimeras were immunized with sheep red blood cells (SRBCs)

and sacrificed 7 days later. Flow cytometric analysis revealed no

significant difference in frequency of B cells or of germinal center B

cells of Card11+/+ versus Card11M365K/M365K donor origin

(Figure 1F). Card11M365K/M365K thus provides no striking cell-

autonomous advantage to GC B cells, 7 days post-SRBC

immunization in this model.
3.3 Germline Card11M365K mutation causes
accumulation of activated CD8 and CD4 T
cells, TFH, TFR and TREG cells

Based on the recurrence of somatic CARD11 GOF mutations in

PTCL (38, 39, 43–46), we hypothesized that Card11M365K mutation

would dysregulate T cells. Following flow cytometric analysis of T

cell populations, we observed a mutant allele gene dose-dependent

increase in percentage (but not total number) of CD62L- CD44+
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effector memory CD8 and CD4 T cells in the spleen and lymph

nodes of Card11M365K mutant relative to wild-type mice

(Figure 2A). The increased fraction of effector memory CD8 T

cells was not accompanied by changes in their surface expression of

CX3CR1, KLRG1, NKG2D or by changes in their granularity,

whereas by contrast an increased fraction of Card11-mutant

effector memory CD8 T cells expressed high levels of CD69

(Supplementary Figure 3A). We observed no change in fraction

of CD8 T cells expressing the cytotoxic effector molecule granzyme

B (Supplementary Figure 3B). Unimmunized Card11M365K/+ and to

a greater extent Card11M365K/M365K mice had an accumulation of

TCRb+ CD3+ CD4+ CXCR5high PD-1high T follicular helper (TFH)-

like cells (Figure 2B). These accumulating Card11-mutant TFH-like

cells expressed homogenously higher cell-surface levels of ICOS and

some but not all expressed higher cell-surface levels of PD-1,

relative to wild-type cells (Figure 2C). To test whether germline

Card11M365K mutation also increases accumulation of TFH cells

during T cell-dependent responses, we analyzed the same mice

described earlier at 5, 7, 12 and 15 days post-immunization with

SRBCs. Card11M365K/M365K mice had an increased frequency and

total number of splenic TFH cells at days 7, 12 and 15 (Figure 2D).

Interestingly, they also had a significant accumulation of TCRb+

CD3+ CD4+ CXCR5+ PD-1+ CD25+ FoxP3+ T follicular regulatory

(TFR) cells (Figure 2E). As expected, the TFH cells were Bcl-6high,

ICOShigh and CD44+ and the TFR cells were FoxP3+, Bcl-6+,

ICOShigh, CD44+ and Blimp-1high (Figure 2F). Similar to our

observations in unimmunized mice, the accumulating

Card11M365K/M365K TFH and TFR cells expressed homogeneously

higher levels of ICOS relative to their Card11+/+ counterparts.

Unimmunized Card11M365K/+ and to a greater extent

Card11M365K/M365K mice had a mutant allele dose-dependent

increase accumulation of TREG cells (Figure 3A), of phenotype

TCRb+ CD3+ CD4+ CD25+ FoxP3+ and having first excluded

CXCR5high PD-1high TFH-like or TFR-like cells. The accumulating

Card11-mutant TREGS expressed homogeneously higher levels of

ICOS but also of CTLA-4, and higher levels of CD69 and CD44

(Figure 3B), and the Card11-mutant mice had a significant

accumulation of TREG cells with a CD62L- CD44+ effector

memory-like phenotype (Figure 3C). Similarly, Card11M365K mice

on a C57BL/6 Ncrl background had a significant increase in

percentage and total number per spleen of CD44high and PD-1high

CD4 and CD8 T cells (Supplementary Figures 3A-C) and of TFH-

like and TREG cells, which were by contrast significantly reduced in

Card11loco/loco mice (Supplementary Figures 3D, E).

Given the above findings, we tested whether germline

Card11M365K mutation alters early T cell development in the

thymus. Thymus cellularity was similar in Card11M365K/+ but

mildly decreased in Card11M365K/M365K relative to Card11+/+ mice

(Figure 4A). Card11-mutant mice had a significantly increased

percentage of CD25+ FoxP3+ TREGS among CD4 single-positive

(SP) cells, but no change in total number of thymic TREGS, relative

to wild-type mice (Figure 4B). Cell-surface Neuropilin-1 (NRP1),

CCR6 and CD24 were used to identify peripherally induced versus

newly developed or recirculating thymus-derived TREGS (68–70).

We observed no change in percentage (or total number) of thymus-

derived NRP1+, thymus-derived nascent CCR6- CD24+ or
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recirculating CCR6+ CD24- TREGS in Card11-mutant relative to

wildtype mice (Figure 4C). Card11 wild-type and mutant mice also

had comparable frequencies and numbers of CD4- CD8- double-

negative (DN), CD4+ CD8+ double-positive (DP), CD4+ single-

positive (SP) and CD8+ SP thymocytes (Figure 4D), and of CD44+

CD25- DN1, CD44+ CD25+ DN2, CD44- CD25+ DN3 and CD44-

CD25- DN4 early progenitors (Figure 4E). Thymic T cell
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development thus appears overtly normal in Card11M365K

mutant mice.

Collectively, the above results demonstrate that germline

CARD11 gain-of-function causes over-accumulation in the

periphery of activated CD8 and CD4 T cells, TFH, TFR and TREG

cells expressing increased levels of activating and inhibitory

checkpoint molecules.
B

C D

E F

A

FIGURE 2

Germline GOF Card11M365K mutation causes accumulation of effector CD4 and CD8 T cells, T follicular and T follicular regulatory T cells. (A-C). Flow
cytometric analysis of T cell populations in non-immunized mice of the indicated genotypes. (A). Left, representative flow cytometric analysis and
right, percentage of CD44- CD62L+ naïve, CD44+ CD62L+ central memory (CM), and CD44+ CD62L- effector memory (EM) subsets among splenic
CD8 or CD4 T cells. (B). Left, representative flow cytometric analysis and right, percentage among CD4 T cells or total number per spleen of
CXCR5high PD-1high follicular helper (TFH)-like CD4 T cells. (C). Left, representative flow cytometric histograms showing distribution of ICOS (top) or
PD-1 (bottom) fluorescence on Card11+/+ naïve CD4 T cells, Card11+/+ or Card11M365K/M365K TFH -like cells. Right, plots showing mean fluorescence
intensity (MFI) of ICOS or PD-1 on TFH-like cells from mice of the indicated genotypes. (D-F). Flow cytometric analysis of T cell populations in mice
5, 7, 12 or 15 days post-immunization with sheep red blood cells (SRBCs). (D). FoxP3- CXCR5high PD-1high TFH cells as a percentage of CD4+ TCRb+ T
cells or as total number per spleen, in mice of the indicated genotypes. (E). CXCR5high PD-1high CD25+ FoxP3+ T follicular regulatory (TFR) cells as a
percentage of CD4+ TCRb+ T cells or as total number per spleen, in mice of the indicated genotypes. (F). Representative flow cytometric histograms
showing distribution of cell-surface CXCR5, PD-1, ICOS, CD44, CD25 and intracellular Bcl-6, FoxP3, Ki-67 fluorescence in naïve CD4 (blue), TFH
(green), T regulatory (TREG; magenta) or TFR (orange) cells from Card11M365K/M365K mice 12 days post-SRBC immunization. The histograms are also
representative of results from Card11+/+ mice and from results 7 and 15 days post-immunization. (A-E). Statistical comparisons made by t-test,
corrected for multiple comparisons using the Holm-Sidak method. Data are representative of n > 2 independent experiments with n > 4 mice per
group. not significant (n.s) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. (A, D, E). Data are pooled from 3 independent experiments.
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3.4 Card11M365K mutation provides a cell-
autonomous advantage to activated CD8
and CD4 T cells, to TFH, TREG and TFR cells

To test whether Card11M365K acts cell-autonomously to

dysregulate CD8 and CD4 T cells, we analyzed mixed chimeric

mice containing Card11+/+ CD45.1+ bone marrow-derived
Frontiers in Immunology 10
hematopoietic cells and CD45.2+ bone marrow-derived

hematopoietic cells that were either Card11+/+ or Card11M365K/

M365K. Within individual chimeric mice, there was a significant

increase in frequency of Ptprcb/b Card11M365K/M365K relative to

Ptprca/a Card11+/+ CD4 effector memory (EM), TFH, TREG and

CD8 EM cells – whereas no such difference was observed between

Ptprcb/b Card11+/+ and Ptprca/a Card11+/+ cells (Figure 5A).
B

C

A

FIGURE 3

Germline GOF Card11M365K mutation causes accumulation of CD62Lneg CD44high ICOShigh CTLA-4high T regulatory cells. (A). Left, representative flow
cytometric analysis and right, percentage amongst CD4 T cells or total number per spleen of TCRb+ CD4+ CD25+ FoxP3+ T regulatory (TREG) cells, in
mice of the indicated genotypes. (B). Left, representative flow cytometric histograms showing distribution of intracellular CTLA-4 and cell-surface
ICOS fluorescence and right, plots of mean fluorescence intensity (MFI) of ICOS, CTLA-4, CD69 or CD44, for splenic TREGS from mice of the
indicated genotypes. (C) Left, representative flow cytometric analysis and right, percentage amongst TREGS or total number per spleen of CD44-

CD62L+, CD44+ CD62L+ and CD44+ CD62L- TREGS, in mice of the indicated genotypes. (A-C). Statistical comparisons made by t-test, corrected for
multiple comparisons using the Holm-Sidak method. Data are representative of n > 2 independent experiments with n > 4 mice per group. not
significant (n.s) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. (A, C) Data are pooled from 3 independent experiments.
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Card11M365K/M365K thus provides a cell-intrinsic advantage to

effector CD8 and CD4 T cells, TFH and TREG cells. The

accumulating Card11M365K/M365K TREGS had a significant cell-

intrinsic increase in levels of cell-surface ICOS and CD44 and of

intracellular CTLA-4 (Figures 5B, C). Within TREG cells, and

reminiscent of observations in germline Card11-mutant mice,

Card11M365K/M365K mutation caused significant cell-autonomous

accumulation of CD62L- CD44+ TREGS (Figure 5D).

Given the above findings, we tested whether Card11M365K

mutation increases T cell responses to TCR, CD28 or high-affinity

IL-2 receptor stimulation, which engage pathways crucial to the

differentiation, survival and proliferation of effector T cells and

TREGS. Following CTV labelling and 3 days of stimulation with anti-

CD3 and anti-CD28 in vitro, the mean percentage of divided cells

was 74% for Card11M365K/M365K, 68% for Card11M365K/+ and 58%

for Card11+/+ CD4 T cells, and 94%, 90% and 87% for CD8 T cells

of the respective genotypes. By contrast, only 12% and 24% for

Card11loco/loco CD4 and CD8 T cells, respectively (Supplementary

Figure 4A). Card11M365Kmutation also increased and Card11loco/loco

mutation decreased the size and cell-surface CD25 and PD-1 levels

of stimulated CD4 and CD8 T cells (Supplementary Figure 4B, C).

Given the small number of WT CD4 T cells assessed, we were
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unable to conclude that these effects were statistically significant.

Our flow cytometric analysis of Ki67 expression revealed an

increased fraction of Ki67+ T cells within the spleens of

Card11M365K/M365K mutant mice (Supplementary Figure 4D).

Thus, GOF CARD11.M365K caused increased activation and a

mild increase in proliferation of CD4 and CD8 T cells following

TCR stimulation and CD28 co-stimulation. By contrast,

Card11M365K/M365K mutation had no effect on STAT5

phosphorylation following IL-2 stimulation (Supplementary

Figure 4E). To determine the effects of CARD11 GOF on CD4 T

cell differentiation in vitro, we purified naïve CD4 T cells from wild-

type and mutant mice by fluorescence-activated cell sorting (FACS),

and incubated them for 4 days in conditions that skew towards T

helper 0 (TH0), TH1, TH2 or TH17 differentiation. At day 4, we

observed increased frequencies of Card11M365K/M365K relative to

Card11+/+ IL-4+ and IL-5+ TH2-like cells (Supplementary

Figure 4F). These results indicate that weak CARD11 GOF may

skew naïve CD4 T cells towards TH2 differentiation in response to

TCR and cytokine stimulation.

Collectively, these results demonstrate that GOF CARD11

increases T cell activation and proliferation following TCR and

CD28 stimulation and provides a cell-intrinsic advantage to
B C

D E

A

FIGURE 4

Card11M365K mutant mice have normal numbers of thymic T cell precursors, single positive CD4 and CD8 T cells and T regulatory cells. (A). Total
number of cells per thymus from individual mice of the indicated genotypes. (B). Left, representative flow cytometric analysis and right, percentage
amongst CD4 single-positive (SP) T cells or total number per thymus of CD25+ FoxP3+ CD4+ T regulatory (TREG) cells, in mice of the indicated
genotypes. (C). Percentage of NRP1+ thymic TREGS (left) or of CCR6

- CD24+ or CCR6+ CD24- thymic TREGS (right), in mice of the indicated
genotypes. (D). Left, representative flow cytometric analysis and right, percentage amongst thymocytes or total number per thymus of CD4- CD8-

double-negative (DN), CD4+ CD8+ double-positive (DP), CD4+ SP or CD8+ SP T cells, in mice of the indicated genotypes. (E). Percentage of DN T
cells with a CD25- CD44+ DN1, CD25+ CD44+ DN2, CD25+ CD44- DN3 or CD25- CD44- DN4 phenotype, in mice of the indicated genotypes.
Statistical comparisons made by t-test, corrected for multiple comparisons using the Holm-Sidak method. Data are representative of n > 2
independent experiments with n > 4 mice per group. not significant (n.s) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. (A, B) Data are pooled from
3 independent experiments.
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activated CD8 and CD4 T cells, TFH, TREG and TFR cells expressing

increased levels of checkpoint molecules ICOS and PD-1.

Notably, PD-1 acts as a tumor suppressor in CD4 T cells (71),

but PD-1 checkpoint therapy significantly worsens disease

progression in some (72) but not all (73) individuals with ATL.

ATL, which are thought to arise from effector and/or FoxP3+ CD4 T

cells (74, 75), harbor recurrent somatic GOF CARD11 mutations

(38, 39). To test whether PD-1 restrains the over-accumulation of

Card11M365K mutant CD4 T cells in vivo, we adapted a workflow

used by Wartewig et al. to demonstrate that PD-1 inhibition

synergises with ITK-SYK fusion to cause lethal CD4 T cell

lymphoproliferation (71). We adoptively transferred 4 x 106

Ptprcb/b CD4 T cells that were either Card11+/+ or Card11M365K/

M365K, into Ptprca/a Card11+/+ C57BL/6 recipient mice. We injected
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the recipient mice with anti-PD-1 monoclonal antibody (mAb) or

isotype control mAb at days 1, 3, 5 and 6, and sacrificed them at day

7 post-adoptive transfer (Supplementary Figure 5A). Consistent

with our mixed chimera results, a higher fraction of Card11-mutant

relative to wild-type CD4 T cells had an effector memory phenotype

(Supplementary Figure 5B). Relative to control mAb-treated mice,

anti-PD-1-treated mice had similar total numbers of cells per spleen

(Supplementary Figure 5C). Amongst mice that received

Card11M365K/M365K CD4 T cells, anti-PD-1 treatment increased

the total number of donor-derived CD4 T cells, and resulted in a

trend towards increased number of donor-derived effector memory

CD4 T cells (Supplementary Figure 5D, E). These results indicate

that PD-1 inhibition is insufficient to cause lymphoma or lethal

lymphoproliferation of Card11M365K/M365K CD4 T cells, but that
B C

D

A

FIGURE 5

GOF Card11M365K/M365K mutation provides a cell-intrinsic advantage to activated CD8 and CD4 T cells, T follicular helper-like and T regulatory cells.
(A-D). Mixed chimeras were generated by irradiating Rag1KO/KO Card11+/+ mice and reconstituting them with Ptprca/a Card11+/+ (black fill) bone
marrow in a 1:1 mixture with Ptprcb/b Card11+/+ (grey fill; 1 donor) or Card11M365K/M365K (red fill; 2 separate donors) bone marrow. These mixed
chimeras were sacrificed 7 days post-immunization with SRBCs. (A). Percentage, within the corresponding Ptprca/a or Ptprcb/b parent population, of
CD44- CD62L+ naïve and CD44+ CD62L- effector memory (EM) CD4 T cells, CXCR5high PD-1high T follicular helper (TFH) and CD25+ FoxP3+ T
regulatory (TREG) CD4 T cells, and naïve and EM CD8 T cells. (B). ICOS, CD44 and CTLA-4 mean fluorescence intensity (MFI) for Ptprca/a versus
Ptprcb/b TREGS of the indicated genotypes (recipients received bone marrow from n=1 Ptprcb/b Card11+/+ donor and n=2 Ptprcb/b Card11M365K/M365K

donors). (C). Representative flow cytometric histograms showing distribution of intracellular FoxP3 and CTLA-4 and cell-surface CD44 and ICOS
fluorescence, for splenic Ptprca/a Card11+/+ (black line) versus Ptprcb/b Card11M365K/M365K (red line) TREGS. (D). CD44

+ CD62L-, CD44+ CD62L+ and
CD44- CD62L+ Ptprca/a or Ptprcb/b TREGS, as a percentage of splenic CD4 T cells. Statistical comparisons made by paired t-test. not significant (n.s) p
> 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.
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PD-1 may play a role in restraining the accumulation of

Card11M365K/M365K CD4 T cells in vivo.
4 Discussion

The findings here reveal that gain-of-function mutation of a

conserved CARD11 residue, located in the coiled-coil domain

recurrently mutated in B- and T-lymphomas, caused cell-

autonomous accumulation of effector CD8 and CD4 T cells, and

particularly of TFH, TREG and TFR cells that are critical to

coordinating and regulating adaptive immune responses.

Germline Card11M365K GOF caused accumulation of spontaneous

GC B cells and increased GC response to immune challenge but

caused no dramatic B cell lymphocytosis as observed in individuals

with BENTA disease. Our results demonstrate that CARD11 GOF

perturbs T cells by increasing their activation and proliferation

downstream of TCR or co-stimulatory receptor signaling. By

revealing that GOF CARD11 drives aberrant expression of

checkpoint molecules including PD-1 and ICOS, a known

positive regulator of TFH, TREG and TFR cells, the findings here

indicate that GOF CARD11 mutations perturb T lymphocytes by

dysregulating not only TCR-NFkB signaling but also co-stimulatory

signaling. These results highlight likely effects of acquired GOF

CARD11 mutations that are strikingly recurrent in aggressive

human PTCL derived from effector, follicular and regulatory CD4

T cells.

The mild increase in B cell numbers in Card11M365K mutant

mice contrasts with lethal B cell lymphoproliferation upon B cell-

conditional Card11L232LI mutation (Card11L225LI in the original

publication (52);). This latter phenotype is also absent from mice

with a Card11E134G or Card11K215M (54) or Card11L251P mutation

(53). Card11K215M creates a cell-intrinsic advantage whereas

Card11E134G creates a cell-intrinsic disadvantage for GC B cells

(54), and Card11L251P acts primarily to alter GC kinetics (53). The

variable effects on B cells of different CARD11mutations may relate

to qualitative differences in their effect on NF-kB signaling activity

(31, 55). In a luciferase reporter system in 293T cells, CARD11

p.M365K increased the transcription of a NF-kB target gene to

levels above wild-type CARD11, but below CARD11 p.L251P (30).

Our results, based on a NF-kB luciferase assay, B220 and CD86

expression and survival of B cells transduced with CARD11WT,

CARD11G123S, CARD11E134G and CARD11M365K, indicate that

CARD11M365K leads to weak GOF intermediate between that

caused by CARD11E134G and CARD11G123S.

The Card11M365K mutant mouse strain was generated by ENU

mutagenesis, which enabled us to study the effects of Card11 GOF

mutation in an otherwise normal gene, as opposed to expression of

mutant Card11 cDNA from a heterologous promoter and locus (52,

53, 76). In this context, CARD11M365K was insufficient to cause B

cell malignancy or the striking B cell lymphocytosis seen in

individuals with BENTA disease. This contrast may relate to

differing CARD11 mutations, as discussed above and given that

CARD11M365K has not been identified in the germline of children

with BENTA disease. Alternatively, the contrast may relate to the

specific-pathogen free environment of the Card11M365K mice or to
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differences between human and mouse lymphocytes. Like germline

GOF CARD11 mutations, BTK, NFKB1 or NFKB2 deficiency have

different consequences in humans relative to mice. In humans, they

cause profound loss of transitional and mature naïve B cells (77–80)

but in mice they cause a less drastic decrease (81–84), indicating

that human B cells may be more strongly dependent on BTK-NF-

kB signaling. Several hypotheses may explain the profound increase

in transitional and mature B cells caused by germline GOF CARD11

mutations in humans but not mice. (i) Card11mRNA increases 10-

fold between pre-B cells and immature IgM+ B cells and transitional

B cells in mice (Immgen Database). It is possible that CARD11

mRNA and protein are more strongly expressed in human relative

to mouse naïve B cells, beyond a threshold where GOF in the

protein dysregulates proliferation and survival. Nevertheless,

previous publications (52, 54, 76) and our in vitro data indicate

that GOF CARD11 can provide a cell-intrinsic advantage to mouse

B cells. (ii) CARD11 mRNA or protein may be down-regulated in

mouse B cells as an adaptive response to GOF CARD11 signaling

that does not function in human B cells. (iii) Human B cells may be

less able to induce counter-regulatory processes acting downstream

or upstream from CARD11 (i.e. induction of NFKBIA or TNAIP3).

Future studies comparing CARD11, NFKBIA and TNFAIP3

protein levels in normal and CARD11-mutant human and mouse

transitional and mature B cells may help to distinguish between

these alternatives.

T cells from human BENTA patients carrying CARD11 GOF

mutations typically proliferate less than healthy controls in

response to anti-CD3/CD28 stimulation, a difference linked to a

mildly anergic phenotype associated with poor IL-2 expression by

CARD11-mutant human T cells (29). By contrast, Card11M365K

mutant mouse T cells had a mild proliferative advantage relative to

Card11 wild-type mouse T cells. In addition to the considerations

discussed above, it is possible that secondary effects that are visible

in humans over time may not be visible in mice at 8-12 weeks of age.

(i) These secondary effects may be pathological, as seen in CTLA4

deficiency in humans, which results in loss of B cells even though B

cells mostly lack CTLA4 expression. Affected patients have

relatively normal B cell numbers prior to developing pathology

but start losing B cells when they develop the syndrome (85). (ii)

These secondary effects may be compensatory, as seen in transgenic

B cells expressing chimeric IgMG receptors containing the IgG tail

segment. These cells adopt a gene expression profile of anergy, but

this occurs secondary to their down-regulation of cell-surface

receptor (86).

The skewing of towards Th2 differentiation of Card11M365K/

M365K CD4 T cells is interesting, given that Th2 skewing occurs in

humans with loss-of-function or dominant negative CARD11

muta t ions . We cannot exc lude the poss ib i l i t y tha t

CARD11.M365K results in “blended” GOF and LOF effects, as

previously observed in BENTA disease (26). Mice homozygous for

the hypomorphic Card11unmodulated mutation develop penetrant,

spontaneous atopy and dermatitis with age (10), caused by partial

reduction in effector T cell accumulation but also partial TREG

deficiency leading to progressive, selective TH2 accumulation and

subsequent IgE production (16). In that context, hypomorphic

Card11 mutation produces outcomes that could not be predicted
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from null alleles, through unequal titration of opposing effects

within different T cell subsets (16). Similarly, unequal effects of

hypermorphic mutations in different lymphocyte populations may

contribute to the variable B and T cell pathologies in humans and

mice with germline and somatic CARD11 GOF mutations.

In addition to cell-intrinsic effects, B cell homeostasis may be

perturbed by CARD11 GOF within CD4 T cells. Previous

publications studied Card11L251P (53) and Card11L232LI (52)

expressed in B cells only, whilst T cell populations from germline

Card11E134G and Card11K215M mutant mice were not reported (54).

In Card11M365K mutant mice, the accumulation of splenic TFH cells

at days 7, 12 and 15, but not at day 5 post-immunization, correlated

with accumulation of splenic GC B cells at days 7, 12 and 15, but not

at day 5. Card11M365K mutant TFH cells expressed homogeneously

increased levels of cell-surface ICOS, and both TFH accumulation

and increased ICOS expression (87) are known to drive GC B cell

accumulation. Card11M365K/M365K mutation caused cell-

autonomous accumulation of ICOShigh TFH cells, but also of TFR

cells that can act to suppress the GC response (88–90). The relative,

and possibly graded, effects of Card11 mutation in TFH versus TFR

cells, and in turn on B cell homeostasis, are difficult to distinguish

without TFH or TFR-specific CARD11 GOF models. Nevertheless,

our data raise the possibility that CARD11 GOF CD4 T cells may

perturb B cells in individuals with germline or somatic CARD11

GOF mutations. Individuals with BENTA disease have normal

numbers of circulating CD4 and CD8 T cells (25, 29), but to our

knowledge no detailed T cell immunophenotyping has been

reported. Future studies should assess T cell populations in

humans and mouse models with different germline or T cell-

restricted CARD11 mutations.

With regards to T cell lymphoma, our results reveal likely cell-

intrinsic effects of the somatic GOF CARD11 mutations that recur

in up to 30% of ATL (38, 39), CTCL and Sezary Syndrome (43–46)

and at lesser frequency in angioimmunoblastic T cell lymphoma

(AITL) (91). CARD11 and PRKCB mutations are positively

correlated in ATL (38), suggesting that NF-kB activating

mutations may synergize in driving ATL. The striking recurrence

of mutations modifying the TCR/NF-kB pathway highlights its

importance in PTCLs including ATL (38, 39, 56–58) and CTCL or

Sezary syndrome (43–46, 59–61, 92, 93). One limitation of our

study is that CARD11M365K has not been identified in PTCL or

CTCL. Nevertheless, CARD11M365K modifies a conserved region of

the CC domain recurrently mutated in PTCL (Figure 1). ATL,

CTCL and AITL are thought to arise from activated, TFH-like and/

or TREG-like CD4 T cells (50, 94–96), and Card11M365K mutation

causes cell-autonomous accumulation of activated, TFH, TREG and

TFR CD4 T cells. In addition, Card11M365K/M365K caused over-

expression of stimulatory and inhibitory receptors ICOS, CTLA-4

and PD-1, and increased activation, proliferation and PD-1

expression by mutant T cells following TCR and CD28

stimulation. Activating CD28 mutations recur in 10-11% of AITL

(97, 98), and in-frame fusions involving CD28, CTLA4 and ICOS

recur in 7% of ATL along with CD28 focal gains and missense

mutations, all of which result in continuous or prolonged co-

stimulatory signaling (38). When expressed in mice on a Tet2-/-
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background, the RHOAG17V mutation identified in 70% of AITL

(99–101) results in T cell lymphomas that partially require ICOS

and PI3K signaling for their proliferation and survival (102). The

cell-intrinsic increase of ICOS and CTLA-4 expression on

Card11M365K mutant CD4 and TREG cells indicates that CARD11

GOF may contribute to CD4 T cell dysregulation not just via TCR-

NFkB but also via PI3K signaling. ICOS expression increases the

accumulation of TFH cells but also of TREG and TFR cells (103), such

that ICOS over-expression on expanded CARD11M365Kmutant TFH,

TREG and TFR cells may further their accumulation. By contrast,

increased CTLA-4 on the surface of these Card11-mutant cells may

limit their accumulation (104).

In addition to ICOS and CTLA-4, Card11M365K mutation

increased PD-1 expression by CD4 T cells, in vivo and following

TCR/CD28 stimulation ex vivo. Parallel observations could be

drawn by future studies testing the association of CARD11

mutations with increased PD-1 or ICOS expression on human T-

lymphoma cells. PDCD1 (encoding PD-1) is increased in

CD4 malignancies with gene signatures of dysregulated TCR

signaling (71). PD-1 acts as a tumor suppressor in CD4 T cells

and PDCD1 alterations, most commonly focal deletions, recur

in 10-20% of CTCL, 36% of Sezary syndrome and 26% of

ATL (71). Consistent with the effects of PD-1 in inhibiting

TCR signaling and also CD28 co-stimulation (105), PD-1

inhibition mildly increased Card11M365K/M365K CD4 T cell

accumulation in vivo, but was nevertheless insufficient to cause

CD4 lymphoma or lymphoproliferation. This contrasts with the

lethal lymphoproliferation of CD4 T cells expressing an ITK-SYK

fusion upon their exposure to anti-PD-1 monoclonal antibody (71).

This dichotomy may point to a threshold of CARD11 or NF-kB
GOF required for synergy with PD-1 LOF to drive CD4

lymphoproliferation. The acquisition of different somatic driver

gene mutations (e.g. ITK-SYK fusion versus intermediate CARD11

GOFmutation) may explain why PD-1 inhibition accelerates disease

progression in some (72) but not all (73) cases of ATL.

Unlike other PTCL, ATL requires HTLV-1 infection (41, 106,

107). The variable, often long, latent phase between HTLV-1

infection and ATL diagnosis implicated additional environmental

or genetic events in ATL pathogenesis, and led to the discovery of

TCR/NF-kB pathway genes and CARD11 as recurrently mutated in

ATL (38, 39). Notably, HTLV-1 viral proteins TAX and HBZ

increase NF-kB activation and survival (108, 109), and HTLV-1

has tropism for FoxP3+ CD4 T cells (109–111). Given that

Card11M365K mutation increases NF-kB activation and creates a

cell-intrinsic advantage for TREGS, the cell-intrinsic effects of

CARD11 mutations and of HTLV-1 infection may cooperate in

driving ATL pathogenesis.

There is a striking paucity of information on the cell-intrinsic

effects of somatic CARD11 GOF mutations in PTCL, which are

heterogeneous and often aggressive malignancies associated with

poor clinical outcomes (112). The above findings reveal cell-

intrinsic effects of a CARD11 GOF protein within T cells. They

highlight the need to study T cells in humans with germline

CARD11 GOF mutations and BENTA disease, and in mouse

models with PTCL hotspot CARD11 mutations. Our findings
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further highlight the crucial role played by CARD11 in lymphocytes

and the possible therapeutic utility of developing small molecule

inhibitors targeting CARD11.
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