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Recapitulating essential
pathophysiological
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for disease studies
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Yanlu Xiong1, Wenchen Wang1*, Jie Lei1* and Tao Jiang1*

1Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University,
Xi’an, China, 2State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University,
Xi’an, China
Lung diseases have become a significant challenge to public healthcare

worldwide, which stresses the necessity of developing effective biological

models for pathophysiological and pharmacological studies of the human

respiratory system. In recent years, lung-on-a-chip has been extensively

developed as a potentially revolutionary respiratory model paradigm with high

efficiency and improved accuracy, bridging the gap between cell culture and

preclinical trials. The advantages of lung-on-a-chip technology derive from its

capabilities in establishing 3D multicellular architectures and dynamic

microphysiological environments. A critical issue in its development is utilizing

such capabilities to recapitulate the essential components of the human

respiratory system for effectively restoring physiological functions and

illustrating disease progress. Here we present a review of lung-on-a-chip

technology, highlighting various strategies for capturing lung physiological and

pathological characteristics. The key pathophysiological characteristics of the

lungs are examined, including the airways, alveoli, and alveolar septum.

Accordingly, the strategies in lung-on-a-chip research to capture the essential

components and functions of lungs are analyzed. Recent studies of pneumonia,

lung cancer, asthma, chronic obstructive pulmonary disease, and pulmonary

fibrosis based on lung-on-a-chip are surveyed. Finally, cross-disciplinary

approaches are proposed to foster the future development of lung-on-a-

chip technology.
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1 Introduction

The lungs are involved in many essential functions, including

respiration, pulmonary circulation, and immunity. They are

susceptible to viruses, bacteria, and other microorganisms from the

external environment and inside the human body. Lung diseases can

lead to respiratory failure and life-threatening conditions. Acute lung

injury, as caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), poses an enormous global threat to humanity. SARS-

CoV-2 mainly attacks the lungs, causing cytokine storm, acute

respiratory distress syndrome, and septic shock, and can cause death

in severe cases (1–3). Chronic lung injury, as caused by chronic

obstructive pulmonary disease (COPD), also decreases life expectancy

quality (4, 5). The prevalence of COPD is high, affecting 328 million

people worldwide, especially in low- and middle-income regions (6–8).

Malignant tumors, such as lung cancer, are the leading cause of death in

many countries. Treating these diseases necessitates a deep

understanding of the underlying mechanisms, pathological processes,

and potential therapeutic targets, all of which rely on reliable

physiological and pathological models.

While simple and intuitive, traditional models of 2D cell culture

cannot reflect in vivo cell niches, as these models commonly lack the

extracellular matrix (ECM), physical/chemical/biological cues,

multicellular interactions, and intracellular signaling pathways (9).

Furthermore, it is difficult to model the complexity of organs and

communication between cells (10). As an alternative approach, animal

models struggle to overcome their deviations from humans in terms of

pathophysiological processes and drug responses. Specifically, there are

significant structural differences between animal and human respiratory

systems; in animal models, various inhalation stimuli are normally

deposited on the turbinate and the upper respiratory tract and do not
Frontiers in Immunology 02
reach the lungs, making it difficult to recreate human pathology. In

addition, the use of animal models is time-consuming and may be

ethically problematic (11, 12). Clinical trials are subject to various

constraints resulting from interspecific differences, ethical issues, and

economic costs (Figure 1). All these limitations result in a bottleneck for

experimental research and drug development, encouraging researchers

to develop efficient and reliable platforms for preclinical drug testing.

Lung-on-a-chip combines microfluidics and cell biology to build

three-dimensional (3D) structures that mimic alveoli and airways

(Figure 1). Alveoli/airway-on-a-chip devices recapitulate alveolar

epithelial, microvascular endothelial, interstitial fibroblast, and

multicellular interactions. These devices can form the air–liquid

interface between the epithelium and endothelium with air and

blood fluid dynamics. In addition, these devices can integrate

respiratory movements (13, 14), immune cells transported by

microvascular perfusion (15) and the transfer between microflora

(16) and other related organs (17, 18), all of which constitute powerful

tools for understanding the mechanism and progress of lung diseases

(19). In this review, we propose an innovative classification of core

components in the lung-on-a-chip based on the pathophysiological

structures and functions of the lungs. Furthermore, we summarize the

latest advances in lung-on-a-chip-based research for lung

inflammation, lung cancer, asthma, COPD, and pulmonary fibrosis.
2 Physiological structure of lungs

2.1 Lung conducting airways

The airway is the path to the lungs during respiration,

composed of the trachea and bronchus, with 23 branches
FIGURE 1

Illustration of a human lung-on-a-chip design illustrating key physiological characteristics of the alveoli and the advantages of lung-on-a-chip compared
with traditional models. (A) Analysis of lung alveoli as functional units composed of epithelial cells, endothelial cells, and interstitium; (B) Typical structure
of lung-on-a-chip with breathing-induced mechanical activity, and its advantages compared with cell culture and animal models.
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extending from the trachea to the terminal sacs. As the lumen of

each branch of the alveolar duct becomes thinner, the epithelium

gradually changes from pseudolaminated to single-layer ciliated

columnar epithelium, where the numbers of goblet cells, glands, and

cartilage decrease, and the amount of smooth muscle increases.

Diastolic smooth muscle contraction can change the diameter of the

airway, regulating the volume of air in the alveoli. The airways

communicate with the external environment, and airway epithelial

cells serve as the first line of defense against particles, pathogens,

and toxins (25, 26). Smooth muscle spasms and lumen narrowing

cause dyspnea in some pathological conditions, such as asthma

and COPD.
2.2 Alveoli

Alveoli are the basic functional units of the lungs and the main

component of air exchange. In adults, there are approximately 700

million bilateral alveoli, accounting for 90% of the whole lung (27);

each one is a physiological unit for gas exchange between air–blood

interface, composed of alveolar type I and II cells. Alveolar type I

cells, covering approximately 95% of the entire alveolar surface,

contribute to gas exchange with the associated endothelium.

Whereas, alveolar type II cells are characterized by secretory

organelles participating in innate immune responses and

producing surfactants to maintain surface tension. Individual

alveoli maintain good elasticity, with volumes increasing by

approximately 15% during respiration. Adjacent alveoli are

interdependent and interconnected through small pores. When

one alveolus collapses, the tension of the surrounding alveolar

walls increases, limiting further alveolar collapse and increasing

stability via interdependence. The respiratory membrane, also

known as the air–blood barrier, is important in maintaining the

basic structure and microenvironment of the lungs (28, 29). The

main cell components of the respiratory membrane are type I and

type II alveolar epithelial cells, endothelial cells, and fibroblasts (29,

30). Lung diseases that thicken the respiratory membrane or

increase the diffusion distance, such as atelectasis, emphysema,

lobectomy, and capillary closure and obstruction, can slow the

rate and amount of gas diffusion, reduce the respiratory membrane

diffusion area, and affect pulmonary ventilation.
2.3 Alveolar interstitium

The alveolar interstitium is the space between the alveolar

epithelium and capillary endothelial basal layer, including a

variety of cells and ECM networks, such as elastic and bundled

collagen fibers (31), which impart compliance and elasticity to the

lungs, respectively, affecting the amount of air inhaled and the ease

with which the lung retracts to its resting position after inflation (32,

33). Elastic fibers exhibit a linear stress-strain relationship over a

large range facilitating lung parenchyma elastic retraction and

stabilization (34, 35).
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3 Lung-on-a-chip model construction

The lung-on-a-chip can be classified into four parts based on

structural characteristics: the respiratory membrane structure,

alveolar cell arrangement, breathing movement, and air–liquid

interface. The typical lung-on-a-chip models are summarized in

Table 1.
3.1 Respiratory membrane structure

As a key component of the alveolar air–liquid barrier, the

membrane structure in the lung-on-a-chip has undergone three

stages of development (Figure 2A). Early models used Transwell

membranes (36). Costa A et al. (37) and Bengalli R et al. (38) grew

alveolar epithelium (NCI-H441) and pulmonary microvascular

endothelium (HPMUC-ST1.6R) cells on both sides of a Transwell

membrane (39). The simple alveolar respiratory membrane model

was used to evaluate the translocation of nanoparticles in biofilm

structures and pneumonia induced by ZnO nanoparticles.

However, Transwell membranes cannot be combined with

microfluidic devices and lack the flexibility required for bionic

design. Organosilicone-based polydimethylsiloxane (PDMS) and

some thermoplastics are increasingly being used as membrane

materials for lung-on-a-chips (40). PDMS is the most studied and

representative membrane for ventilation and nutrient exchange (19,

39, 41). It is transparent, oxygen-permeable, stretchable, and

flexible allowing the precise imitation of the alveolar dynamic

mechanical deformation caused by breathing (13, 42). Other

polymer films have also been widely applied and are easy to

manufacture, flexible, and cost effective (43). Guan et al. (44)

used polycarbonate (PC) as the membrane structure of an air–

liquid interface. Air–liquid exchange membranes have also been

built using polyester (PET) (45) and polymethylmethacrylate

(PMMA) (9, 46). High-throughput lung organ chips with the

same basic structure and environment but different cell types can

integrate multi-group studies (45).

Membrane structures have some common characteristics. The

pore size of the respiratory membrane is 1–10 mm, which not only

ensures the exchange of nutrients and protein signal interactions of

the epithelial-endothelial cells but also prevents the leakage of cells

from both sides. Furthermore, to improve biocompatibility, porous

polymer surfaces are typically modified with ECM-like protein

materials (e.g., collagen, gelatin, and bovine fibrin). Recent

fabrication techniques, such as 3D printing and bioprinting, may

be valuable in achieving customized lung-on-a-chip membranes

with improved biomimesis (43, 47, 48). Yang et al. (49) used PLGA

nanofiber membranes as a substrate to form a uniformly sized

porous network and found that different membrane thicknesses and

PLGA concentrations affect the membrane permeability and ion

diffusion. The printed fiber film can be adjusted to meet the design

specifications and 3D-bioprinted lung models show a higher rate of

proliferation and longer culture time (28 days) compared with 2D

models (47).
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The microporous polymer membrane acts as a barrier between

the epithelial and endothelial cells, ensuring nutrient exchange and

protein signal interactions between the epithelial-endothelial cells

and also preventing the leakage of cells from each side. Further, the

development of the lung-on-a-chip benefits from improved

fabrication techniques that precisely control cell arrangement.

Bioprinting technology enables the automated deposition of cells

and biomaterials in 3D for highly controlled and customized

production of tissue models. In constructing an alveolar model

with bioinks (e.g., ECM-like hydrogel), fibroblast cells can be

deposited in position with high precision. In addition, growth

factors or cell inhibitors can be embedded in hydrogels to

influence cell growth.
3.2 Alveolar cell arrangement

The arrangement of alveolar cells is a basic functional unit in

the lung-on-a-chip. The typical cells found at the alveolar-capillary

interface can be divided into four types: type I and II alveolar

epithelial cells (A549, HPAEpiC, and NCI-H441) (43, 47, 50),

microvascular endothelial cells (HUVEC, HUC-5A, HPMEC-

ST1.6R, HPMEC, and Ea.hy926) (15, 41, 43, 51, 52), interstitial

fibroblasts (HFL1 and MRC5) (41, 45), and other cells associated

with disease models (THP-1, PMBC, and phLFs) (42, 43, 50).

Endothelium/stromal cells/epithelium is the most common model

arrangement, which can also involve immune cells to stimulate lung

infection in vitro (53, 54). The interactions between the endothelial,

epithelial, and immune cells provide quantitative data on unknown

parameters in pulmonary infection using real-time live-cell imaging

(55, 56). However, the cells used in these models grew on a semi-

permeable membrane surface without a uniform arrangement, and

a more biomimetic model was needed. Kang et al. (20) used inkjet

printing to achieve a high-resolution arrangement of four cell types

into a three-layer structure: pulmonary microvascular endothelial
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cells (HUC-5A) were printed on the bottom layer, pulmonary

fibroblasts (MRC5) on the middle layer, and alveolar epithelial

cells of type I and II on the top layer in an orderly manner, forming

a respiratory membrane structure. The bionic respiratory

membrane thickness was only 10 µm. To simulate the alveolar

sac, DiHuang et al. (57) created an inverse opal structure using

methylacrylate. The inverse opal has a vesicle and micropore

connection structure highly similar to that of a human alveolar

and forms a functional monolayer epithelium when filled with

primary human alveolar epithelial cells. This vesicle-like structure

resembles the physiological structure in the human body more

closely than the previously studied planar structure (Figure 2B).

Cell type selection is important to the design of the lung on-a-

chip. Cell lines and primary cells are both used; for example, the

vascularized lung tumor-on-a-chip model consists of primary human

umbilical vein endothelial cells (HUVECs) at passages 3–5, primary

normal human lung fibroblasts (NHLFs) at passages 3–5, and A549

(human lung adenocarcinoma) cells (15). In a model of SARS-CoV-2

induced lung injury, the alveolar-capillary barrier is composed of

human alveolar epithelial, vascular endothelial, and immune cells. In

the model, the epithelial cells used are the immortalized human

alveolar epithelial cell line (HPAEpiC), the vascular endothelial cells

are the human lung microvasculature cell line (HULEC-5a), and the

immune cells are primary isolated peripheral human blood

mononuclear cells (24). Whether to use primary cells or cell lines

has been extensively discussed in previous review articles (58, 59). In

general, primary cells possess characteristics similar to the phenotype

in the native environment, which is preferable in lung-on-a-chip

models. However, it is difficult to maintain the functionality of

primary cells over an extended period of culture time. Cell lines

have been widely utilized due to their facile handling and growth,

although they are limited by exhibiting similar functions in the

original lung and airway.

Cellular organization has become more refined and closer to the

native physiological structure; however, some biomimetic
FIGURE 2

Key modules of a lung-on-a-chip. (A) Respiratory membrane structure; (B) Alveolar cell arrangement (20); (C) Breathing movement; (D) Air–liquid
interface. Adapted with permission. Copyright 2021, Wiley-VCH GmbH.
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TABLE 1 Literature review of typical systems for lung-on-a-chip.

Models Number of
compartment

Cell types ECM
materials

Physiological read-outs Advantages Ref.

Intracellular kinetics
of viral infection and
the antiviral
responses against it

1 Type I alveolar
cells (NCI-
H1703)

Type II alveolar
cells (NCI-H441)
Lung fibroblasts

(MRC5)
Lung

microvascular
endothelial cells
(HULEC-5a)

Atelocollagen The stylus surface profiler and histological
images confirmed intricate

microarchitecture and morphologies as
well as its major functions histological and
immunohistochemical analysis validate the

epithelial and endothelial cells
arrangement

recapitulating the extremely
thin and layered architecture
and to control cell–cell and
cell–extracellular matrix

communication interactions
by spatial arrangements of

multiple cell types

(20)

The
pathophysiological
process of metastasis
for lung cancer

3 Human
bronchial

epithelial cells
(HBE)

Human umbilical
vein endothelial
cells (HUVECs)
Human lung
fibroblast cells

(HLFs)
Mononuclear

cells
Astrocytes
Osteoblasts
Hepatocytes

/ Quantitative analyzed lung cancer growth,
invasion and metastasis processes to the
brain, bone, and liver to analyze the cell
physiology and cell–cell interactions to
validate the performance of metastasis

“multi-organs-on-a-chip” to
explore lung cancer

metastasis to the brain, bone,
and liver, and to analyze the
cell physiology and cell–cell

interactions in a more
physiologically relevant

context.

(21)

Cellular alterations
associated with
bacterial and viral
infections of the
lung

2 Human primary
epithelial cells

(NHBE)
Human umbilical
vein endothelial
cells (HUVECs)

Monocyte-
derived

macrophages

/ A bacterial co-infection with bacteria and
viruses induced the highest immune

response regarding cytokine expression
and barrier function loss

A human in vitro alveolus
model composed of vascular
and epithelial cell structures
with cocultured macrophages

(22)

Lung-on-a-chip with
mechanical stretch
and fluidic shear
stress resembling the
human alveolus
architecture and
functions

3 Human primary
alveolar epithelial

Cells
Lung fibroblasts
Normal human
lung smooth
muscle cells

Normal human
lung fibroblasts
Primary lung
microvascular
endothelial cells
Human lung
microvascular
endothelial cells

Bovine type
collagen

Quantitative characterization of the spatial
and temporal distribution of the recruited
immune cells; recapitulate in vivo relevant
aspects of tissue functionality recreate the
epithelium-stroma-endothelial interactions

and control the microenvironment

a novel approach to recreate
the epithelium-stroma-

endothelial interactions and
control the

microenvironment, as
required to recapitulate in

vivo relevant aspects of tissue
functionality

(23)

Human disease
model of SARS-
CoV-2-induced lung
injury and immune
responses

2 African green
monkey kidney
epithelial Vero

E6 cells
Immortalized
human alveolar
epithelial cells
(HPAEpiC)
Human lung

microvasculature
cell line

(HULEC-5a)
Human

collagen real-time quantitative PCR assess the
potential therapeutics against SARS-CoV-2
tested the antiviral efficacy of remdesivir

in the infected chip model with the
addition of PBMCs in the vascular

channel

recapitulate the lung injury
and immune response to

viral infection in vitro and in
in real time simultaneously

(24)

(Continued)
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deficiencies still persist. For example, type I and type II alveolar

epithelial cells are unlikely to stay in one alveolar space; they can

pass through the alveolar interval and the epithelial tissue lining

structure, and contribute to the secretion function on both sides of

the alveolar interval (29). Through the use of secretory organelles,

type II alveolar epithelial cells secrete surfactants that maintain the

surface tension. However, to our best knowledge, this level of

structural and functional complexity has not been replicated in in

vitro alveoli models to date.
3.3 Breathing movement

Dynamic respiratory motion is also a key component in lung-on-

a-chip construction (60). A typical breathing-mimic model consists

of a 2D planar stretching surface controlled by a vacuum either side of

the airway perpendicular to the membrane. Ingber et al. constructed

porous membranes connecting both sides of the airflow chambers in

a lung-on-a-chip using soft lithography and chemical etching. When

a vacuum was applied, the constriction and deformation of the

chambers induced stretching and deformation of the porous

membrane attached to the epithelium/endothelial tissue. The

porous film returned to its natural state when the vacuum was

removed. The physiological parameters of respiration in alveoli are

a cyclic strain frequency of 0.2 Hz and tensile strain of 10% (13).

Compared with the Transwell static air–liquid culture, this vacuum

method is a significant improvement in respiratory behavior

simulation. However, plane stretching cannot completely simulate

alveolar expansion, and an arc-shaped expansion movement is more

bionic. Furthermore, the alveolar-like breathing motion has been

gradually developed in the lung-on-a-chip, bringing the model closer

to physiological pulmonary ventilation and alveoli breathing-induced

stretching activity (Figure 2C).
3.4 Air–liquid interface

The air–liquid interface separating the air chamber from the

blood chamber serves as the structural foundation for pulmonary

gas and nutrient exchange (31, 54, 55). The air and blood channels
Frontiers in Immunology 06
can be integrated into a lung-on-a-chip using microfluidic channels.

Models containing microfluidic channels are dynamic bionics and

closer to the human respiratory membrane than the traditional

semi-permeable membranes (Figure 2D).

In the lungs, the blood flows through the pulmonary

microvascular networks. The lung-on-a-chip design must take

two factors into account. First, the shear stress of circulating

blood on the endothelium as it flows through the vascular system

and across the cell surface. Endothelial cells are subjected to a shear

stress in the range of 1–10 dyn/cm2 (56), which regulates cell

behaviors including proliferation, differentiation, cell information

interaction, and barrier formation (61). Second, the pulmonary

microvascular network plays a significant role in the immune

response. Neutrophils and other immune cells circulate in the

blood and create vascularized immunity. The airflow channel in

the lung-on-a-chip not only simulates respiration and

communication with the outside environment but also contains

different substances (e.g., small particles of PM 2.5 dust, viruses, and

bacteria) to model the inhalation causing different lung diseases,

such as asthma (62), COPD (63), influenza (64), pneumonia (25),

and tuberculosis (65). Airflow and blood flow have been integrated

into the same chip to reproduce both air and blood transport. Miller

and Stevens (66) used projection stereolithography to develop 3D

multivascular transport regimes. Oxygenation and human red

blood cell flow during tidal ventilation have also been explored.

A nutrient supply is essential for the growth and functional

expression of a variety of cells on the air–liquid interface. The basic

medium is available during the culture of a lung-on-a-chip, and

growth factors can also be used to meet the endothelial, epithelial,

and immune cell needs. In particular, the patient’s serum can be

used for the culture component in the blood flow channels. The

lung-on-a-chip often contains different chambers and microfluidic

channels; the medium can be confined to certain cell chambers and

different chambers can be connected according to the cell needs.
3.5 Physiologic and molecular read outs

Various characterization techniques have been used to analyze

the lung-on-a-chip models. Cell-cell interactions and
TABLE 1 Continued

Models Number of
compartment

Cell types ECM
materials

Physiological read-outs Advantages Ref.

peripheral blood
mononuclear

cells

human airway-on-a-
chip identification of
new potential
treatment strategies
for SARS-CoV-2

2 Primary human
lung bronchial
airway epithelial
basal stem cells
Primary human
pulmonary

microvascular
endothelial cells

collagen type
IV from
human
placenta

Quantitative analyzed cellular gene-
expression level; immune response for
infection with multiple influenza strains;
inhibitory effects of FDA-approved drugs.

Providing a fast track to
identify potential treatments
for the current COVID-19.

(19)
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microenvironment and physical parameters can be detected to

verify the physiological conditions and pathological progress in

vivo. Most conventional techniques in cell and tissue biology can be

used as off-line bioassays for the lung-on-a-chip, including

fluorescence staining, western blotting, and PCR (20, 67). For

example, immunofluorescence microscopic images using specific

antibodies: the endothelial marker CD31 derived from HULEC-5a

cells, the tight junction protein ZO-1, and hydrophilic surfactant

SP-A secreted by type II alveolar cells. The alveolar barrier model

was stained with hematoxylin & eosin and SARS-CoV-2 infection

was predominantly identified in the epithelium layer by viral spike

protein expression. RNA-seq analysis showed distinctive immune

responses to SARS-CoV-2 infection in cocultured HPAEpiC cells

and HULEC-5a cells on chips (24). To analyze the biochemical

changes in the microenvironment of the lung-on-a-chip,

chemokines and cytokines can be collected. For example, the

medium is collected to compare the levels of IL-8, IL-6, IL-1 b,
MCP-1, and GM-CSF secreted by hAECs in the chips (57). Chiu

et al. constructed a signal amplification sensing film to detect the

cytokeratin 19 fragment (68). The lung-on-a-chip can have built-in

electrodes for TEER biosensors and micro-impedance tomography.

Oxygen, temperature, and lung disease biomarker sensors also

measure the physical parameters of the lung-on-a-chip (69, 70).

For example, an organ- and disease-specific in vitro mini lung

fibrosis model equipped with noninvasive real-time monitoring of

cell mechanics has been introduced. The real-time measurement of

cell/tissue stiffness and compliance is a clinical biomarker of the

progression/attenuation of fibrosis upon drug treatment, which is

confirmed for inhaled Nintedanib—an antifibrosis drug (43). Gao

et al. designed a giant magnetoresistance multi biomarker

immunoassay that can detect 12 kinds of tumors (71, 72).
4 Lung disease studies based on lung-
on-a-chip

4.1 Pneumonia

Pneumonia is an inflammation of the lung parenchyma

including the terminal airways, alveolar cavities, and interstitial

spaces. This inflammation can cause endothelial and epithelial cell

damage, apoptosis, respiratory barrier disruption, capillary dilation,

leukocyte infiltration, and massive release of inflammatory factors.

Alveoli-on-a-chip can be used as a platform for pneumonia

research by introducing pro-inflammatory factors (TNF-a) or

stimulants (LPS/silica/zinc oxide nanoparticles) into the vascular

microchannels to stimulate the airway; most of the irritants are

inhaled through airway aerosolization to simulate exposure to

biological species in the environment (13, 38, 73, 74). High-

concentration ultrafine particles (UFP, less than 100 nm) in the

environment are likely to cause respiratory system inflammation

and negatively impact health. Fine particles enter the bloodstream

via the air–liquid barrier and interact with immune cells, affecting

the vascular endothelium and other tissues. Camatini et al. (38)

investigated the toxicology of zinc oxide nanoparticles (nZnO)

using a Transwell model and discovered that nZnO activates
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alveolar epithelial and endothelial cells to release inflammatory

mediators (IL-6 and IL-8). Immune system monocytes (THP-1) can

modulate the epithelial response to nZnO. However, the molecular

mechanism of action is not known. Kooter et al. (75) used an

exposure model to investigate transcriptomic responses in the

epithelium of healthy and asthmatic airways exposed to different

copper oxide nanoparticle aerosols.

Viruses, bacteria, and other pathogenic microorganisms are

common pathogenic factors in pneumonia; primary influenza viral

infection and bacterial coinfection significantly increase mortality.

After infection, alveolar damage and massive macrophage

infiltration cause inflammatory activation of the lung, which

cannot be replicated in traditional models. Endothelial injury

caused by primary influenza virus infection and Staphylococcus

aureus co-infection was studied in a human alveolar model (76).

Co-infection leads to a significant impairment of the endothelial

barrier integrity, and immune cell inflammation resulting in lung

injury. Moreover, the shear stress of the blood cell and macrophage

flow strengthens the barrier function. To model influenza infection

in the upper respiratory cortex, Jung et al. (20) constructed an

ultrathin high-resolution 3D alveolar model by inkjet printing, and

influenza A H1N1 virus (PR8) was blown into the epithelial airway

side of the lung-on-a-chip. Both NCI-H441 (type II epithelium) and

MRC5 (lung fibroblast) cells were extremely sensitive to

influenza infection.

The COVID-19 pandemic poses a serious threat to human

health. Research models that replicate organ-level physiology are

critical for understanding the COVID-19 pathogenesis. Studies on

SARS-CoV-2 virus-host interactions using the lung-on-a-chip

support the effective diagnosis and treatment of COVID-19.

COVID-19-induced pulmonary microvascular injury and immune

response in the lung-on-a-chip demonstrate that viral infection

causes endothelial injury accompanied by alveolar barrier damage,

which is more severe in the presence of PBMC (42). The model

revealed a complex crosstalk among alveolar epithelial, endothelial,

and host immune responses that are not readily realized in cell and

animal models. The lung-on-a-chip has also been used to evaluate the

feasibility of antiviral therapy against SARS-CoV-2 in preclinical

studies. Remdesivir is an antiviral compound against multiple RNA

viruses and has been approved by the FDA (77, 78). After three days

of administering remdesivir into the airway of a lung chip model

infected with SARS-CoV-2, viral replication was inhibited, resulting

in significant therapeutic effects and alleviation of the barrier

disruption. This platform could be used to test drug candidates

(anti-inflammatory cytokine inhibitors).
4.2 Lung cancer

Lung cancer is the second most commonly diagnosed cancer

and leading cause of cancer death in 2020, representing 11.4% of all

diagnosed cancers and 18.0% of deaths. It is also the leading cause of

cancer-related morbidity and mortality in men, followed by that of

women (4). It is important to understand the basic biological

characteristics of lung cancer, such as infinite proliferation,

apoptosis resistance, and migratory movements, to develop
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treatment strategies. Lung-on-a-chip technology can enable tumors

to grow, develop, and interact within their own microenvironment.

Yang et al. (49) established a PLGA-based lung-on-a-chip with

cocultured human fetal lung fibroblasts (HFL1) and NSCLC (A549)

to evaluate gefitinib sensitivity. Insulin-like growth factor (IGF-1)

secreted by HFL1 cells mitigated the inhibitory effect of gefitinib on

the EGFR signaling pathway by activating the PI3K/Akt signaling

pathway, promoting tumor cell growth, and reducing sensitivity to

gefitinib. Furthermore, it was discovered that A549 cells could cause

endothelial cell apoptosis or death, followed by tumor invasion

when HUVECs were introduced into this model.

Lung tumor-on-a-chip has also used isolated cells from

primary lung cancers (CAFs and ECs) (15, 79) to accurately

design and reproduce cell-cell communication in the lung tumor

microenvironment (80). Isolated CAFs from lung adenocarcinomas

were investigated for their effect on A549 cell migration (81).

NSCLC cell lines in the lung tumor-on-a-chip are influenced by

mechanical stretching (82) and blood fluid flow (78, 83) during lung

cancer progression and drug response. The lung tumor-on-a-chip

from the primary tumors of NSCLC patients under dynamic

perfusion has been used to characterize tumor-immune

interactions through autologous tumor-infiltrating lymphocytes

(84) and can predict patient specificity for immune checkpoint

blocking therapy (85). These studies investigated individual-specific

tumor immunobiology and drug responses, which is a potential

future study direction for lung-on-a-chip techniques (80).

Lung cancer metastasis is a complex physiological process, and

lung-on-a-chip can simulate metastasis by integrating multi-organ

chips. A multi-organ-on-a-chip consists of an upstream “lung” and

three downstream “distal organs,” and it uses a multi-channel

microfluidic chip to mimic the in vivo microenvironment in lung

cancer metastasis. Bronchial epithelium, lung cancer cells,

microvascular endothelial cells, monocytes, and fibroblasts grow

on either side of the biofilm in the upstream “lung,” and astrocytes,

osteocytes, and hepatocytes grow in distal compartments,

mimicking lung cancer metastasis to the brain, bone, and liver.

Furthermore, quantitative analysis is used to replicate lung cancer

growth, invasion, and metastasis. Preclinical in vitro models should

accommodate the interactions between tumors and immune cells,

preferably including individual tumor cells harvested directly from

patient biopsies as our understanding of the complexity of lung

cancer development and metastasis is limited.
4.3 Asthma and COPD

Asthma is characterized by reactive spasms of the small airways,

and COPD by chronic damage to the small airways and alveoli. The

main characteristics of asthma include chronic airway

inflammation, airway hyperresponsiveness to various stimuli,

reversible airflow restriction, and a series of structural changes in

the airway with a prolonged disease course (86). COPD is the third

leading cause of death worldwide, affecting 200 million people (5,

87, 88). COPD is usually caused by the accumulation of harmful

particles or gases in the airways or alveoli, and inflammatory cells
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in the pathogenesis. Small airways are essential for delivering air to

the lungs and excreting secretions, and they are the primary sites of

exposure to environmental factors; therefore, they are closely

involved in such diseases as COPD and asthma (25, 89).

To establish a small airway model that closely mimics the

physiological microenvironment associated with COPD, cell

culture with an air–liquid interface (ALI) is used. Based on an in

vitro COPD model, Chen et al. (36) determined the differences in

the expression and characteristics of the autophagic protein LC3B

between human normal and COPD small airway epithelial cells.

LC3B affects the differentiation of COPD cells into basal, secretory,

mucous, and ciliated cells. The spreading patterns and morphology

changes of the blood vessels in the airways affect airway remodeling,

resulting in irreversible airway obstruction that aggravates asthma

(90, 91). To better illuminate the functions of the blood vessels in

asthma, Nam et al. (52) fabricated an airway model with 3D

printing technology featuring an interface between tracheal

epithelium and perfusable blood vessels. This asthma disease

model demonstrated that it is possible to imitate the tissue

infiltration of immune cells, which is the initiation of an active

immune/inflammatory response in asthma patients. Furthermore,

asthma enhances the sensitivity of the airways to nanoparticle

aerosols (75), possibly as a combined result of a hyperactive

airway and inefficient mucociliary clearance mechanisms.
4.4 Lung fibrosis

Lung fibrosis is a chronic and fatal disease featuring fibroblast

proliferation, abnormal ECM deposition, stiffening of lung tissue, and

loss of lung function in the end (92, 93). In addition to using simple

ALI models using Transwell membranes under static conditions, an

increasing number of pulmonary fibrosis studies have focused on the

lung-on-a-chip (13, 94–96). Felder et al. (97) developed a respirable

lung chip to examine the effects of human liver growth factor

(rhHGF) and physiological-cycle mechanical stretching. Cyclic

mechanical stretching significantly hindered wound healing, while

rhHGF could partially improve wound healing. These findings help

elucidate the complex pathogenesis of lung fibrosis. Sundarakrishnan

et al. fabricated 3D bioengineered pulmonary fibrotic (Eng-PF)

tissues recreating the pathology of human fibroblastic foci (Hum-

FF). This pulmonary fibrosis-on-a-chip incorporated different

components to simulate various aspects of IPF, including epithelial

injury with bleomycin and cellular recruitment by perfusion of cells

through the hydrogel microchannel (98). A more recent study

described a comprehensive organ/disease-specific model that

recapitulated the key attributes of pulmonary fibrosis and the

conditions during inhalation therapy (43). The pulmonary fibrosis

chip used in the study not only imitated the microenvironment of

alveolar cells but also allowed for real-time measurement of tissue

stiffness or compliance, which are key parameters used for clinical

diagnostics of the progression/attenuation of pulmonary fibrosis.

With such results as enhanced tissue compliance and reduced

collagen formation, this study demonstrated the effectiveness of
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aerosolized nintedanib, an FDA-approved antifibrotic drug, in the

treatment of lung fibrosis.

5 Future perspectives

The lung-on-a-chip, a fledgling technology that mimics the human

pulmonary environment, not only surpasses classical cell culture

models but also reduces our reliance on animal models to elucidate

the complex pathophysiology of lung diseases and accelerate drug

development. However, several aspects of the technology could be

further improved, and this may require multidisciplinary cooperation.

First, since the lung-on-a-chip technology is based on physiological

simulations, an in-depth knowledge of lung anatomy, function, and

disease progression is critical for model development. The application

of novel biotechnologies, such as single-cell sequencing and spatial

transcriptomics, can lead to a deeper and more comprehensive

understanding of the lung microenvironment, and may offer more

insights for better lung-on-a-chip models. Second, emerging

technologies such as 3D printing, gene editing, and high-resolution

imaging can integrate biosensors into the lung-on-a-chip to monitor

cell behavior, environmental parameters (oxygen content, metabolites,

etc.), and pathological processes in real time, allowing for a more

realistic, accurate, and timely evaluation of disease progression and

interventional treatment effects. Third, the mechanical properties,

chemical cues, and biomolecules of the lung microenvironment have

a significant effect on lung disease progression. Therefore, appropriately

developing and modifying materials is crucial for the construction of

effective lung-on-a-chip models.
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