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Automated clustering reveals
CD4+ T cell subset imbalances
in rheumatoid arthritis
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Background: Despite the report of an imbalance between CD4+ T helper (Th)

cell subsets in rheumatoid arthritis (RA), patient stratification for precision

medicine has been hindered by the discovery of ever more Th cell subsets, as

well as contradictory association results.

Objectives: To capture previously reported Th imbalance in RA with deep

immunophenotyping techniques; to compare hypothesis-free unsupervised

automated clustering with hypothesis-driven conventional biaxial gating and

explore if Th cell heterogeneity accounts for conflicting association results.

Methods: Unstimulated and stimulated peripheral bloodmononuclear cells from

10 patients with RA and 10 controls were immunophenotyped with a 37-marker

panel by mass cytometry (chemokine receptors, intra-cellular cytokines, intra-

nuclear transcription factors). First, conventional biaxial gating and standard

definitions of Th cell subsets were applied to compare subset frequencies

between cases and controls. Second, unsupervised clustering was performed

with FlowSOM and analysed using mixed-effects modelling of Associations of

Single Cells (MASC).

Results: Conventional analytical techniques fail to identify classical Th subset

imbalance, while unsupervised automated clustering, by allowing for unusual

marker combinations, identified an imbalance between pro- and anti-

inflammatory subsets. For example, a pro-inflammatory Th1-like (IL-2+ T-bet+)

subset and an unconventional but pro-inflammatory IL-17+ T-bet+ subset were

significantly enriched in RA (odds ratio=5.7, p=2.2 x 10-3; odds ratio=9.7,

p=1.5x10-3, respectively). In contrast, a FoxP3+ IL-2+ HLA-DR+ Treg-like subset

was reduced in RA (odds ratio=0.1, p=7.7x10-7).
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Conclusion: Taking an unbiased approach to large dataset analysis using

automated clustering algorithms captures non-canonical CD4+ T cell subset

imbalances in RA blood.
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1 Introduction
Current treatment strategies for rheumatoid arthritis (RA)

standardise treatments across patient groups, but as a heterogeneous

disease, differences will exist in the underlying immune mechanisms.

As a consequence, not all patients will respond similarly to the same

drug with only 60-70% having a response to any biologic drug (1).

Given that an increase of pro-inflammatory and/or a decrease of anti-

inflammatory CD4+ T cell subsets has been reported in some patients,

these cell types could represent therapeutic targets and aid patient

stratification for precision medicine. However, which CD4+ T cell

subset is associated with the disease, and in what proportion of patients,

remains unclear.

The study of T cells in RA was revolutionised after the Th1/Th2

paradigm was proposed by Mossman et al. in 1986 (2). This paradigm

was described as a dichotomy between type 1 T helper cells (Th1),

characterised by interferon-g (IFN-g) and tumour necrosis factor

(TNF), and type 2 T helper cells (Th2). RA pathogenesis

predominantly involves Th1 cytokines, and the Th1 immune

response is antagonised by Th2 cytokines [reviewed in (3)]. The

Th1/Th2 paradigm was modified further when pathogenic IL-17-

producing T helper cells (Th17) and regulatory T cells (Tregs) were

discovered to play critical roles in initiating and regulating

autoimmunity, respectively [reviewed in (4)]. Increases in Th1 and

Th17 cells which antagonise, and are antagonised by, Th2 and Treg

cells has been the focus of much research in autoimmune diseases

including RA (5, 6). More recently, interferon-producing Th1 memory

cells were found to be associated with RA using novel techniques of

analysing high-dimensional single-cell data (7). A meta-analysis found

that circulating Treg cells, as defined by both FOXP3 and CD25, were

decreased in RA patients in 9 combined studies (8). However, other

studies found no decrease in Treg frequency or function in RA (9). To

add to the complexity of the paradigm, there are an ever-growing list of

T helper cells [Th9 cells (10); Th22 cells (11); T follicular helper cells

(Tfh) (12); peripheral helper T cells (Tph) (13)]. Critically, it has now

been shown that many of these T cell types exhibit plasticity. It was

previously thought that the mutually exclusive expression of a master

transcription factor determined the fate of T cells, with T-bet, GATA3,

RORgt and FoxP3 determining the fate of Th1, Th2, Th17 and Treg

cells respectively. However, co-expression of these transcription factors

may temporarily alter the effector function of T cell subsets [reviewed

in (14)] and many of these T cells might also be transitional and

therefore appear only in very low frequencies.
02
The plasticity of T cell subsets and heterogeneity of RAmay also

explain why clinical trials targeting specific cytokines, for instance

IL-17, have not reached their primary endpoint (15). Stratified

medicine may allow clinicians to identify RA patients who have

predominantly IL-17-driven disease to improve the design of such

trials, as researchers have successfully shown in psoriatic arthritis

(16). Exploring peripheral blood immunophenotypes by flow

cytometry in RA has been shown to mirror findings in the

synovial compartment (17) and still represents the most widely

used and cost-effective technique to enumerate immune cell

populations. The advent of mass cytometry (CyTOF) has vastly

increased the number of cellular markers which can be detected

simultaneously (18) and together with the development of high-

throughput automated methods of data analysis (19–23), rare and

novel cell types involved in the aetiology of RA have been recently

identified (7, 13, 24, 25). Automated cell clustering algorithms allow

for unbiased marker combinations and therefore the hypothesis-

free discovery of unanticipated cell subsets, relevant to disease and

precision medicine (7, 22, 26, 27). We postulate that Th cell

plasticity and overlap between subsets and definitions explain

conflicting associations and lack of reproducibility in small

sample sizes. Therefore, we developed a 37 marker T cell mass

cytometry panel to encompass most definitions for the most studied

CD4+ T cell subsets to date (Th1, Th2, Th17 and Treg).

The aims of this study are first, to confirm the T helper cell

subset imbalance previously described in RA; second, to explore

whether this imbalance is detectable in a small sample size, if the

standard definition of Th subsets is relaxed in favour of Th cell

plasticity (unbiased marker combinations) and third, to test

whether innovative techniques (mass cytometry and unsupervised

clustering algorithm) facilitate the identification of pro- and anti-

inflammatory CD4+ T cell subsets over standard techniques (flow

cytometry and manual bi-axial gating) in a small sample size.
2 Methods

2.1 Patient and public involvement

The Versus Arthritis Centre for Genetics and Genomics in

Manchester has a Research User Group (RUG) of patients with

various rheumatologic conditions, which includes RA. Members of

the RUG meet regularly to review the research carried out in the

Centre. They highlighted the importance of understanding basic
frontiersin.org
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mechanisms of disease from a patient’s perspective. The RUG supports

research of basic disease mechanisms to identify biomarkers for

stratification into treatment response categories. Some of the

following comments were made: “the sooner anyone with RA can

get on the correct treatment, the better”; “Personalising from onset

would be perfect”; “If only a blood test is needed, then even better”.
2.2 Patient selection and sample collection

A cohort of 10 RA patients stabilised on therapy and 10 healthy

volunteers were recruited from the National Repository (North

West Ethics committee approval MREC 99/8/84) at the Manchester

Royal Infirmary (NIHR portfolio ID 7881). Peripheral Blood

Mononuclear Cells (PBMC) were isolated from 18 ml of blood by

density gradient centrifugation using Ficoll-Paque plus (GE

Healthcare Life Sciences) and cryopreserved at -150°C.
2.3 Mass cytometry antibody panel

We adapted a previously published mass cytometry T cell panel

(13) to encompass surface (chemokine receptors), intra-

cytoplasmic (cytokines) and intra-nuclear markers (transcription

factors) used to define Th and Treg subsets (Table 1).
2.4 T cell enrichment and stimulation

Thawed PBMCs were rested at 37°C for one hour prior to

enrichment of CD3+ T cells by positive selection using magnetic cell

separation (MACS) with CD3 MicroBeads (Miltenyi Biotec). T cell

receptor stimulation was achieved with Dynabeads Human T-

Activator CD3/CD28 beads (Fisher Scientific UK Ltd) at a

concentration of 1 bead per 2 cells, in the presence of brefeldin A

and monensin (both Fisher Scientific UK Ltd) and incubated for 4.5

hours at 37°C.
2.5 Mass cytometry staining protocol

CD3+ T cells were incubated with cisplatin prior to incubation

with an extracellular antibody cocktail (detailed protocol in

Supplementary Methods). Subsequently, cells were fixed,

permeabilised and stained for intracellular antigens for 30

minutes on ice. A solution of Intercalator-Ir was added to each

well. Samples were run on Helios mass cytometers by the Longwood

Medical Area CyTOF Core Facility at the Dana-Farber Cancer

Institute, Boston, USA.
2.6 Data pre-processing

The Nolan Normalizer MATLAB plugin (28) was used to

normalise the signal in each channel to the signals from the

Maxpar Calibration beads.
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2.7 Traditional gating analysis

Traditional biaxial gating was carried out using FlowJo V.10.8

(BD Biosciences) to identify well-described CD4+ Th and Treg

subsets using standard definitions (29) (example gating strategy in

Supplementary Figure 1). The percentages of positive cells are

represented as a proportion of the parent T cell population

(CD4+ or CD8+). Geometric mean intensity is used to quantify

cytokine expression on an individual cell level. The Mann-Whitney

U test was used to compare RA and Healthy Controls (HC). All p-

values are unadjusted (tests are not independent).
2.8 Automated clustering workflow

The CyTOF clustering workflow from Nowicka et al. (20) was

modified to include an extended quality control approach and a

different statistical framework for association testing (see below).

The analysis was performed in R (v4.1.0) and all plots were

produced with ggplot2 (v3.3.5) (30), unless stated otherwise. The

parent population for the automated analysis was CD3+ cells, with

cleaned CD4+ and CD8+ populations combined.
2.8.1 Quality control steps
Normalised cytometric data was manually inspected using

FlowJo V.10.8 (BD Biosciences) to ensure that at least 10 cell

events were identified in a group in at least 3 samples. IL-5 was

excluded due to the absence of any positive cell groups

(Supplementary Figure 2). Furthermore, only samples with at

least 1000 live single T cells were included in subsequent analyses.

Cell events with extreme expression were excluded per individual

marker. After the removal of unsuccessful markers and extreme

events, analysis was performed on data transformed with the

inverse hyperbolic sine (arcsinh) function (cofactor = 5). Finally,

to identify outlying samples and potential batch effects,

multidimensional scaling (MDS) and principal component

analysis (PCA) plots were produced from median expression of

panel markers in each sample.
2.8.2 Clustering with FlowSOM/
ConsensusClusterPlus

The dataset was downsampled to an equal number of randomly

selected cells (n) from each sample, where n was equal to the

number of cells in the smallest sample. The automated clustering

steps were performed with FlowSOM (v2.0.0) (19) and

ConsensusClusterPlus (v1.56.0) (23) using agglomerative

hierarchical consensus clustering. Cells were clustered into 20

populations using Euclidean distance and average linkage

(Supplementary Figure 3). Heatmaps of median marker

expression for each cluster were generated with pheatmap

(v1.0.12) (31). For visualisation purposes, these values represent

the median of the arcsinh-transformed, 0 – 1 scaled expression data.

For 0 – 1 scaling, the 0.01 and 0.99 quantiles for each marker were

used as the lower and upper boundary, respectively.
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TABLE 1 The antigen target, heavy metal and clone of each conjugated antibody used in the CyTOF T cell panel.

Target Epitope location Marker significance Label Clone

CD8a Extracellular Cytotoxic T cell 141Pr RPA-T8

HLA-DR Extracellular Activation marker 143Nd L243

IL-2 Intracellular T cell cytokine 144Nd MQ1-17H12

CD4 Extracellular T helper cell 145Nd RPA-T4

CD127 (IL-7Ra) Extracellular Cytokine receptor 147Sm A019D5

CD278/ICOS Extracellular Checkpoint protein 148Nd C398.4A

CD200 Extracellular Myeloid cell regulator 149Sm OX-104

IL-22 Intracellular Th2 cytokine 150Nd 22URTI

IL-5 Intracellular Th2 cytokine 151Eu TRFK5

TNF Extracellular Inflammatory cytokine 152Sm Mab11

CD62L (L-selectin) Extracellular Adhesion molecule 153Eu DREG-56

CD38 Extracellular Lymphocyte activator 154Sm HIT2

CD279 (PD-1) Extracellular T cell suppressor 155Gd EH12.2H7

CD134 (OX40) Extracellular Co-stimulatory molecule 156Gd ACT35

IFN-g Intracellular Th1 cytokine 158Gd B27

FoxP3 Intracellular Treg marker 159Tb 259D/C7

Tbet Intracellular Th1 transcription factor 160Gd 4B10

CD197 (CCR7) Extracellular Chemokine receptor involved in lymph node homing 161Dy G043H7

CD152 (CTLA-4) Extracellular Checkpoint protein 162Dy 14D3

CD183 (CXCR3) Extracellular Th1 chemokine receptor 163Dy G025H7

IL-17A Intracellular Th17 cytokine 164Dy N49-653

CD45RO Extracellular Memory T cell marker 165Ho UCHL1

IL-10 Intracellular Regulatory cytokine 166Er JES3-9D7

Gata3 Intracellular Th2 transcription factor 167Er TWAJ

ROR gamma Intracellular Th17 transcription factor 168Er 600214

CD25 (IL-2R) Extracellular IL-2 receptor 169Tm 2A3

CD28 Extracellular Costimulatory molecule 170Er CD28.2

CD185 (CXCR5) Extracellular T follicular helper cell chemokine receptor 171Yb RF8B2

IL-21 Intracellular Regulatory cytokine 172Yb 3A3-N2

IL-4 Intracellular Th2 cytokine 173Yb MP4-25D2

CD154 (CD40L) Extracellular Activated T cell marker 174Yb 24-31

Perforin Intracellular Cytotoxic T cell effector protein 175Lu B-D48

CD196 (CCR6) Extracellular Th17 chemokine receptor 176Yb 11A9

Iridium – CellID DNA binder to identify cell events 191Ir

Iridium – CellID DNA binder to identify cell events 193Ir

Cisplatin DNA binder to assess cell viability 194Pt

CD3 Extracellular Pan-T cell marker 209Bi UCHT1
F
rontiers in Immunology
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Target location indicates if the antibody was used in the extracellular or intracellular antibody cocktail. All antibodies were purchased from Fluidigm.
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2.8.3 Cluster visualisation with t-SNE
The similarity of single cells in two-dimensional space was

visualised with the dimensionality reduction technique t-stochastic

neighbour embedding (t-SNE), implemented with Rtsne (v0.15)

(32). Clusters were annotated manually by their surface phenotype.
2.9 Statistical analysis

To identify clusters with differential representation in RA

samples compared to healthy controls, we used mixed-effects

modelling of associations of single cells (MASC) (7) for each

cluster, including age and sex of donors as fixed-effects covariates

(justification in the quality control section), sample ID as a random-

effect covariate and the case-control status as the contrast term.

Clusters that are significantly enriched or depleted in RA are

defined as those with a P value ≤ 0.05 after Bonferroni correction

(n = number of clusters tested).
2.10 Data sharing

All mass cytometry data is freely available at https://

flowrepository.org/id/FR-FCM-Z5RM (33).
3 Results

3.1 Study design and subject characteristics

PBMCs from 10 RA patients and 10 healthy controls (Table 2)

were left unstimulated or stimulated with anti-CD3/CD28 beads (n =

40 samples) prior to deep immunophenotyping by mass cytometry.
Frontiers in Immunology 05
Manual gating with traditional statistical analysis fails to

identify large differences between blood from patients with RA

and healthy controls.

Sequential biaxial gating of CyTOF data was used to identify

commonly described CD4+ and CD8+ T cell subsets as defined by

expression of surface markers, transcription factors and/or

intracellular cytokines. Conventional statistical analysis with

Mann-Whitney U found no significant differences in the

proportions of Th CD4+ subsets between RA and HC (Figure 1);

only Treg (defined as CD4+ FoxP3+) were markedly decreased in

RA. No CD8+ T cell subsets were found to be differentially

abundant in RA (Figure 2).
3.2 CyTOF automated clustering pipeline
quality control steps

Low quality cells with extreme expression values were excluded

after individual appraisal of expression distributions for each

marker. This step removed 0.34% (4,146/1,230,364) of cells from

the full dataset, with between 0.09% and 1.4% of cells removed from

each sample. Diagnostic MDS and PCA plots suggest a differential

trend between RA and HC (MDS2 in Figure 3A, PC1 and PC2 in

Figure 3B), indicating slight differences in marker expression

between the two groups (Supplementary Figure 4). Data structure

of this kind is likely caused by study design or technical artefacts

(e.g. batch effects), which requires correction, when the potential

confounder is identified. As age is known to associate with the

frequency of several cell types (e.g. naïve T cell populations), we

studied the effect of age on data structure: Figure 3C shows that

samples largely cluster by age group, similarly to previous reports

(34), suggesting that the structure in the data is attributable to

participant age rather than technical batch effects. Therefore, we

included age as a covariate for statistical association testing.
3.3 Automated clustering identifies well-
described T cell subsets

Automated clustering was performed on downsampled quality-

controlled CyTOF data; analyses of unstimulated and stimulated T

cell datasets were performed separately. For both datasets, T cell

subsets were identified from a parent population of CD3+ T cells,

including both CD4+ and CD8+ populations. Within the

unstimulated dataset, we identified 20 distinct T cell subsets,

including 11 CD4+ and nine CD8+ (Figure 4A). Amongst the

CD4+ populations are a FoxP3+ subset (subset 2U; a Treg-like

subset), two IL-17+ subsets (subsets 10U and 1U; Th17 subsets), a

Th1-like subset (subset 4U) and a CD38+ subset (subset 19U).

Although analysis was performed independently, clusters

identified in the stimulated dataset were broadly similar to those

of the unstimulated dataset (Figure 4B). As expected, t-SNE plots

coloured by expression level of several markers highlight an

increase in the number of cells expressing TNF upon stimulation

(Figures 4C, D).
TABLE 2 Subject characteristics of cases (RA) and healthy controls.

Cases (n = 10) Controls (n = 10) P
value

Age (mean ± SD) 61 ± 14 46 ± 8 0.02

Female 7 6 1

RF-positive 7 — —

ACPA-positive 6 — —

DAS28 (mean ±
SD)

3.4 ± 2.2 — —

Glucocorticoids 2 0 —

Methotrexate 5 0 —

Other DMARD* 3 0 —

Biologics 1 0 —
*Sulfasalazine or hydroxychloroquine
RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; DAS, disease activity score;
DMARD, disease-modifying anti-rheumatic drug.
P values calculated for age and gender by Mann-Whitney U and Fisher’s exact test,
respectively.
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3.4 MASC identifies multiple T cell clusters
with differential expression between RA
and healthy samples

MASC was used to identify clusters with differential abundance

between RA samples and HC, adjusting for the effects of age,

gender, and donor. Six unstimulated cell subsets and eight

stimulated subsets were found to be differentially abundant with

MASC (Figure 5). The majority were CD4+ and, of these, three
Frontiers in Immunology 06
populations were present in both unstimulated and stimulated

states, including enrichment of Th1 and Th17 subsets (CD4+ T-

bet+ IL-17+ and CD4+ T-bet+ IL-2+ cell clusters) and depletion of a

Treg-like subset (CD4+ FoxP3+ IL-2+) in RA (Table 3, Figure 6).

Interestingly, a Th2 subset (CD4+ TCM GATA3+) was decreased in

RA (although it did not reach statistical significance).

Notably, Figures 7, 8 highlight the heterogeneity in subset

proportions between individual patients (raw values in

Supplementary Tables 1, 2). For example, the abundance of the
B C D

A

FIGURE 1

Abundances of Th and Treg CD4+ T cell subsets identified by manual gating of CyTOF data shown with median, interquartile range and P value
(shown above the pairwise comparisons). Points represent RA and HC samples. Parent population is labelled on the y-axis. Mann Whitney U P values
are shown above the pairwise comparisons. Graphs with cytokine expression are taken from the stimulated T cell dataset and those with surface
markers and transcription factors are taken from the unstimulated dataset. (A) Represents markers associated with Th1 cells, (B) Treg cells,
(C) represents Th17-related markers, and (D) Th2-related markers.
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CD4+ TNF+ cells range from < 1% to > 7% of cells in stimulated RA

samples (Figure 8, subset 8S). Before any correction, naïve T cells were

found to be increased in frequency in controls compared to cases, as

expected by the age difference between the two groups. This difference

disappeared after statistical adjustment for age implemented in MASC,
Frontiers in Immunology 07
demonstrating that the correction for the age-driven stratification

observed in the PCA plots was sufficient in terms of statistical outcome.

Cell cluster phenotype, abundances, odds ratios, and P values

for all cell clusters generated by the pipeline are presented

in Table 3.
FIGURE 2

Abundances of CD8+ T cell subsets identified by manual gating of CyTOF data shown with median and interquartile range, and P value. Points
represent RA and HC samples. Parent population is labelled on the y-axis. Mann Whitney U P values are shown above the pairwise comparisons.
Graphs with cytokine expression are taken from the stimulated T cell dataset and those with surface markers and transcription factors are taken
from the unstimulated dataset.
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3.5 Agnostically defined cell
clusters can be identified using
conventional techniques

To provide internal validation of the automated pipeline’s

significant clusters, manual gating and standard statistical analysis

of agnostically defined clusters was performed. Based on the

phenotypes presented in Figure 4 and the level of expression of

each marker, gates were drawn by eye around all positive cells if the

cluster had low expression of a marker on the heatmap, but only

around high positive cells if the marker had high expression.

Using these definitions of T cell subsets and a standard

statistical approach, manual gating was able to identify a clear

imbalance between pro-inflammatory Th subsets and anti-

inflammatory subsets in RA. For example, out of the

unstimulated dataset, manual gating was able to identify that

subset 2U (CD4+ Tcm FoxP3+ IL-2+), a Treg-like subset, is

decreased in RA (P = 0.0004; Figure 9). The same population

could also be identified in the stimulated dataset (subset 2Sb, CD4+

Tcm FoxP3+ IL-2+, P = 0.0002). Pro-inflammatory Th cells were

also clearly identified and statistically significantly increased in RA

(CD4+ Tcm Tbet+ IL-17+, subset 1U, P = 0.0172; and subset 1S, P =

0.0022; Figure 9). Therefore, innovative approaches easily capture

known CD4+ T cell subset imbalances in RA blood, even in a small

sample size, by allowing for unconventional marker combinations.
Frontiers in Immunology 08
4 Discussion

We show the superiority of innovative immunophenotyping

and automated analytical techniques over hypothesis-driven

conventional biaxial gating (based on canonical biomarkers) to

identify a T cell subset imbalance in RA peripheral blood in small

sample sizes. Our strategy allows for unusual combinations of T cell

markers, for instance T-bet and IL-17, capturing the plasticity of T

helper cell populations, a more difficult task to achieve with

standard gating strategies.

Th17 cells are known to be phenotypically unstable (35). In our

study, T-bet+ IL-17+ T cells are increased in RA blood. These cells

have been termed Th1-like Th17 cells in the literature, co-produce

IL-17 and IFN-g, and are known to contribute to inflammation in

the context of autoimmunity (35–37). Interestingly, IFN-g
production in Th1-like Th17 cells has been shown to be repressed

by miR-146a (37) and loss of function polymorphisms in the

microRNA-146a (miR-146a) gene have been associated with an

increased risk of developing RA and lupus in both European and

Asian genetic association studies (38, 39); taken together, these data

provide some mechanistic evidence that Th1-like Th17 cells are

involved in the pathogenesis of RA. The methods outlined in this

paper easily detect an increase of this subset in RA.

We also found a significant decrease in the number of IL-2+

FoxP3+ T cells (Treg-like cells) in RA samples compared to
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FIGURE 3

(A) Multidimensional scaling (MDS) plot based on median, arcsinh-transformed marker expression in unstimulated (U) and stimulated (S) T cell
samples from rheumatoid arthritis (RA) patients and healthy controls (HC). (B) PCA plot of the same data coloured by case-control status. (C) PCA
plot of the same data coloured by age group of participants.
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controls. It is well-established that IL-2 is critical in maintaining

Treg function (40) and that some Treg produce IL-2 (41). However,

the relative role of paracrine versus autocrine IL-2 secretion from

nearby effector T cells (42) versus IL-2+ FoxP3 T cells (41) is

unclear, and the low level or absence of CD25 expression on the IL-

2+ FoxP3+ subsets in this data appears to conflict with classical Treg

definitions (reviewed by (43). Other studies have characterised

subpopulations of CD4+ FoxP3+ memory cells that produce IL-2

(44). Consistent with our findings, the authors show that these cells

possess a phenotype that lies between Tregs and other T helper cells,
Frontiers in Immunology 09
where they exhibit lower expression of classical Treg markers,

including CD25, than their non-IL-2-producing counterparts.

Therefore, rather than identifying bona fide Tregs, the

unsupervised analysis has potentially identified IL-2-producing

Treg-like subpopulations that may be more relevant for RA.

Regardless, these findings highlight the utility of automated

analyses for capturing non-canonical cell types, better reflecting

the heterogeneity and plasticity of T cells.

Due to our small sample size, our association results could

theoretically represent false positive due to a sampling bias or
B

C

D

A

FIGURE 4

(A) Heatmap of median marker expression (arcsinh, 0-1 transformed) for 20 T cell clusters identified in unstimulated cell samples by automated
clustering. Each sample was downsampled to 2746 cells (n = 10 RA, 10 HC). The dendrogram represents hierarchical clustering using Euclidean
distance and average linkage. (B) As (A), for stimulated cell samples (n = 10 RA, 10 HC). Each sample was downsampled to 2224 cells. (C) t-SNE plots
of the same unstimulated cells, coloured by expression level of a selection of markers. (D) As (C), for stimulated cells. Note that clustering was
performed on a parent population comprising both CD4+ cells and CD8+ cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1094872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mulhearn et al. 10.3389/fimmu.2023.1094872
B

C D

A

FIGURE 5

(A) tSNE plots showing unstimulated cells (one point = a single cell), each coloured by the cluster they were assigned to during automated clustering of merged
CD4+ and CD8+ cells. The cells are split by those derived from healthy control (HC) samples (left) and those derived from RA samples (right) to show potential
differences in cluster size between conditions. Unstimulated samples (n = 10 RA, 10 HC) were downsampled to 2746 cells each prior to clustering. (B) The same
tSNE plot of unstimulated T cells, now showing all RA and healthy cells together. Clusters that were found to be differentially abundant in RA vs healthy controls
according to MASC are shown in colour (P ≤ 0.05), whilst those not differentially abundant are shown in grey. (C) As A, but for stimulated cells. Stimulated
samples (n = 10 RA, 10 HC) were downsampled to 2224 cells each prior to clustering. (D) As (B), for stimulated cells. Note that cell subsets identified in both
states (unstimulated and stimulated) are denoted by the same colour across subfigures.
TABLE 3 MASC results for clusters present in A) both unstimulated (U) and stimulated (S) samples, B) unstimulated samples alone, and C) stimulated
samples alone.

Subset Cluster number % total RA cells % total HC cells OR (RA vs HC) P value

A) Shared subsets (Unstimulated, Stimulated)

CD4+ TCM T-bet+ IL-17+

(combined Th1 and Th17
phenotype)

1U 2.6 0.4 12.2 (5.3 – 28.1) 1.5 x 10-4

1S 1.4 0.2 9.7 (3.8 – 24.5) 1.5 x 10-3

CD4+ TCM FoxP3+ IL-2+

(Treg-like)

2U 0.5 1.8 0.3 (0.2 – 0.5) 4.6 x 10-3

2Sa + 2Sb 0.4/0.09 2.0/0.7
0.1 (0.1 – 0.2)/0.03 (0.01 –

0.09)
7.7 x 10-7/1.9 x 10-

7

CD4+ TEM CCR6+

(Th17)

3U 1.6 0.6 4.4 (2.2 – 8.7) 5.1 x 10-3

3S 4.8 1.1 9.4 (4.6 – 19.5) 7.9 x 10-5

CD4+ TCM T-bet+ IL-2+

(Th1)

4U 0.8 0.4 3.5 (1.6 – 7.4) 6.8 x 10-2

4S 0.8 0.2 5.7 (2.6 – 12.3) 2.2 x 10-3

CD8+ TEM
5U 15.9 10.5 1.7 (1.1 – 2.7) 3.4 x 10-1

5S 6.8 9.8 0.6 (0.4 – 0.9) 5.4 x 10-1

CD4+ TCM
6U 22.8 14.0 1.5 (0.9 – 2.7) 1

6S 22.5 20.6 0.9 (0.5 – 1.5) 1

CD8+ TEM T-bet+ Perforin+
7Ua + 7Ub 12.2/3.7 9.0/4.8 1.0 (0.5 – 1.9)/0.8 (0.4 – 1.5) 1

7Sa + 7Sb 12.7/3.3 9.9/4.5 0.9 (0.5 – 1.9)/0.9 (0.4 - 2.0) 1

CD4+ TEM TNFa+

(Th1)

8U 1.0 0.9 1.1 (0.6 – 1.9) 1

8S 3.8 1.9 1.9 (0.8 – 4.7) 1

(Continued)
F
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caused by multiple testing. However, this is very unlikely, as first we

confirm a plausible and previously reported imbalance of Th/Treg-

like subsets in RA; second the mechanistic evidence supports our

findings, and finally all statistical tests have been stringently

corrected for multiple testing. These elements reinforce the

credibility of our main conclusion: the superiority of hypothesis-

free clustering of many markers in small sample sizes over standard

hypothesis-driven bi-axial gating.

The hallmark of precision medicine and the primary aim of

stratified medicine initiatives in RA (45) consists of stratifying

patients into treatment response categories. Our study shows

large heterogeneity across patients with some with a

predominantly Th1 profile, others a Th17 profile, or a Th1-like

Th17 profile, while others are mainly characterised by a low IL-2+
Frontiers in Immunology 11
Treg-like profile. As an example, stratifying patients by their IL-2+

Treg titres may dictate response to low-dose IL-2 therapy, as has

now been successfully trialled in lupus (46) and RA (47).

Furthermore, a Japanese group found that stratified medicine for

psoriatic arthritis patients increased response rates significantly

(16). Immunophenotyped patients received ustekinumab if Th1-

dominant and secukinumab if either Th17-dominant or with a Th1/

Th17-hybrid phenotype resulting in clinically significant

improvement in response rates (16). The same group have good

one year fo l l ow-up da ta (48) , sugge s t ing tha t the

immunophenotype could be the main predictor of drug response

in precision medicine. Stratifying RA patients by their Th1/Th17

phenotype, or by the Th1-like Th17 phenotype highlighted in this

study, may suggest that, despite the fact that previous trials of
TABLE 3 Continued

Subset Cluster number % total RA cells % total HC cells OR (RA vs HC) P value

CD4+ Naïve
9U 7.0 15.4 0.6 (0.3 – 1.1) 1

9S 11.8 17.4 0.8 (0.4 – 1.4) 1

B) Unstimulated-specific subsets

CD4+ TCM IL-17+

(Th17)
10U 0.9 0.2 5.7 (3.1 – 10.3) 4.0 x 10-4

CD8+ TEM TNFa+ 11U 1.5 0.6 3.7 (2.0 – 7.1) 1.4 x 10-2

CD8+ TCM FoxP3+ IL-2+ 12U 0.5 0.5 0.2 (0.1 – 0.5) 2.5 x 10-2

CD8+ TCM PD-1+ 13U 2.4 6.2 0.4 (0.2 – 0.7) 6.5 x 10-2

CD8+ TEM CCR6+ Perforin+ 14U 0.8 0.3 3.5 (1.6 – 7.6) 7.3 x 10-2

CD8+ TCM Perforin+ 15U 0.9 0.2 3.8 (1.6 – 8.7) 9.4 x 10-2

CD4+ TCM GATA3+ 16U 15.0 20.3 0.6 (0.3 – 1.2) 1

CD4+ TCM Perforin+ 17U 6.9 7.9 0.7 (0.4 – 1.2) 1

CD8+ Naïve 18U 2.2 5.3 0.8 (0.4 – 1.5) 1

CD4+ TCM CD38+ 19U 0.8 0.7 1.6 (1.0 – 2.7) 1

C) Stimulated-specific subsets

CD8+ TEM CD38+ T-bet+ 20S 1.0 0.4 6.3 (2.3 – 17.0) 1.8 x 10-2

CD8+ TEM CCR6+ T-bet+ 21S 0.9 0.4 3.8 (1.8 – 7.9) 3.8 x 10-2

CD4+ TCM TNFa+ 22S 2.2 0.8 4.0 (1.9 – 8.5) 4.1 x 10-2

CD4+ TCM CD38+ TNFa+ 23S 3.9 9.0 0.3 (0.1 – 0.8) 4.1 x 10-1

CD4+ TCM T-bet+ Perforin+ 24S 0.2 0.6 0.3 (0.1 – 0.8) 4.1 x 10-1

CD8+ TCM 25S 11.7 10.2 1.4 (0.9 – 2.0) 1

CD4+ TEM 26S 9.1 7.6 1.1 (0.5 – 2.4) 1

CD8+ TEM IFN-g+ TNFa+ 27S 2.3 2.0 0.9 (0.4 – 2.3) 1

CD4+ TCM CCR6+ 28S 0.5 0.8 0.7 (0.4 – 1.5) 1
For each shared cell subset, the first row indicates statistics for the unstimulated subset and the second for the stimulated subset. Elements separated by “/” indicate statistics for two clusters with
the same definition found in the same dataset. Here, ‘a’ and ‘b’ refer to the larger and smaller cluster, respectively. The odds ratio is shown with a 95% confidence interval. Subsets with differential
abundance between RA and healthy samples are highlighted by a bold P value (a = 0.05). TCM: T central memory. TEM: T effector memory.
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FIGURE 6

MASC results for unstimulated (left) and stimulated (right) clusters identified by automated clustering of merged CD4+ and CD8+ cells Odds ratio
(with 95% CI) is shown against P value, and the size of the point represents the % of total RA cells from the dataset that comprise each cluster. The
vertical dashed line represents an odds ratio of 1, and the horizontal dashed line represents the threshold for statistical significance (a = 0.05). Cell
subsets identified in both states (unstimulated and stimulated) are denoted by the same colour in both plots.
FIGURE 7

Box-and-whisker plots of the proportions (%) of 20 T cell populations identified in unstimulated RA and healthy control (HC) samples by automated
clustering of merged CD4+ and CD8+ cells. The median, first and third quartiles and minimum and maximum values are shown. The P value
obtained from MASC is shown for each cluster, and a green outline indicates differential abundance between RA and HC (i.e. P ≤ 0.05). n = 10 HC,
10 RA.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2023.1094872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mulhearn et al. 10.3389/fimmu.2023.1094872
secukinumab in RA failed to reach their primary endpoint, it could

be a viable treatment option in RA patient subgroups; further work

is required to confirm this hypothesis (49).

We have shown that non-biased automated analysis of large

immune datasets is successful in identifying Th cell imbalance in

RA with implications for precision medicine. We now plan to

expand on these findings by testing their role in patient

stratification for treatment response studies.
5 Key messages

What is already known about this subject?
Fron
• Large cytometric datasets are difficult to analyse manually

due to the multidimensional nature of the data.
tiers in Immunology 13
• Manual data analysis may introduce significant bias and be

underpowered to interrogate multidimensional data.
What does this study add?
• This study has shown that an unbiased automated

clustering algorithm can successfully interrogate large

cytometric datasets, finding differential expression of 2

rare T cell populations in RA patients (decreased IL-2+

Treg-like cells; increased Th1-like Th17 cells).
How might this impact on clinical practice?
• Understanding the underlying immunopathology of

autoimmune disease is a prerequisite to finding new drug

targets for treatment.
FIGURE 8

Box-and-whisker plots of the proportions (%) of 20 T cell populations identified in stimulated RA and healthy control (HC) samples by automated
clustering of merged CD4+ and CD8+ cells. The median, first and third quartiles and minimum and maximum values are shown. The P value
obtained from MASC is shown for each cluster, and a green outline indicates differential abundance between RA and HC (i.e. P ≤ 0.05). n = 10 HC,
10 RA.
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Fron
• As our knowledge of T cell heterogeneity expands,

discovering rare T cell populations will directly feed into

the concept of precision medicine, to: ‘treat arthritis, right

first time’.
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FIGURE 9

(A) Clusters 2U and 2Sb represent the abundance of manually gated subsets previously identified by the CyTOF automated clustering pipeline,
shown here with median and interquartile range. Parent population is labelled on the y-axis. (B) Clusters 1U and 1S represent the expression of CCR7
on Th1-like IL-17+ cells, with median and interquartile range. Points represent RA and HC samples. Mann Whitney U P values are shown above the
pairwise comparisons. TEM, T effector memory cell; TCM, T central memory cell.
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