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Background: Succinate dehydrogenase (SDH), one of the key enzymes in the

tricarboxylic acid cycle, is mainly found in the mitochondria. SDH consists of four

subunits encoding SDHA, SDHB, SDHC, and SDHD. The biological function of

SDH is significantly related to cancer progression. Colorectal cancer (CRC) is one

of the most common malignant tumors globally, whose most common

histological subtype is colon adenocarcinoma (COAD). However, the

correlation between SDH factors and COAD remains unclear.

Methods: The data on pan-cancer was obtained from The Cancer Genome Atlas

(TCGA) database. Kaplan-Meier survival analysis showed the prognostic ability of

SDHs. The cBioPortal database reflected genetic variations of SDHs. The

correlation analysis was conducted between SDHs and mitochondrial energy

metabolism genes (MMGs) and the protein-protein interaction (PPI) network was

built. Consequently, Univariate andMultivariate Cox Regression Analysis on SDHs

and other clinical characteristics were conducted. A nomogram was established.

The ssGSEA analysis visualized the association between SDHs and immune

infiltration. Immunophenoscore (IPS) explored the correlation between SDHs

and immunotherapy, and the correlation between SDHs and targeted therapy

was investigated through Genomics of Drug Sensitivity in Cancer. Finally, qPCR

and immunohistochemistry detected SDHs’ expression.

Results: After assessing SDHs differential expression in pan-cancer, we found

that SDHB, SDHC, and SDHD benefit COAD patients. The cBioPortal database

demonstrated that SDHA was the top gene in mutation frequency rank.
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Correlation analysis mirrored a strong link between SDHs and MMGs. We

formulated a nomogram and found that SDHB, SDHC, SDHD, and clinical

characteristics correlated with COAD patients’ survival. For T helper cells, Th2

cells, and Tem, SDHA, SDHB, SDHC, and SDHD were significantly enriched in the

high expression group. Moreover, COAD patients with high SDHA expression

were more suitable for immunotherapy. And COAD patients with different SDHs’

expression have different sensitivity to targeted drugs. Further verifying the gene

and protein expression levels of SDHs, we found that the tissues were consistent

with the bioinformatics analysis.

Conclusions:Our study analyzed the expression and prognostic value of SDHs in

COAD, explored the pathway mechanisms involved, and the immune cell

correlations, indicating that SDHs might be biomarkers for COAD patients.
KEYWORDS

succinate dehydrogenase (SDH), colorectal cancer, colon adenocarcinoma (COAD),
prognostic, immune infiltration, immune treatment
Introduction

Colon adenocarcinoma (COAD) is the most common histological

subtype, accounting for more than 90% of CRC (1). According to

statistics, Colorectal cancer (CRC) ranks third among incident cases in

both men and women and the third most lethal cancer worldwide in

2022 (2). New treatments for COAD have developed with advances in

surgery and medicine, but long-term survival rates of patients remain

considerably lower (3). Therefore, searching for potential cancer

biomarkers and developing new-targeted drugs for immunotherapy

may become essential research directions in COAD.

In recent years, tumor immunotherapy has been used in high-

incidence malignancies such as colon cancer (4), non-small-cell lung

(5), and triple-negative breast cancer (6), which would activate

immunologic cells to attack the tumor by cell metabolic signaling

pathway. In contrast to normal differentiated cells, which rely primarily

on mitochondrial oxidative phosphorylation to generate the energy

needed for cellular processes, most cancer cells instead rely on aerobic

glycolysis, a phenomenon termed “the Warburg effect”. Mitochondria

are the powerhouses of cells, and aerobic glycolysis is considered the

primarymetabolic phenotype of tumor cells, whichmeet the challenges

of high energy demand for rapid cancer cell division and migration by

enhancing glycolysis exhibited under aerobic conditions (7). In terms

of tumor metabolism, enhanced glycolysis phenotype reflects the

progression of tumor development (8). To illustrate, enhanced

glycolysis regulates pancreatic cancer metastasis (9), and colorectal

cancer metastasis (10). Additionally, a pan-cancer analysis of glycolysis

with TCGA database regarded increased tumor glycolytic activity as

inferior survival in various cancers (11).

A report indicated that succinate dehydrogenases (SDHs) are

closely related to mitochondria and are primarily involved in the

occurrence and progression of tumors (12, 13). Moreover, succinate,

which accumulates as a result of SDH inhibition, inhibits HIF-a prolyl

hydroxylases in the cytosol, stabilizes and activates Hypoxia-inducible
02
factor-1 (HIF-1) (14). HIF-1, a transcription factor involves in hypoxic

induction of glycolysis, leads to malignant transformation (15). SDH,

also known as mitochondrial complex II, is composed of four subunits

encoding SDHA, SDHB, SDHC, and SDHD (16). The structure of the

protein comprises a hydrophilic head and a hydrophobic tail. The

hydrophilic head protrudes into the mitochondrial matrix, and the

hydrophobic tail anchors the protein to the mitochondrial inner

membrane (17). SDH, functioning as the catalytic core, the head

portion is composed of the flavoprotein SDHA and the iron sulphur

(Fe-S) containing protein SDHB. The membrane domain comprises

the SDHC and SDHD subunits, containing a bound hememoiety and

a binding site for ubiquinone (17, 18).

There exists a close relationship between malignancies and the

expression of succinate and SDH, including SDH mutations,

regulation of mRNA expression, and cancer immunosurveillance

(16). SDH mutations have been found in familial paragangliomas

and pheochromocytomas (19–24), renal carcinomas (25), and

gastrointestinal stromal tumors (26). Some rare SDH-wt cases have

shown that the occurrence of the Carney triad-related gastrointestinal

stromal tumors (GISTs) (27–29) or paragangliomas (PGLs) (30)

correlated with a decreased mRNA expression of the SDHC

subunits. It is reported that SDHC is correlated with increased

metastasis-free survival in malignant pheochromocytoma/

paraganglioma (31). Additionally, it is found that there is decreased

expression of SDHD in gastric cancer (32). Nevertheless, SDH factors

are rarely reported in COAD, which indicates that the correlation

between SDH factors and COAD remains to be explored.

In this study, we investigated SDHs’ expression in pan-cancer and

prediction in the prognosis of COAD patients. Furthermore, the

associations among SDHs, immune infiltration, and immunotherapy

are explored. To sum up, our results prompted that SDHs may

become novel cancer biomarkers in COAD, which act as an

immunomodulatory derivative from the tricarboxylic acid cycle,

participating in the occurrence and development of COAD.
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Material and methods

Data collection and variation analysis

Fragments per Kilobase Million (FPKM) normalized expression

profile data of pan-cancer, including 33 cancers of The Cancer

Genome Atlas (TCGA) database, were downloaded from Genomic

Data Commons (GDC) database (https://portal.gdc.cancer.gov/)

and merged into an expression matrix. According to human gene

annotations (Homo_sapiens.GRCh38.101.CRH.GTF), the

Ensemble IDs were transformed into gene symbols. Then, the

clinical data of patients with 36 Cholangiocarcinoma (CHOL),

453 Colon adenocarcinoma (COAD), 370 Liver hepatocellular

carcinoma (LIHC), 165 Rectum adenocarcinoma (READ), and

370 Stomach adenocarcinoma (STAD) were downloaded and

combined into another matrix, respectively. The expression

matrix of COAD was stored in Table S1, and the clinical

characteristics of COAD patients were documented in Table S2.
Expression and prognostic significance of
SDHs in COAD

To investigate the difference in gene expression between cancer

tissues and normal tissues, we first compared the raw data (Counts)

of differentially expressed genes (DEGs) between normal tissues and

CHOL, COAD, LIHC, READ, and STAD, respectively, with a

threshold of false discovery rate (FDR) < 0.05 by R package

“limma”. 168 mitochondrial energy metabolism genes (MMGs)

were obtained from KEGG PATHWAY database (https://

www.kegg.jp/kegg/pathway.html) (33) and 1476 HIF-1a related

genes were downloaded in the GeneCards database (https://

www.genecards.org/). After intersecting with MMGs and HIF-1a
related genes, a total of 8 DEGs overlapped were recognized. Then,

8 DEGs were used to build the protein-protein interaction (PPI)

network by the Search Tool for the Retrieval of Interacting Genes

(STRING) 11.0 and visualized in Cytoscape 3.8.2. The expression of

8 DEGs was visualized by R package “pheatmap”. Then, Kaplan-

Meier survival analysis, which applied two-sided log-rank tests with

a threshold of p < 0.05, was performed on patients with CHOL,

COAD, LIHC, READ, and STAD based on 8 DEGs with R package

“survminer”. Additionally, a gene expression omnibus (GEO)

dataset, GSE14333, which contained the microarray-based of 226

COAD patients and corresponding clinical data, respectively, were

downloaded from GEO website.
Genetic variations of SDHs in COAD

To explore genetic variations of succinate dehydrogenases

(SDHs), cBioPortal (http://www.cbioportal.org), a database for

cancer genomics data including mutations, and copy number

alternations (CNA) from GISTIC, was applied. The mutation

profiles of SDHs came from Colorectal Adenocarcinoma (TCGA,

PanCancer Atlas) with 526 patients.
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Correlation, functional enrichment based
on MMGs

With the RNAseq data of COAD from TCGA, correlation

analysis between SDHs and MMGs was visualized by R package

“pheatmap”. Additionally, 4 SDHs as well as 168 MMGs were used

to build the PPI network by the STRING and visualized in

Cytoscape, which involves 41 genes. With the criteria of FDR <

0.05, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis were performed

utilizing R package “clusterProfiler” based on 41 genes and

described by R package “ggplot2”.
Relationship between the expression of
SDHs and the clinical characteristics of
patients with COAD

To figure out SDHs’ link with the clinical characteristics of

patients with COAD, we analyzed the correlation between the

expression levels of SDHs and various clinical characteristics,

including T stage, N stage, M stage, age, and lymphatic invasion.

Furthermore, Univariate and Multivariate Cox Regression Analysis

were conducted to test whether SDHs can be considered

independent prognostic factors. R package “rms” and “survival”

were employed to formulate a nomogram, which is used to

individualize the survival probability for 1-year, 3-year, and 5-

year overall survival (OS). Then, time-dependent ROC analysis and

Calibration curve were applied to evaluate the nomogram’s

discrimination and calibration (34).
Association between SDHs and immune
infiltration

To characterize the immune microenvironment of patients with

COAD, based on the expression matrix of SDHs, ssGSEA analysis

was performed to visualize the correlation between SDHs and

immune infiltration level of 24 immune cell types through R

package “GSVA”. Correlation analysis was applied to clarify the

SDHs expression in connection with the expressions of immune-

related genes. The Tumor Immune Single-Cell Hub (TISCH)

database (http://tisch.comp-genomics.org/home/), a scRNA-seq

database focusing on the tumor microenvironment, was employed

to analyze the correlations between SDHs expression and

infiltrating immune cells (35). Gene expression data was gained

from the GEO database (GSE146771), including 10468 single cells

from 10 patients. The expression of SDHs in different cell types

based in GSE146771 was visualized using TISCH.
Immunotherapy outcomes prediction

The correlat ion heatmap between SDHs and each

immunosuppressive and immunostimulatory gene was visualized
frontiersin.org
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by R package “pheatmap”. A total of 18 immunosuppressive genes

including ADORA2A, BTLA, CD244, CD274, CD96, CSF1R,

CTLA4, HAVCR2, IL10RB, KDR, LAG3, LGALS9, PDCD1,

PDCD1LG2, PVRL2, TGFB1, TGFBR1, and TIGIT were selected.

A total of 18 MHC molecules including B2M, HLA-A, HLA-B,

HLA-C, HLA-DMA, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-

DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-E,

HLA-F, HLA-G, TAP1, TAP2, and TAPBP were selected. A total of

43 immunostimulatory genes including C10orf54, CD27, CD276,

CD28, CD40, CD40LG, CD48, CD70, CD80, CD86, CXCL12,

CXCR4, ENTPD1, HHLA2, ICOS, ICOSLG, IL2RA, IL6, IL6R,

KLRC1, KLRK1, LTA, MICB, NT5E, PVR, RAET1E, TMEM173,

TMIGD2, TNFRSF13B, TNFRSF13C, TNFRSF14, TNFRSF18,

TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9, TNFSF13,

TNFSF13B, TNFSF14, TNFSF15, TNFSF4, and TNFSF9

were selected.

The Cancer Immunome Atlas (https://tcia.at/) characterized the

intratumoral immune landscapes and the cancer antigenomes from

20 solid cancers. The immunophenoscore (IPS) data of COAD

patients was extracted for the following analysis to predict the

response to immunotherapy, including the anti-PD-1/PD-L1

treatment and anti-CTLA-4 treatment scores. The microsatellite

instability (MSI) was downloaded from cBioPortal and the

consensus molecular subtypes (CMS) was obtained from a

previous study (36).
Targeted drug therapy outcomes
prediction

To predict targeted drug therapy outcomes according to SHDs’

expression, R package “pRRophetic” was utilized in Axitinib,

Cetuximab, GDC0941, and Gefitinib based on the Genomics of

Drug Sensitivity in Cancer (GDSC). The natural log of the half-

maximal inhibitory concentration (LN_IC50 value) of chemotherapy

drugs was downloaded from the GDSC, using GDSC2 screening set.

The box plots were drawn by R package “ggplot2”.
Validation of SDHs at gene and
protein levels

The 19 paired COAD tissues were collected from patients who

underwent surgical resection for COAD at the Second Affiliated

Hospital of Wenzhou Medical University (Wenzhou, China). The

corresponding Paraffin section was collected from the Pathology

Department of the Second Affiliated Hospital of Wenzhou Medical

University (Wenzhou, China). It has passed the examination of the

Ethics Committee at Wenzhou Medical University.

The protein expression level of SDHs in COAD and normal

tissue was verified by immunohistochemistry (IHC). Sections were

dewaxed and rehydrated. The catalase blocker blocked endogenous

peroxidase activity (ZSGB-BIO), and the antigen was repaired by

sodium citrate buffer (pH 6.0). Then, the tissue sections were

incubated overnight with rabbit monoclonal anti-SDHA antibody

(1:100 dilution, Proteintech), rabbit monoclonal anti-SDHB
Frontiers in Immunology 04
antibody (1:100 dilution, Santa cruz), rabbit monoclonal anti-

SDHC antibody (1:100 dilution, Proteintech), and rabbit

monoclonal anti-SDHD antibody (1:100 dilution, Affbiotech) at

4°C, respectively. After the antibodies were washed, the slices were

incubated for 30 minutes with goat anti-rabbit IgG at 37 °C. Then,

we redyed with hematoxylin the slices, used neutral gum to seal the

shee, and observed it under the optical microscope. Additionally,

protein expression of SDHs was downloaded from the Proteomic

Data Commons (https://proteomic.datacommons.cancer.gov/

pdc/).

The primers of SDHA, SDHB, SDHC, and SDHD can be found

in Table S3. The total RNA was extracted using TRNzol Reagent

and was reverse-transcribed with ReverTra Ace®qPCR RT Master

Mix with gDNA Remover (TOYOBO, Japan). All qPCR reactions

were performed with Hieff® Qpcr SYBR Green Master Mix(Yeasen

Biotechnology (Shanghai)) in 20µl volume containing 10µl 2×

SYBR Green RT-PCR Master Mix, 0.4µl of each 0.2µM forward

and reverse primer, 1µl of cDNA sample, and nuclease-free water

up to 20µl. Amplification was carried out according to the following

conditions: initial denaturation at 95°C for 5 min, followed by 40

cycles of denaturation at 95°C for 10s, and annealing at 60°C for

30s. The relative expression of the gene was calculated by the 2^-

△Ct method.
Results

Expression and prognostic significance of
SDHs in COAD

The workflow of our study was shown in Figure 1.

We first compared the raw data (Counts) of differentially

expressed genes (DEGs) between normal tissues and CHOL,

COAD, LIHC, READ, and STAD, respectively, with a threshold

of false discovery rate (FDR) < 0.05. Ultimately, a total of 2854

DEGs were identified (Figure 2A). Then, the intersection of 2854

DEGs, 168 mitochondrial energy metabolism genes (MMGs), and

1476 HIF-1a related genes included 8 DEGs (ACAT1, HADHA,

PFKFB, PPARA, SDHA, SDHB, SDHC, and SDHD) (Figure 2B).

168 MMGs were obtained from KEGG PATHWAY database, and

1476 HIF-1a related genes were downloaded from GeneCards

database. The DEGs, MMGs, and HIF-1a-related genes were

listed in Table S4. In addition, a protein-protein interaction (PPI)

network with 8 DEGs was constructed through the Search Tool for

the Retrieval of Interacting Genes (STRING) (Figure 2C, Table S5).

According to the PPI network, there exists a strong relationship

among SDHA, SDHB, SDHC, and SDHD. After reviewing the

literature, we found that SDHA, SDHB, SDHC, and SDHD

belong to the family of succinate dehydrogenase (SDH) (16).

Figure 2D demonstrates the expression of 8 DEGs in CHOL,

COAD, LIHC, READ, and STAD between normal tissues and

pathological tissues, and the volcano figures were stored in

Supplementary Figure 1. Especially for SDHs in COAD, the

expression of SDHA, SDHB, SDHC, and SDHD in normal tissues

is higher than that in COAD patients. To have a comprehensive

insight into the prognostic value of 8 DEGs, Kaplan-Meier survival
frontiersin.org
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analysis was applied to patients with CHOL, COAD, LIHC, READ,

and STAD. The results were shown in Supplementary Figure 2 and

3. It’s revealed that SDHB (p = 0.026), SDHC (p = 0.026), and

SDHD (p = 0.018) were significantly associated with the prognosis

of COAD in Figures 2E–H. The survival time in the high expression

group of SDHB, SDHC, and SDHD was longer than that in the low

expression group, which indicates that high expression of SDHB,

SDHC, and SDHD benefits COAD patients. Additionally, the

consistent results obtained from GSE14333 make the conclusion

more convincing (Supplementary Figure 4).
Genetic variations of SDHs in COAD

To explore genetic variations of SDHs, cBioPortal was applied.

The mutation profi les of SDHs came from Colorectal

Adenocarcinoma (TCGA, PanCancer Atlas) with 526 patients. As

shown in Figure 3A, a high mutation rate of SDHs was observed in

COAD patients. Among all SDHs, SDHA is regarded as the top

gene in mutation frequency rank in COAD patients (4%).

Furthermore, the correlation between SDHs copy number

alternations (CNA) and expression of mRNA was presented in

Figures 3B–E, pointing out that a positive correlation was found

between SDHs copy number and mRNA expression in COAD.
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Correlation, functional enrichment based
on MMGs

Considering that SDHs have a strong connection with energy

metabolism, correlation analysis was conducted between SDHs and

MMGs. The results were shown in Figure 4A, and the detailed data

was demonstrated in Table S6, indicating the significant

correlations between 4 SDHs and 168 MMGs. In addition, a PPI

network with 4 SDHs as well as 168 MMGs was constructed

through the STRING, involving 41 elements (Figure 4B, Table

S7). Additionally, a correlation analysis between 4 SDHs was

shown in Figure 4C, reflecting that SDHs have a strong

correlation except for SDHA. Furthermore, Gene Ontology (GO)

enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis were performed to predict the

functions and pathways of 41 genes (Table S8). It is demonstrated

that these SDHs-related genes involve electron transport chain,

respiratory electron transport chain, mitochondrial ATP synthesis

coupled electron transport, and respiratory chain complex in GO

enrichment analysis (Figure 4D). Additionally, according to KEGG

analysis, it is mirrored that these genes are relative to oxidative

phosphorylation (OXPHOS), citrate cycle (TCA cycle), and

glycolysis/Gluconeogenesis (Figure 4E). The results showed that

SDHs-related genes were enriched in electron transport chain,
FIGURE 1

Flowchart of the study process.
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respiratory electron transport chain, cellular respiration, respiratory

chain, oxidative phosphorylation, carbon metabolism, and

TCA cycle.
Relationship between the expression of
SDHs and the clinical characteristics of
patients with COAD

To figure out the connection between SDHs and the clinical

characteristics of patients with COAD, including T stage, N stage,

M stage, age, and lymphatic invasion, the violin diagram were

drawn in Figures 5A–E. To illustrate, the T stage, N stage, and M

stage represent the extent of primary cancer, the regional lymph

node involvement, and the distant metastasis, respectively, based on

evidence obtained from clinical assessment parameters determined

prior to treatment. Additionally, Lymphatic invasion is a yes/no

indicator to ask if malignant cells are present in small or thin-walled

vessels suggesting lymphatic involvement. It’s pointed out that

SDHA and SDHB were low expressed in higher N and M stages

(Figures 5B, C). There exists no positive result in age (Figure 5D),
Frontiers in Immunology 06
however, it is demonstrated that SDHD expression levels were all

lower in lymphatic invasion samples (Figure 5E). Summarily, there

is a close relationship between SDHs and clinical characteristics.

To testify whether SDHs can be regarded as independent

prognostic factors, Univariate and Multivariate Cox Regression

Analysis were employed in COAD patients. The results were

demonstrated in Table 1, and the risk score of the nomogram and

the coefficient of clinical characteristics were documented in Table

S9. It’s revealed that SDHB, SDHC, SDHD, and clinical

characteristics involving T stage, N stage, M stage, age, and

lymphatic invasion were correlated with the survival of COAD

patients. A nomogram is formulated based on independent

prognostic factors to predict the survival probability individually

(Figure 5F). For each COAD patient,1-, 3-, and 5-year survival rates

would be predicted by the total points in the nomogram accor to 8

indicators. To assess the sensitivity and specificity of this

nomogram, time-dependent receiver operating characteristic

(ROC) analysis was adopted. The ROC area under the curve

(AUC) is 0.798 for 1-year, 0.780 for 3-year, and 0.705 for 5-year

survival, representing an efficient predictive efficacy (Figure 5G).

Then, the Calibration curve was applied to evaluate the nomogram’s
A B

D

E F G H

C

FIGURE 2

Prognostic significance of SDHs. (A) Venn diagram of DEGs in CHOL, COAD, LIHC, READ, and STAD. (B) Venn diagram of DEGs, MMGs, and HIF-1a-
related genes. (C) The network for 8 DEGs intersected. (D) Heatmap of SDHA, SDHB, SDHC, and SDHD between 41 normal tissues and 453 COAD
patients. (E-H) Kaplan-Meier overall survival of SDHA, SDHB, SDHC, and SDHD in COAD.
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discrimination and calibration, reflecting an ideal capacity of the

nomogram for effectively predicting the prognosis of COAD

patients (Figures 5H–J).
Association between SDHs and
immune infiltration

To investigate the connection between SDHs and immune cells,

the ssGESA analysis was performed (Supplementary Figures 5A-D,

Table S10). Among 24 immune cells, there exists a close

relationship between SDHs and Tem (Effective Memory T Cell),

Tcm (Central Memory T cell), T helper cells, Th2 (T helper 2) cells,

NK CD56bright cells, and NK cells (Figures 6A–D). Surprisingly,

for T helper cells and Th2 cells, SDHs were significantly enriched in

the high expression group. As for Tem, SDHs were significantly

enriched in the low expression group. Additionally, for Tcm, SDHA

and SDHB were significantly enriched in the low expression group,

while SDHC and SDHD were enriched in the high expression
Frontiers in Immunology 07
group. For NK cells, SDHs were significantly enriched in the low

expression group except for SHDA. However, SDHA was

significantly enriched in the high expression group, while SDHC

and SDHD were enriched in the low expression group for NK

CD56bright cells. We also examined the correlations between the

SDHs expression and the expressions of mark genes of immune

cells in Figure 6E. It’s indicated that SDHs, especially SDHB, were

negatively related to CD56, which is the marker gene of NK cells. In

addition, there exists a strong correlation between SDHD and

MBD2, a marker gene of Tcm. For CD44 and IL15RA, two genes

related to Tcm and Tem, all SDHs are positively correlated with

them, especially SDHA, SDHB, and SDHD. To figure out SDHs’

expression in different immune cell types, we analyzed single-cell

sequencing datasets of GSE146771 from the Tumor Immune

Single-Cell Hub (TISCH) database. In Supplementary Figure 6,

GSE146771 was divided into 13 cell types. Focusing on the lower left

corner of UMAP plots, we can see that SDHs mainly enriched in

CD4Tconv cells, CD8T cells, CD8Tex cells, Treg cells, Tprolif cells,

and NK cells, which is consistent with ssGSEA results.
A

B

D E

C

FIGURE 3

Somatic mutation of SDHs. (A) Genetic mutation analysis of SDHs. (B-E) Relationship between CNA in SDHs and expression of mRNA.
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Immunotherapy outcomes prediction

To deepen the understanding of the value of SDHs for COAD

treatment, the relationships between SDHs and marker genes of

immunostimulation, MHC, and immunosuppression were listed in

Figures 7A–C and Table S11-S13, respectively. It turns out that SDHs

are significantly correlated with these immune-related genes. Unlike

other SDHs, SDHA had different correlations with immune genes.

Interestingly, some immunosuppressants showed uniform correlations.

The results indicated that ADORA2A, CSF1R, CTLA4, KDR,

PDCD1LG2, TGFBR1, TGFB1, and CXCL12 had significant negative

correlations with SDHs while CD244, IL10RB, KLRC1, and RAET1E

had significant positive correlations with SDHs. As for genes of MHC,

SDHA was positively correlated with almost all genes, especially HLA-

E and TAPBP. IPS is a machine learning-based scoring system that

could predict patients’ responses to immunotherapy, including anti-

PD-1/PD-L1 and anti-CTLA-4 treatment (37). Combined analysis of

the expression SDHs and IPS score proved that COAD patients with

high SDHA expression are more suitable for immunotherapy such as

anti-PD-1/PD-L1 (p = 3.4×10-7) and anti-CTLA-4 (p = 5.6×10-6)
Frontiers in Immunology 08
treatment (Figures 7D, E, Table S14). Furthermore, we explored how

the microsatellite instability (MSI) and consensus molecular subtypes

(CMS) effect the patients’ possibility to respond to immunotherapy

with different SDHA expression. Microsatellite instability (MSI)

distribution of patients was displayed in Figure 7F. Specifically,

patients in microsatellite stability (MSS) with high SDHA expression

are more suitable for immunotherapy such as anti-PD-1/PD-L1 (p =

9.2×10-6) and anti-CTLA-4 (p = 2.9×10-5) treatment (Figures 7G, H).

Then, we explored how different CMS effect the possibility to respond

immunotherapy in patients in MSS with different SDHA expression.

Proportions of CMS in patients in MSS were demonstrated in

Figure 7I. Patients in CMS3 and CMS4 with high SDHA expression

have a higher possibility to respond to immunotherapy (Figures 7J, K).
Targeted drug therapy
outcomes prediction

To investigate the relationship between SDHs and targeted drug

sensitivity, the Genomics of Drug Sensitivity in Cancer (GDSC) of
A B

D E

C

FIGURE 4

Correlation, functional enrichment based on MMGs. (A) The correlation between MMGs and SDHs in COAD. (B) The network for 41 genes is based
on SDHs and MMGs with the highest correlation. (C) The correlation between different SDHs in COAD. (D, E) The functions and pathways based on
41 genes were predicted by the analysis of GO and KEGG.
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Axitinib, Cetuximab, GDC0941, and Gefitinib was utilized. The

result indicated significant differences in targeted drug sensitivity in

COAD patients with different SDHs’ expression (Figures 8A–D,

Table S15). Specifically, COAD patients with different SDHA

expression have different responses to Axitinib, Cetuximab,

GDC0941, and Gefitinib. Additionally, with higher SDHB

expression, COAD patients are more sensitive to GDC0941 and

Gefitinib. However, the drug sensitivity of COAD patients with high

expression of SDHC and SDHD is opposite to that of COAD

patients with high expression of SDHA.
Validation of SDHs at gene and
protein levels

To validate the consistency between the gene level and protein

level of SDHs in COAD, we evaluated the protein expressions of
Frontiers in Immunology 09
SDHs in COAD through Proteomic Data Commons (PDC)

database and Immunohistochemistry (IHC).

Figure 9A indicated that SHDs, mainly located in the

cytoplasm, were mainly expressed in glandular cells. Furthermore,

the immunohistochemical staining intensity of SDHA, SDHB,

SDHC, and SDHD in normal tissues was more substantial than

in COAD tissues, demonstrating that these proteins were more

significantly expressed in adjacent colon tissues than in COAD

tissues. According to the PDC database, compared with normal

tissues, SDHA (Figure 9B, p < 2.2×10-16), SDHB (Figure 9C, p =

1.1×10-13), SDHC (Figure 9D, p = 1.2 ×10-10), and SDHD

(Figure 9E, p = 0.00028) were low expressed in colon cancer at

protein level.

In addition, qPCR with 19 paired tumors and adjacent tissues

was performed, suggesting that the mRNA expression of SDHs was

significantly different from tumors and adjacent tissues (Figures 9F–

I). These results showed that all SDHs have good consistency
A
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FIGURE 5

SDH factor expression and the clinical characteristics of patients with COAD. (A-E) SDHA, SDHB, SDHC, and SDHD are concerned with clinical
characteristics involving T stage, N stage, M stage, age, and lymphatic invasion. (F) A nomogram to predict the overall survival rate of COAD patients.
(G-J) Time-dependent ROC analysis and Calibration curve for the overall survival nomogram model in the discovery group. A dashed diagonal line
represents the ideal nomogram. *p < 0.05; **p < 0.01 and ***p < 0.001; ns, not significant.
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between gene and protein levels, which was highly expressed in

colon tissues and low expressed in colon cancer.
Discussion

A growing body of research proved mitochondrial metabolism

plays an essential role in tumorigenesis, metastasis, and treatment

resistance (7, 38–42). Succinate dehydrogenase (SDH), a tumor
Frontiers in Immunology 10
metabolite, acts as an oncogenic signaling molecule in many cellular

processes such as metabolic and epigenetic alterations, angiogenic

stimulation, migration, invasion, and post-translational

modification of proteins (43). Consequently, we found that high

expression of SDHB, SDHC, and SDHD has a better prognosis for

COAD patients, reflecting that all of them can be defined as

protective factors for COAD by TCGA and GSE14333 data analysis.

Mutations in genes are known to be closely linked to the

development of malignant tumors. The mutation of SDH in the
TABLE 1 Univariate and multivariate Cox regression analysis of SDHs for COAD with clinical characteristics in TCGA cohort.

Characteristics Total (N)
Univariate analysis

Hazard ratio (95% CI) P value

T stage 452

T1 11 Reference

T2 77 0.453 (0.088-2.347) 0.346

T3 308 1.326 (0.325-5.409) 0.694

T4 56 3.826 (0.893-16.394) 0.071

N stage 453

N0 266 Reference

N1 105 1.635 (0.991-2.695) 0.054

N2 82 3.997 (2.549-6.266) <0.001

M stage 396

M0 332 Reference

M1 64 4.327 (2.763-6.776) <0.001

Age 453

<=65 188 Reference

>65 265 1.649 (1.077-2.526) 0.021

Lymphatic invasion 410

NO 247 Reference

YES 163 2.315 (1.520-3.525) <0.001

SDHA 453

Low 226 Reference

High 227 0.818 (0.554-1.209) 0.314

SDHB 453

Low 226 Reference

High 227 0.637 (0.429-0.948) 0.026

SDHC 453

Low 226 Reference

High 227 0.640 (0.432-0.947) 0.026

SDHD 453

Low 226 Reference

High 227 0.620 (0.418-0.921) 0.018

High 227 1.207 (0.816-1.786) 0.345
fron
The bold letters in the first column represent different clinical characteristics. And the bold letters in the fourth column represent the clinical characteristics is significant (P < 0.05).
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development and prognosis of several cancers has been partially

established (26–30, 44). In Carney triad (CT) patients, a high

methylation level of SDHC was found, which was correlated to

functional impairment of the SDH complex (29). And the notable

immunohistochemical loss of SDHA in gastrointestinal stromal tumors

(GISTs) signals mutation of SDHA (45). Therefore, we explored the

genetic variations of SDHs in COAD through cBioPorta. For SDHs,

mutations are positively correlated with mRNA expression.

Interestingly, it’s found that in COAD, SDHA is the top gene in

mutation frequency rank and is mainly involved in the missense

mutation in COAD. COAD progression can be hindered by

inhibiting mitochondrial OXPHOS through Lin28a/SDHA signaling

pathway (46). Additionally, SDHA inactivation results in the

accumulation of succinate, which binds to and activates thioredoxin

reductase 2, a reactive oxygen species-scavenging enzyme, to render

chemotherapy resistance in COAD (47). Therefore, we speculate that

SDHA may be involved in the progression and treatment of COAD as

a critical gene among the SDHs.
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To further explore the link between SDHs and energy

metabolism in COAD, the correlation analysis and PPI between

SDHs and MMGs were conducted, indicating the significant

correlations between SDHs and MMGs. Additionally, the

correlation analysis between 4 SDHs reflected that SDHs have a

strong correlation except for SDHA. Meanwhile, we found that

SDHs-related genes were enriched in electron transport chain,

OXPHOS, carbon metabolism, and TCA cycle by correlation

analysis and functional enrichment analysis. It’s important to

note that previous studies have shown that the TCA cycle and

carbon metabolism have a particular impact on the prognosis of

patients with COAD (48, 49). It has been reported that SDHB gene

knockout in the human pheochromocytoma cell line (HPheo1) up-

regulates genes involved in glycolysis and down-regulates genes

involved in OXPHOS (50). Glycolylysis-dependent impaired

OXPHOS has also been shown in familial renal cancer patients

with germline mutations of the SDHB gene (51). Our analysis

revealed that SDHs play a role in the TCA cycle and metabolism
A B

D

E

C

FIGURE 6

Association between SDHs and immune infiltration. (A-D) The ssGSEA analysis based on SDH factor expression for COAD and different types of
immune cells. (E) The correlations between the SDHs expression and the expressions of mark genes of immune cells.
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process pathway. In terms of tumor metabolism, the glycolysis/

oxidative phosphorylation (OXPHOS) ratio is of great significance

in tumorigenesis.

In recent years, cancer immunotherapy has generally drawn the

public’s attention, which was named 2013’s Breakthrough of the

Year by Science (52). Up to now, checkpoint inhibitors have been

the most thoroughly investigated class of immunotherapy. So far,

five PD-1 or PD-L1 inhibitors and one CTLA4 inhibitor have been

approved to treat various cancers based on improvements in overall

survival (53). However, many patients do not respond to treatment
Frontiers in Immunology 12
with checkpoint inhibitors. The factors underlying responsiveness

to checkpoint inhibitors are being intensely studied (54). When

activated, T cells express programmed cell death 1 (PD-1) for

recognizing abnormal and cancerous cells (55, 56). cytotoxic T

lymphocyte antigen 4 (CTLA4), is a co-inhibitory molecule that

regulates the extent of T cell activation. blocks the interaction

between CTLA4 and these ligands, CD80 and CD86, and keeps T

cells remain active, which can recognize and kill tumor cells (57). It

has been reported that succinic acid plays a role in the cancer

microenvironment and regulates many metabolic pathways
A B
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FIGURE 7

Immunotherapy outcomes prediction. (A-C) The correlation between SDHs and immunostimulatory, MHC, and immunosuppressive genes.
(D, E) The association between SDHs expression and the relative probabilities of responding to immunotherapy, including anti-PD-1/PD-L1 therapy
and anti-CTLA-4 therapy. (F) Proportions of MSI and MSS in patients. (G, H) The possibility to respond to immunotherapy based on different SDHA
expression and MSI. (I) Proportions of CMS1, CMS2, CMS3, and CMS4 in patients in MSS. (J, K) The possibility to respond to immunotherapy in
patients in MSS based on different SDHA expression and CMS.
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through G protein-coupled receptors (58). It is thus clear that as an

essential intermediate product of the tricarboxylic acid (TCA) cycle,

succinate and SDHs extend beyond metabolism and enter

anticancer immunity (59).

To investigate the connection between SDHs and immune

infiltration, we explored the association between SDHs and

immune infiltration. In our study, the degree of immune

infiltration of T helper cells was closely related to the expression of

SDHs, which may be caused by the enrichment of SDH in T helper

cells leading to enhancement of mitochondrial activity. It’s known

that T helper cells are essential for protective immunity and play a

role in inflammatory responses to self-antigens or nonharmful

allergens (60). Metabolic inhibition decreased T-cell proliferation

and activation or led to T-cell anergy or cell death (61–63). Moreover,

the low expression level of SDHs was correlated to functional

impairment of the SDH complex because of the Warburg effect

(64). Nevertheless, the specific function of the Warburg effect in
Frontiers in Immunology 13
activated T cells remains unclear (65). The functional mechanism of

energy metabolism of SDHs on COAD needs to be further explored.

SDHB, SDHC, and SDHD showed high similarity in our

correlation analysis between SDHs and marker genes of

immunosuppression and immunostimulation. SDHA is regarded

as a new target to mitigate T cell-mediated intestinal diseases

including alloimmune gastrointestinal graft versus host disease

(GI-GVHD), autoimmune inflammatory bowel disease (IBD), and

iatrogenic CTLA-4Ig ICB-mediated colitis (66) because this

reduction in SDHA caused an enhanced sensitivity of the

intestinal epithelial cells (IECs) to T cell-mediated cytotoxicity

(67, 68). Our analysis proved that SDHA, positively correlated

with most of these gene signatures, has a peculiar pattern

regarding gene signatures compared to other SDHs. Additionally,

our results indicated that SDHA is significantly associated with

Lymphocyte activation gene 3 protein (LAG3), which provides a

new direction for immunotherapy in patients with COAD. Highly
A B

DC

FIGURE 8

Targeted drug therapy outcomes prediction. (A-D) GDSC predicts the IC50 difference of four drugs between COAD patients with different
SDHs expression.
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correlated with LAG3, adoptive cell therapy using tumor-

infiltrating lymphocytes (TILs) was a promising immunotherapy

approach for COAD (69). Through immunophenoscore (IPS),

COAD patients with high SDHA expression are more suitable for

immunotherapy such as anti-PD-1/PD-L1 and anti-CTLA-4

treatment. In fact, it’s known that the majority of COAD patients

in microsatellite instability (MSS) were less sensitive to immune

checkpoint inhibitors than the minority of COAD patients in

microsatellite instability (MSI) (70). In our study, MSS patients

with different SDHA expression have different possibility to

respond to immunotherapy. With high SDHA expression, MSS

patients can benefit more from immunotherapy. Consensus

molecular subtypes (CMS) groups CRC samples according

to their gene-signature in four subtypes: CMS1 (MSI Immune),

CMS2 (Canonical), CMS3 (Metabolic), and CMS4 (Mesenchymal)

(36). Patients in CMS3 are demonstrated enrichment for multiple

metabolism signatures, while patients in CMS4 are likely to be

diagnosed at more advanced stages and have poor survival (71). For

both CMS3 and CMS4 patients in MSS, higher SDHA expression

was associated with better treatment outcomes, indicating that

SDHA might become a new biomarker for predicting the

outcomes of immune checkpoint blockades such as anti-PD-1/

PD-L1 and anti-CTLA-4.

Target drugs such as Axitinib (72), Cetuximab (73), GDC0941

(74), and Gefitinib (52) have been applied to clinical practice.
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However, the most recent adjuvant clinical trials have not shown

any value for adding targeted agents, like cetuximab, to standard

chemotherapies in stage III disease, despite improved outcomes in

the metastatic setting (75). Additionally, pathologic features (76),

MSI (77), Mutations of BRAF, KRAS, and PIK3CA (78), supervised

prognostic genomic signatures (79), and unsupervised gene

expression molecular subtypes (80) all contribute to the definition

of optimal adjuvant treatments for patients. Nevertheless, none of

the gene signatures known to date can predict benefits from therapy

in COAD (75). In our study, the Wilcoxon rank sum test

demonstrated the significant influence of SDHs’ expression level

on targeted drug sensitivity, showing the great potential for SDH to

predict benefit from therapy in COAD. With the help of SDHs’

expression level, we would predict targeted drug therapy outcomes

more precisely. Furthermore, based on the properties of SDHA

targeting immune checkpoints to regulate immune infiltration, we

believe that SDHA may be a crucial gene in the SDHs family, which

plays an essential role in the development of immunotherapy and

targeted drug therapy of COAD.
Conclusions

To sum up, our study comprehensively assessed the expression

and prognostic value of SDHs in COAD and explored the pathway
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FIGURE 9

Validation of SDHs at gene and protein levels. (A) IHC of SDHs in COAD and normal tissues. (B-E) The protein expression of SDHs in COAD in
Proteomic Data Commons database. (F-I) The relative mRNA expression level of SDHs in COAD and adjacent normal tissues detected by qPCR.
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mechanisms involved and the immune cell correlations. Our findings

suggested that SDHs might be potential biomarkers indicating the

prognosis and therapeutic efficacy for patients with COAD and were

associated with COAD immune microenvironment.
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