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Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of

immune tolerance and the production of autoantibodies against nucleic acids and

other nuclear antigens (Ags). B lymphocytes are important in the

immunopathogenesis of SLE. Multiple receptors control abnormal B-cell

activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell

receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and

TLR9, in the pathophysiology of SLE has been extensively explored in recent years.

When endogenous or exogenous nucleic acid ligands are recognized by BCRs and

internalized into B cells, they bind TLR7 or TLR9 to activate related signalling

pathways and thus govern the proliferation and differentiation of B cells.

Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the

interaction between them is still poorly understood. In addition, other cells can

enhance TLR signalling in B cells of SLE patients by releasing cytokines that

accelerate the differentiation of B cells into plasma cells. Therefore, the

delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in

SLE may aid the understanding of the mechanisms of SLE and provide directions

for TLR-targeted therapies for SLE.
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1 Introduction

Systemic lupus erythematosus (SLE) is a common autoimmune disease that is defined by

the inappropriate activation of self-reactive T and B cells and the production of

autoantibodies and immune complexes that can cause irreparable organ damage (1). The
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variety of SLE symptoms make both diagnosis and treatment difficult.

Consequently, it is of great significance to further explore the

mechanism underlying the pathogenesis of SLE.

B lymphocytes perform various functions in SLE, including

autoantibody production, presentation of antigen to T cells, and

activation of myeloid cells to produce various cytokines (2–4). B

cells can be activated by diverse factors, including Toll-like receptors

(TLRs). TLRs are pathogen pattern recognition receptors that sense

conserved microbial components (5). TLRs are crucial for both the

development of innate immune responses and adaptive immunity,

and they are thought to bridge the innate and adaptive immune

systems (6). Studies show that overactivation or impaired function of

the TLRs that detect nucleic acids, TLR7 and TLR9, induces

dysfunction of innate immunity and breakdown of immune

tolerance, which can lead to the occurrence of autoimmunity (7, 8).

Both TLR7 and TLR9 are strongly associated with interferon (IFN)

production by plasmacytoid dendritic cells (pDCs) (9). In addition,

they are also expressed in B cells, wherein they play crucial functions

(10). Surprisingly, TLR7 and TLR9 appear to play opposing roles in

SLE B cells (11). TLR7 contributes to the loss of germinal centre (GC)

tolerance and drives the extrafollicular B-cell response implicated in

SLE (12). Critically, TLR9 in B cells seems to protect against SLE even

though it is needed to produce anti-double-stranded DNA (dsDNA)

antibodies (13). In fact, TLR9 has a complex dual regulatory

mechanism in B cells, which can both maintain immune tolerance

and participate in autoimmunity (14). This may be due to the specific

presence of signalling pathways in B cells (such as BCR, CD19 and

related molecules)that play a role in these processes (14, 15). In

addition, the participation of co-stimulatory molecules, pro-

inflammatory factors and MyD88 (which is a key molecule

downstream of TLR9) also determines the fate of B cells (16, 17).

Additionally, pDCs and T cells can accelerate the progression of SLE

by releasing cytokines to reinforce the sensitivity of TLR7 in B cells

(18–21). These findings suggest that the onset of SLE is likely

significantly influenced by dysregulation of TLR7 and TLR9

signalling in B cells. However, the findings of functional and genetic

studies of TLR7 and TLR9 in SLE remain controversial.

In this review, the contribution of intracellular TLR signalling in B

lymphocytes to SLE is discussed. First, we present the expression

levels and functions of TLR7 and TLR9 in B cells during the

development of SLE. Second, we emphasize that downstream

signalling pathways connected to B cell proliferation and

differentiation in SLE are activated by TLR7 and TLR9 in B cells.

Third, we discuss the opposing effects of TLR7 and TLR9 in B cells

and their interactions in SLE. Fourth, we discuss how pDCs and T

cells accelerate the conversion of B cells into plasma cells in patients

with SLE through TLR signalling. Finally, we look ahead to potential

strategies for targeting TLRs to treat SLE.
2 Expression and function of TLR7 in
SLE B cells

Earlier studies have shown that the TLR7 gene is involved in SLE

(22–24). The TLR7 gene is located on human chromosome Xp22.3.

Interestingly, unlike other genes on the X chromosome, TLR7 is able
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to evade silencing in females (25). Therefore, it has a higher level of

expression in monocytes, pDCs and B cells in females than in males

(26). Similar to the case in humans, this female-biased increased

expression of X-linked genes is also present in mice susceptible to

autoimmune diseases (27). In addition, TLR7 may be coexpressed

with other X-linked genes (e.g., CXorf21) to jointly promote the

occurrence of autoimmune diseases with gender bias (28). With the

increased use of genome-wide association studies (GWAS),

researchers have found that SLE risk and clinical phenotype and

the production of autoantibodies in SLE are influenced by TLR7

single-nucleotide polymorphisms (SNPs) (29, 30). This finding partly

explains the heterogeneity of SLE. With the rapid development of

gene sequencing technologies, TLR7 mRNA has been found to be

upregulated in the peripheral blood mononuclear cells of SLE patients

by using bioinformatics analysis (31). Another investigation found

that the expression of TLR7 in CD19+ B cells in SLE patients was

markedly elevated compared to that in healthy individuals (32).

Another study showed that SLE patients had expansion of

CD19+CD24hiCD38hi transitional B cells and increased release of

autoantibodies due to overexpression of TLR7 (33). Similarly,

transitional T1 B cells expansion and autoantibodies production

can be found when overexpression of TLR7 in transgenic mice (34).

In addition, Tlr7 transgenic mice spontaneously manifest SLE-like

illnesses in a B-cell-dependent manner (35). Furthermore, Hwang

et al. (36) demonstrated that upregulation of TLR7 in SLE-prone mice

induces B-cell marginal zone impairment, elevated levels of

antibodies targeting RNA/protein complexes in B cells, and

progression of disease. Brown et al. (37) reported that a child with

serious lupus had a novel de novo missense mutation in TLR7

(TLR7Y264H). The variant selectively enhances sensing of guanosine

and 2’,3’-cyclic guanosine monophosphate (2’,3’-cGMP) and triggers

lupus-like disease when introduced in mice (generating so-called kika

mice). Further studies have found that the Age-associated B cells

(ABCs) of kika mice have higher TLR7 expression than those of WT

mice (but lower TLR7 expression than Tlr7-double-positive Yaa

mice). Nevertheless, the effects of the Y264H mutation were more

serious than those of mutations of the Yaa allele, with kika mice

showing higher levels of autoantibodies (37). Moreover, when wild-

type (WT) mice of diverse genetic backgrounds were treated with the

TLR7 agonists imiquimod and R848 for 4 weeks, they developed

systemic autoimmune disease accompanied by an increased titre of

autoantibodies against nucleic acids and multiple organ damage,

inc luding g lomerulonephr i t i s , card i t i s , hepat i t i s , and

photosensitivity (38). According to additional research, focusing on

the TLR7 pathway in lupus-prone models may provide insights for

preventing the onset of serious disease (39). The above studies show

that TLR7 promotes the occurrence and development of SLE at the

genetic and molecular levels. These findings suggests that TLR7 is a

candidate for targeted therapy for SLE.
3 TLR7-mediated disease mechanisms
in SLE B cells

TLR7 contributes to the loss of germinal centre tolerance and

drives the extrafollicular B-cell response implicated in SLE (Figure 1).
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In the periphery, GCs are a crucial place where B-cell–tolerance is

assessed (40). Studies have shown that the GC response and

production of antibodies are significantly decreased in Tlr7-null

mice B cells upon RNA virus infection (41). Consistent with these

findings, TLR7 in B cells is essential for GC production in the BWAS−/−

model, in which B cells lack the Wiskott-Aldrich syndrome protein

(42). In another mouse model with two copies of Tlr7, GCs fail to

eliminate markedly autoreactive B cells, and these cells undergo

subsequent clonal expansion and somatic mutation and then enter

the plasma-cell compartment (43). This finding suggests that B-cell-

intrinsic TLR7 can disrupt GC tolerance. Another study showed that

B6.Sle1b mice treated with a TLR7 agonist have increased numbers of

spontaneous germinal centres (Spt-GCs) (44). Conversely, Tlr7

deficiency prevented the formation of Spt-GCs in autoimmune

B6.Sle1b mice and reduced the production of autoantibodies (44).

Additionally, a lack of TLR7/MyD88 impairs B-cell proliferation and
Frontiers in Immunology 03
survival after stimulation compared to B6 controls (44). These results

demonstrate that the development of Spt-GCs and elevated

autoantibody production in SLE are mediated by B-cell-intrinsic

TLR7 signalling.

Furthermore, in cases of active SLE, TLR7 can promote

extrafollicular B-cell differentiation, causing resting naive B cells to

constantly differentiate into activated naive B cells, DN2 B cells, and

ultimately Ab-secreting cells (12). Individuals with SLE have higher levels

of activated naive B cells(CD11c+IgD+CD27−CD21−MTG+CD23−) and

the DN2 subset of IgD−CD27− double-negative B cells (DN2 B cells;

I g D − C D 2 7 − C D 1 1 c + T -

Bet+CD69+CD21−CD24−CD38−CXCR5−FCRL4−FCRL5+) (45).

Moreover, SLE patients with increased abundance of DN2 B cells have

more anti-RNA and anti-Sm/RNP autoantibodies and exhibit higher

disease activity (12). DN2 cells are the predominant B-cell population in

active SLE; they tend to develop into plasma cells and exhibit high levels
FIGURE 1

TLR7 drives the extrafollicular B-cell response and the loss of germinal centre (GC) tolerance, which is implicated in the pathogenesis of SLE. 1. Resting
naive B cells enter the germinal centre pathway, which generates DN1 B cells and memory B cells, and then differentiate into antibody-secreting cells.
The above processes are dependent on TLR7. 2. TLR7 drives the extrafollicular pathway, in which resting naive B cells successively become activated
naive B cells, DN2 subset B cells and finally antibody-secreting cells. 3. pDC and T cells intensify TLR7 sensitivity to drive autoreactive B-cell development
into antibody-secreting cells by secreting IFN-I, IFN-g and IL-21.
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of CD11c and T-Bet expression but low levels of CXCR5 and CD62L

expression (12). Interestingly, the phenotype of DN2 cells is distinct from

that of activated naive B cells. The two cell types share a similar

transcriptional profile, with only 42 differentially expressed genes

between them (12, 46). Furthermore, DN2 B cells are thought to be

derived from activated naïve B cells (12). B lymphocyte-induced

maturation protein 1 (BLIMP-1) and IFN regulatory factor 4 (IRF4)

levels are higher in these two types of cells and control plasma cell

differentiation and the expression of transcription factors (TFs) related to

plasmablasts (47). DN2 cells express low levels of ETS proto-oncogene 1

(ETS1), a CD22-regulated TF that inhibits plasma cell differentiation

(48). These features result in the accumulation of extrafollicular

autoreactive B cells (49). SLE DN2 cells are hyperresponsive to TLR7

agonists, and TLR7-mediated upregulation of costimulatory molecule

expression and suppression of the expression of CD72 (a receptor)

inhibit the activation of endosomal TLR7 (50). Moreover, chronic

TLR7 activation in lupus models is sufficient to cause CD11c+ B cells

to differentiate and produce anti-Sm/RNP autoantibodies, whereas B-cell

intrinsic TLR7 deficiency reduces the number of CD11c+ B cells and

ameliorates lupus-like conditions (42). Indeed, TLR7 possesses

stimulatory action in these autoreactive B-cell subsets and, in both

humans and animals, can cause naive B-cell differentiation towards

DN2 cells and plasma cells with the help of IL-21 and IFNg (47, 51).

In SLE patients, IL-21 promotes the growth of CD11c+T-

Bet+CD21−CD38−B cells, which resemble DN2 B cells and are

autoreactive and associated with clinical symptoms (18). Furthermore,

TLR7 and B-cell receptor (BCR) agonists cooperate with IFNg, IL-2, IL-
21 and B-lymphocyte stimulator (BlyS) to stimulate naive human B cells

in SLE, and an in vitro study reported that the produced

IgD−CD27−CD11c+T-BethiCD21−CXCR5−IRF4intFcRL5+ B cells

resemble DN2 B cells (52). Age-associated B cells (ABCs), the mouse

equivalent of DN2 B cells, are another crucial B-cell subpopulation in

SLE. These CD11b+CD11c+T-Bet + cells are increased in various mouse

models of lupus, including Mer−/− and SWEF-deficient mice; these cells

are also especially sensitive to TLR7 and differentiate into autoantibody-

secreting cells (53–55). Another study found that ABCs in C57BL/6 mice

can also present antigens to T cells (56). Specifically, the Tlr7-null lupus-

prone mouse model lacks CD11c+T-Bet+CD21− B cells. Moreover, with

repeated TLR7 agonist stimulation, ABCs accumulate rapidly in mice

based on a specific TLR7 signalling pathway in B cells (51). Brown et al.

(37) identified that even though there was marked Spt-GC formation in

Tlr7Y264H mice, the lupus-like symptoms did not resolve with GC

formation deficiency, thus indicating that extrafollicular ABCs may be

the main reason for pathogenicity (37). In summary, the GC reactions

and extrafollicular responses lead to B cell activation and the formation of

plasma cells via B-cell-intrinsic TLR7 signalling in SLE. Additionally,

TLR7 signalling restricts the proliferation of B10 cells, a regulatory B-cell

subpopulation that generates the immunosuppressive cytokine IL-10, in

an IFNg-dependent manner (57).
4 Expression and function of TLR9 in
SLE B cells

TLR9 is a receptor that recognizes viral and bacterial DNA

containing unmethylated cytosine–phosphate–guanine (CpG)
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motifs (58). One study showed that anti-dsDNA antibody levels

and proteinuria in childhood-onset lupus nephritis (LN) are

associated with the expression of TLR9. This result suggests that

TLR9 is involved in the pathophysiology of LN (59). Consistent with

these results, investigation has demonstrated that whole blood TLR9

mRNA levels are considerably greater in SLE patients than in healthy

controls and are associated with the severity and type of renal

pathology (60). Furthermore, the levels are positively correlated

with SLEDAI grade, anti-dsDNA antibody titre, and interleukin-6

(IL-6) and other cytokine levels but negatively correlated with

complement C3 levels (61). Notably, during a two-year follow-up

period, patients with poor prognoses still had elevated TLR9 mRNA

levels (62). Compared with the levels at SLE onset, the levels of TLR9

mRNA in patients with a favourable prognosis were obviously

decreased (62). Strikingly, studies show that Tlr9 deficiency in B

cells in murine models of lupus is sufficient to accelerate renal disease

even though deplete anti-nucleosome antibodies. Moreover,

overexpression of B-cell–specific Tlr9 induces remission of nephritis

(13). In contrast, Tlr9 deficiency in other cell types, including pDCs,

dendritic cells, and neutrophils, has no obvious effect on LN (13).

These lines of evidence suggest that TLR9 in B cells plays a specialized

role in restricting the formation of autoantibodies and preventing the

onset of disease. That the expression of TLR9 in SLE is proportional to

disease activity appears to contradict its protective function,

suggesting a unique and complex role of TLR9 in SLE B cells.
5 TLR9-mediated disease mechanisms
in SLE B cells

Although B cells are crucial to the pathophysiology of SLE, the

aberrant pathways that result in the loss of B-cell tolerance are

unknown. A significant fraction of autoreactive B cells are

eliminated throughout development (63), but self-reactive and

polyreactive clonotypes still make up a significant portion of

mature B-cell pools (40, 64). This indicates that there may be

activation-associated checkpoints that can prevent these cells from

differentiating into memory B cells and producing antibodies

targeting self-antigens. However, patients with SLE likely have

impaired peripheral and central B-cell tolerance checkpoints,

leading to an accumulation of autoreactive B cells in their blood

(65). TLR9 is expressed in the spleen and skeletal muscle in mammals

and in peripheral blood mononuclear cells, mainly in pDCs and B

cells. However, the biological effects are different in these cells.

Endogenous or exogenous nonmethylated CpG-DNA can be

recognized by BCR and internalized into B cells, and the process

may involve phosphatidylinositol 3-kinases (PI3Ks) (66).

Subsequently, the CpG-DNA is transported into early endosomes

and ultimately transported into late endosomes containing TLR9, by

which it is specifically identified, activating downstream signalling

pathways and triggering inflammatory responses and immune effects

(66). TLR9 can also promote B cell differentiation into plasma cells

through germinal centre (GC) formation and extrafollicular B-cell

response. However, unlike TLR7, TLR9 has a complex role in B cell

differentiation and is affected by multiple elements. This results in

TLR9 acting as both an immune checkpoint to maintain peripheral
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and central tolerance and to participate in autoimmunity (14).

Rookhuizen and DeFranco discovered that TLR9-MyD88-

dependent signalling in B cells increased GC output by increasing

affinity maturation, the production of memory antibodies, a

transition to the IgG2a subclass of antibodies and by specifically

producing high-affinity antibodies (67). Additionally, the combined

ligation of TLR9 and BCR has also been demonstrated to activate

autoreactive B cells in previous studies (68–71). Moreover, these

activated autoreactive B cells develop into extrafollicular plasma cells

that can facilitate the generation of IgG2 isotype autoantibodies (72,

73). Eckl-Dorna and Batista (74) found that for both in vitro and in

vivo studies, Ag-CpG conjugates are effective at promoting B cell

proliferation and differentiation into short-lived extrafollicular

plasma cells via intrinsic TLR9. In addition, ABCs do not respond

to BCR ligation alone, but they quickly multiply when TLR9 is

activated in aged mice (75). Activated B cells are prepared for an

ABC fate by B cell-intrinsic TLR9 signals, but they also initiate a cell

death program (53). Cancro’s group (14, 76) have posited that antigen

taken up by the BCR is internalized and interacts with innate

molecular pattern sensors. If TLR9 is activated (either alone or in

conjunction with TLR7), the cell is also primed to adopt an effector or

memory T-Bet+ ABC fate. However, the default pathway is cell cycle

arrest and apoptosis, unless it is avoided by prosurvival signals or

costimulation via cognate T cell assistance. In reality, studies have

revealed that BCR can bind to TLR9 agonists on all premature murine

B-cell subsets, and CD27– human B cells can undergo apoptotic death

after an initial proliferative burst that involves hyperphosphorylation

of nuclear factor-kB (NF-kB) and p38 mitogen-activated protein

kinase (MAPK) (16, 77). Moreover, p38 inhibits the persistent

expansion and the survival of autoreactive B cells by inducing G1 cell

cycle arrest andmitochondrial apoptosis (78, 79). However, B cells going

through this stage can be saved, and the way they are saved influences

what happens to them thereafter (16). In fact, impaired TLR9 function,

BlyS stimulation, cognate T-cell-mediated effects or CD40 costimulation

with IL-21 or IFN-g can prolong the lifespan of autoreactive B cells (80,

81). Interestingly, a study using CpG to stimulate B cells and pDCs

isolated from SLE patients who had not received hydroxychloroquine

treatment found decreased expression of both B-cell activation

molecules and numerous cytokines in B cells (15). However, normal

reactions appear in pDCs from SLE patients; therefore, it appears that

there is defective TLR9 function in SLE B cells (15). This impaired TLR9

function might prevent SLE-related autoreactive B-cell death and,

consequently, harmful autoantibody generation.
6 TLR Signalling in B cells

All TLRs in B cells trigger similar signalling pathways that in turn

activate NF-kB, MAPKs, extracellular signal-modulating kinase

(ERK), p38, and Jun N-terminal kinase (JNK) (82). The common

linker protein used by almost all TLRs is MyD88, which has death and

toll interleukin 1 receptor (TIR) domains (83). WhenMyD88 binds to

a TLR, it recruits members of the IL-1 receptor-associated kinase

(IRAK) family, IRAK1 and IRAK4, by interacting with the death

domains, thereby phosphorylating TNF receptor correlator 6

(TRAF6) (84). TRAF6 is phosphorylated by IRAKs and binds to
Frontiers in Immunology 05
Ubc13 and Uev1A to form a complex that activates a mitogen-

activating protein kinase kinase (MAPKKK) called transforming

growth factor b-activating kinase-1 (TAK-1). Activated TAK-1

phosphorylates MKKs, which are upstream kinases of p38 MAPKs

and JNK (85). p38 is involved in many cellular physiological and

pathological processes, including apoptosis, cellular stress, the cell

cycle, and the inflammatory response (86). In addition, TAK-1 can

activate the IkBa kinase (IKK) complex, consisting of the IKKa and

IKKb kinases and the hinge protein IKKg (85). Phosphorylation of

IkBa leads to its own degradation and the release of NF-kB (Figure 2).

The NF-kB signalling pathway is critical in innate and adaptive

immunity because it modulates the transcription of various

immune-inflammatory genes, such as TNF, IL-1, and IL-6, resulting

in chemotaxis, granulocyte and macrophage aggregation, and

lymphocyte infiltration (84, 87, 88). Although the downstream

pathways triggered by many TLRs are similar, TLR7 and TLR9

perform different functions in controlling the behavior of SLE B

cells. We therefore hypothesize that in SLE, B-cell-specific signalling

impacts the response of TLRs.
6.1 Interaction of BCRs and TLRs

B cells, in contrast to dendritic cells (DC), do not internalize

external substances via microcytosis or endocytosis, so natural

extracellular nucleic acids cannot directly contact TLR7 and TLR9

inside B cells. Instead, these TLRs are activated by BCR-antigen

complexes that are delivered to late endosomes, where they trigger

the costimulation of B cells (74, 89). This suggests that specific TLR-

driven cell activation is associated with the expression of unique BCRs

on B cells. In addition, mouse B cells that lack the BCR are unable to

proliferate upon TLR agonist stimulation (90). Moreover, LAG-

3+CD138hi natural regulatory plasma cells, which produce IL-10

upon exposure to TLR agonists in mice, also grow in a BCR-

dependent manner (91). These studies reaffirm that BCR activation

facilitates endosomal TLR signalling in B cells, enabling these cells to

react to TLR agonists (92).
6.2 Possible causes of impaired TLR9
function in SLE B cells

The molecular changes responsible for impaired TLR9 activity in

SLE B cells are unclear. TLR9 gene transcription is similar in B cells of

both healthy individuals and SLE patients (15, 93). Hence, poor TLR9

responses in SLE B cells is unlikely due to decreased TLR9 expression

(93). In SLE patients, TLR9 function is impaired in B cells but not in

pDCs, indicating that B-cell-specific receptors may disturb the TLR9

response in SLE B cells. Several TLR9 actions in human B cells are

mediated by CD19, which is expressed in B cells but not pDCs (15).

CD19 is a transmembrane protein found on B cells that amplifies

proximal BCR signalling by successively recruiting and activating

LYN, PI3K, Bruton tyrosine kinase (BTK), and protein kinase B

(AKT) (94). Likewise, B cells from individuals with one or two CD19

allele variants exhibit lower or defective activation, respectively, in

response to TLR9 agonist stimulation (94). This suggests that CD19 is
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indispensable for the control of TLR9 function in human B cells.

Human SLE B cells have been shown to express less CD19 according

to prior studies (95–97). In conjunction with this observation, Gies

et al. (15) found that CD19 expression was lower on B cells from

quiescent and active SLE patients. Furthermore, it has been

demonstrated that the transitional B cells from individuals with

SLE have abnormal phenotypes, including lower CD19 expression

and impaired sensitivity to TLR9 stimuli (98). Previous studies have

also shown that heterozygous and homozygous CD19 gene mutations

in B cells may be associated with the onset of SLE (99). However, such

mutations are unlikely to frequently occur in SLE to alter the

expression of CD19. Gies et al. (15) discovered that decreased

CD19 expression on B cells from SLE patients normalized after 48

hours of in vitro culture, therefore, it is assumed that external factors

are responsible for CD19 downregulation in vivo. Subsequent

research has revealed that downregulation of CD19 on B cells is

associated with the existence of anti-dsDNA antibodies, suggesting

that immune complexes and apoptotic bodies containing DNA are

involved in CD19 and TLR9 regulation in B cells in the bone marrow

(BM) (98). By contrast, type I and II interferons, which are linked to

the immunopathogenesis of SLE, are unable to modify CD19 (15).

Primary Sjögren’s syndrome, a condition marked by the generation of

anti-single-stranded RNA (ssRNA) antibodies but not anti-dsDNA
Frontiers in Immunology 06
antibodies, is characterized by ordinary CD19 expression on patient B

cells (15). Consistent with this finding, DNA is found on the surface

of B cells from SLE patients who are actively ill (but not on the surface

of healthy donor cells) (100). However, whether CD19

downregulation in SLE B cells is a necessary factor for impaired

TLR9 responses and leads to a break in immune tolerance in SLE B

cells remains to be determined. Although both TLR7 and TLR9

activate downstream NF-kB and p38 MAPK signalling through

MyD88 in B cells, data suggest that TLR7 does not promote B-cell

death after proliferation in SLE in vivo and in vitro, but it does

promote plasma cell differentiation (77). Interestingly, TLR7 function

is preserved in SLE B cells, and the reasons for this effect are worth

further investigations (98).
6.3 Effect of TLR9 dysfunction on
B-cell differentiation

TLR9 dysfunction leads to a decrease in the differentiation of B

cells into regulatory B cells (Bregs). Bregs are a class of

immunomodulatory B cells that do not rely on the secretion of

immunoglobulins (101). Upon stimulation by the TLR9 agonist

CpG-DNA, these cells can secrete the cytokine IL-10 and effectively
FIGURE 2

TLRs signalling in B cells and TLR7 and dysfunctional TLR9 compete for UNC93B1-dependent trafficking in SLE B cells. 1.When nucleic acid ligands are
recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 in the late endosome; TLR7 or TLR9 then binds MyD88. MyD88 subsequently
recruits the IRAK–TRAF6 complex, ultimately leading to activation of downstream NF-kB and AP1 signalling. 2.Dysfunctional TLR9 can lead to weakened
competition of these TLRs for binding to UNC93B1 in endosomes, increasing TLR7 availability and resulting in higher TLR7 trafficking and responses,
which manifest as autoimmune phenotypes.
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induce apoptosis of mouse and human effector T cells in an IL-10-

dependent manner, which has a protective effect on the body under

physiological conditions (57, 102). The TLR9 hyporesponsiveness of

SLE B cells may underlie their inability to differentiate into IL-10-

secreting Bregs (103). Diminished IL-10 secretion may then promote

an increase in IFN-a production by pDCs from SLE patients. These

pDCs are probably activated through their functional TLR9 by DNA-

containing immune complexes, and this step may favour the

progression of immature SLE B cells into plasmablasts, which

frequently create autoreactive antibodies (15, 104). On the other

hand, TLR9-deficient cells tend to differentiate into autoantibody-

producing cells with expression of CD138 or other molecular markers

of plasma cells in vivo and in vitro (77).
6.4 Opposing roles of TLR7 and TLR9
signaling in SLE B cells

Nündel et al. (77) found that even though Tlr9-deficient

autoimmune disease-prone mice fail to generate an autoantibody

response to dsDNA, the Tlr9-deficient cells continue to differentiate

along the plasma cell lineage, and these mice develop more serious

clinical disorders and have shorter lifespans. However, Tlr7-null and

Tlr7/9 double-null autoimmune disease-prone mice exhibit less severe

disease. Furthermore, Tlr9−/− B cells predominantly become IgG

autoantibody-producing cells in vivo when BCR/TLR7 is activated.

Additionally, the functions of BCR/TLR7 may be at least partially

limited by BCR/TLR9 activation (77). The dependence of protection

on TLR7 elimination indicates that there may be direct interaction

between TLR7 and TLR9 and that the negative influence of TLR7 on

health is greater than the positive influence of TLR9. In fact, the

transmembrane protein UNC93B1 plays a key role during the

activation of TLR7 and TLR9 by trafficking them from the

endoplasmic reticulum (ER) to late endosomes, where they

communicate with their ligands (105). B cells from patients with

active SLE have considerably higher UNC93B1 mRNA and protein

levels than B cells from patients with inactive SLE and healthy

controls (106). Further research found that knocking out Unc93b1

extinguishes the response from TLR7 and TLR9 in B cells, and the

levels of antibodies against Ro-52/60, La, DNA and cardiolipin are all

apparently decreased in the KO mice (10, 107, 108). In addition, there

is competition between TLR7 and TLR9 for UNC93B1 trafficking in B

cells, in which TLR9 predominates due to its higher affinity for

UNC93B1 (109). Thus, overactivation of TLR7 is regulated by

UNC93B1 through balancing of TLR9 to TLR7 trafficking. Desnues

et al. (110) showed that dysfunctional TLR9 can lead to weakened

competition of these TLRs for binding to UNC93B1 in endosomes.

This improves TLR7 availability and causes increased TLR7

trafficking and response, which can emerge as autoimmune

symptoms (Figure 2). Significantly, it has also recently been shown

that UNC93B1 can specifically suppress TLR7 signalling in B cells by

recruiting syntenin-1 (111). Syntenin-1 binds to UNC93B1, causing

TLR7 to move to intraluminal vesicles of multivesicular bodies and

preventing TLR7 signalling (111).

However, impaired TLR9 does not seem to explain the

exacerbation of the disease caused by Tlr9-KO, suggesting that the

protective mechanisms of TLR9 in SLE involve non-classical
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pathways. Recent genetic studies of TLR9 functions in lupus

uncovered complex regulatory and unclear proinflammatory

functions of TLR9. Leibler et al. (17) constructed a murine model

of lupus with TLR9 point mutations that either hinder ligand binding

(Tlr9K51E) or MyD88 signalling (Tlr9P915H) and subsequently detected

the effects of these mutations on the lupus phenotype. A scaffold

protective role of TLR9 was identified in Tlr9K51E mice, which showed

less severe disease than Tlr9−/−control mice. This scaffolding role is

dependent on the protein’s presence and supports the UNC93B1

hypothesis, which suggests that TLR7 endosomal localization should

differ in Tlr9−/− and Tlr9WT cells (13, 112). However, there was not a

marked difference in TLR7 endosomal or lysosomal localization, NF-

kB signalling or TLR7-driven gene expression in mice with or without

TLR9 (17). Despite the findings of Leibler et al. (17), studies have been

unable to exclude a subtle impact of TLR9 expression on TLR7

activation and signalling, though this impact may not be a major

reason why TLR9 restrains lupus. This calls into question the

traditional conception that TLR9 only competitively restrains the

signalling and expression of TLR7. Unexpectedly, compared with

Tlr9K51E and Tlr9WT mice, Tlr9P915H mice exhibited greater

protection, demonstrating that TLR9 also exerts a ligand-dependent

but MyD88-independent control effect. Additionally, neither of the

two abovementioned suppressive, MyD88-independent regulatory

roles of TLR9 rely on the absence of anti-DNA antibodies, as

neither of these mice produce anti-DNA antibodies, yet lupus is

substantially ameliorated in Tlr9K51E and Tlr9P915H mice compared

with Tlr9−/− mice (17). Furthermore, studies of triple chimaeras with

WT, KO and mutant TLR9 haematopoietic cells in the bone marrow

uncovered TLR9-MyD88-independent regulatory functions that were

intrinsic to B cells and constrained the development of pathogenic

ABCs and plasma cells (17). In addition, although Leibler et al. (17)

were unable to exclude the possibility of regulatory anti-inflammatory

functions of TLR9–MyD88 signalling, they did identify that the major

impact of TLR9–MyD88 signalling is to accelerate disease through

proinflammatory signalling. That TLR9 possesses unique regulatory

functions and operates via proinflammatory and protective

mechanisms that could explain why it differs from TLR7. In

addition, BCR/TLR co-signalling, in which both ligands can be

present in a single molecular complex, suggests that there are

different roles for TLR7 and TLR9, and TLR9 may have unique

roles in regulating BCR/TLR co-signals (16, 77). Ultimately, TLR9

plays a more complex role than TLR7 in SLE B cells, but further

exploration is required.
7 Effects of other cells on the TLR7/
TLR9 pathway in SLE B cells

pDCs are a dominant producer of IFN-I. The secretion of IFN-I

by pDCs involves the TLR7/9-MyD88 signalling pathway (19).

SLC15A4, which is a histidine transporter that controls lysosomal

pH, is necessary for this process and impacts the production of

autoantibodies (113–116). IFN-I signalling has a crucial role in SLE

pathogenesis and specifically in the germinal centre response (117).

By specifically upregulating TLR7 expression, pDC-derived IFN-I

increases the TLR7 sensitivity of human naive B cells. The level of

TLR9 expression, however, is unaltered (118). Soni et al. (119)
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experiments with mice showed that endosomal TLR7/TLR9 and IFN-

I derived from pDCs promote the transformation of extrafollicular B-

cells into short-lived antibody-forming cells (AFCs). Moreover, the

optimal expansion of extrafollicular (ExFO) CD138+ B cells and

ICOShiExFO-Th cells requires IFN-I (119). In addition, T cells

participate in the proliferation and differentiation of SLE B cells.

CD4+ effector T cells, including follicular helper T (Tfh) cells, are the

main sources of TLR7-induced IFN-g. Furthermore, IFN-g signalling
in SLE plays an indispensable role in TLR7-driven autoreactive B-cell

development into antibody-secreting cells via germinal centre

signalling (20, 21). The differentiation of SLE B cells into plasma

cells is facilitated by IL-21 secreted by Tfh cells (18, 120).Additionally,

T-Bet and CD11c expression in TLR-activated B cells is controlled by

an interaction between IL-4, IL-21, and IFN-g (121).. In addition, Soni
et al. (119) showed that extrafollicular plasmablasts drive the

autoantibody response in a T-cell-dependent manner. These

autoantibodies bind to antigens to form immune complexes. On

the one hand, immune complexes can cause damage to organs; on the

other hand, they can be recognized by pDCs to produce IFN-I, thus

forming a vicious cycle (119). Taken together, these findings suggest

connections between pDCs, T cells, B cells, and endosomal

TLRs (Figure 1).
8 Targeting TLR7/9 signaling to
treat SLE

8.1 Targeting TLR7/9 signaling pathway-
related molecules for SLE therapy

TLR7 is extremely important in the pathogenesis of SLE, so

inhibitors of TLR7 may be a crucial component of SLE treatment.

Indeed, some promising therapies for inhibiting signalling

downstream of TLR7 are under clinical assessment. For example,

several studies have demonstrated the safe and efficient use of an

IRAK4 inhibitor in suppressing inflammatory gene expression and

cytokine secretion in mouse and human peripheral blood

mononuclear cells (122–124). Inhibitors of MyD88, IRAK1, TRAF6,

BANK1 and TAK1, which are TLR7 signalling-related molecules, are

also being developed (84, 125, 126). Notably, these approaches not

only lack specificity for TLR7 over other endosomal TLRs but also

may block the activation of various cell types in addition to B cells

upon formation of SLE patient immune complexes or TLR7 ligand

stimulation, including monocytes and pDCs. Therefore, it is essential

to carefully assess the safety of these inhibitors. Recently, a new oral

TLR7/8 inhibitor developed by Merck, KGaA in Germany known as

enpatoran (M5049) was able to inhibit the production of IL-6 and

IFN-a and is well tolerated in a dose-dependent manner in phase 1

clinical trials (127). It is expected that this drug can be used to treat

SLE (128). Hydroxychloroquine (HCQ) plays an important role as an

immunosuppressant in SLE and is widely used in the clinical

treatment of autoimmune diseases. The mechanism includes direct

binding to nucleic acids when they become concentrated in the

endosome, which limits ligand binding to TLR7/9 (129). This leads

to an impaired ability of pDCs from patients with SLE to produce

IFN-a and TNF-a (130). However, given the therapeutic range and
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target population, HCQ may not be able to suppress immune storms

once they progress because SLE is linked to multiple downstream

pathways of TLR7/9 (131). In SLE, dysfunction of B-cell-intrinsic

TLR9 prevents apoptosis of autoreactive B cells, so enhancing the

TLR9 signal by upregulating CD19 may be a novel strategy for

targeting TLR9 to treat SLE (13, 16, 98).
8.2 SLE treatment targeting trafficking
mechanisms

In addition to UNC93B1 and syntenin-1, the MHCII-associated

invariant chain has been shown to have a more significant impact in

restricting TLR7 signalling by regulating its trafficking (132). In

addition, studies have found that in mice, B cells with av or b3
integrin deficiency display hyporesponsiveness to TLR signalling in

the marginal zone and B-1a B-cell subsets and a reduction in GC

formation upon immunization with TLR7 stimuli (133, 134). Hence,

modulation of the function of UNC93B1, syntenin-1, the MHCII-

associated invariant chain or avb3 integrin to affect TLR7 trafficking

mechanisms in SLE B cells is an interesting strategy for treatment

(111, 132, 135).
9 Conclusion

TLRs were originally identified as pattern recognition receptors

and are now considered an important hub connecting innate and

adaptive immunity. SLE is characterized by successive stimulation of

the innate and adaptive immune systems by endogenous nucleic acids

released by necrotic or apoptotic cells. TLR7 and TLR9, whose ligands

are ssRNA and dsDNA, respectively, work as innate sensors for

detecting viral infections. Endosomal TLR recognition of self-

nucleic acids in B cells is considered a crucial step in the

progression of SLE and leads to the formation of antinuclear

antibodies. Both TLR7 and TLR9 mRNA are expressed to varying

degrees in SLE B cells, but the two play divergent roles. TLR7 is a

significant contributor to the pathogenesis of SLE in B cells, mediating

GC responses and extrafollicular B-cell responses to promote the

expansion of antibody-secreting cells and accelerate disease

progression. However, B-cell-specific TLR9 appears to play a

protective role in SLE. Moreover, the conventional views hold that

impaired TLR9 function in SLE B cells leads to a breakdown of the

balance of the TLR7 and TLR9 pathways, which manifests as

enhanced TLR7 signalling, impaired apoptotic death after an initial

proliferative burst, and increased conversion of B cells to plasma cells

instead of Bregs, which eventually worsens the disease. However,

recent research has found that B-cell-intrinsic TLR9 seems to have

complex bidirectional regulatory roles in SLE, and its expression does

not affect TLR7 signalling (17). These novel findings reveal

unprecedented insights into TLR9 biology in environments beyond

SLE. This unique dual regulatory role of TLR9 may be related to Toll–

IL-1R (TIR) domain signalling from IL-1R family members, which

have both proinflammatory and anti-inflammatory functions (136).

Only 46% homology exists between the TIR domains of TLR7 and

TLR9, explaining why these receptors have different functions. This
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1093208
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2023.1093208
may partly explain why TLR7 and TLR9 have different roles in SLE B

cells. Ultimately, genetic assessment of the TIR domains in each

protein and exploration at the biochemical level are needed to

determine such differences.

Infection is known to be an important trigger exacerbating SLE,

and TLR-induced innate immunity can kill pathogens to maintain

homeostasis (137, 138). However, abnormal activation of TLR7 or

impaired TLR9 function in B cells in patients with SLE leads to

disruption of immune homeostasis and adaptive immune activation

upon exposure to pathogens containing ssRNA and dsDNA.

Therefore, therapy targeting B-cell TLR7/TLR9 has potential for

SLE. Some drugs targeting TLR7 have been developed and applied

in the clinic; however, drugs targeting B-cell TLR9 are still relatively

lacking. We propose a method to enhance the function of TLR9 by

upregulating the expression of CD19 in B cells, thereby restoring the

postproliferative apoptosis pathway of TLR9. This is expected to

prevent disruption of immune homeostasis in SLE patients upon

infection with pathogens containing ssRNA and dsDNA, providing

new ways to target B-cell TLR9 to treat SLE. Curiously, the expression

of TLR9 in B cells of patients with SLE is upregulated and positively

correlated with SLE disease activity. This seems to contradict the

protective effects of TLR9 and may be the result of a feedback

mechanism that upregulates the expression of TLR9 to induce

protection. However, this hypothesis needs to be validated.

Likewise, whether TLR9 expression and/or function differs between

humans and mice remains unclear.

It should be noted that SLE is a disease involving multiple factors,

so the study of SLE pathogenesis cannot be limited to B cells. A large

number of studies have indicated that cytokines such as IFN and ILs

derived from pDCs and T cells, the expression of CD19 and BCR, and

the interaction of transporters such as UNC93B1 and SLC15A4 with

TLRs operate in a complex network that controls autoreactive

antibody responses to nucleic acid antigens and results in the

complex pathogenesis and symptom heterogeneity of SLE.

However, the interactions of these factors are still unclear and need

to be further explored.
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Glossary

SLE Systemic lupus erythematosus

Ags Antigens

Ab Antibody

TLR Toll-like Receptor

BCR B-cell receptors

IFN Interferon

dsDNA Double-stranded DNA

DC Dendritic cells

pDCs Plasmacytoid dendritic cells

GWAS Genome-wide association studies

SNPs Single-nucleotide polymorphisms

WT Wild-type

GCs Germinal centres

Spt-GCs Spontaneous germinal centres

BLIMP-1 B lymphocyte-induced maturation protein 1

2’,3’-cGMP 2’,3’-Cyclic guanosine monophosphate

MyD88 Myeloid differentiation factor 88

TFs Transcription factors

ABCs Age-associated B cells

CpG Cytosine–phosphate–guanine

LN Lupus nephritis

IL Interleukin

IRF4 IFN regulatory factor 4

PI3Ks Phosphatidylinositol 3-kinases

NF-kB Nuclear factor-kB

(Continued)
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MAPK Mitogen-activated protein kinase

BlyS B-lymphocyte stimulator

ERK Extracellular signal-modulating kinase

JNK c-Jun N-terminal kinase

TNF Tumour necrosis factor

IRAK IL-1 receptor-associated kinase

TAK-1 Transforming growth factor b-activating kinase-1

IKK IkBa kinase

TIR Toll/interleukin 1 receptor

SYK Spleen tyrosine kinase

BTK Bruton tyrosine kinase

AKT Protein kinase B

ssRNA Single-stranded RNA

UNC93B1 Unc-93 homolog B1

JAK Janus kinase

STAT Signal transducer and activator of transcription

BM Bone marrow

Bregs Regulatory B cells

ER Endoplasmic reticulum

SLC15A4 Solute carrier family 15 member 4

AFCs Antibody-forming cells

ExFO Extrafollicular

BANK1 B-cell scaffold protein with ankyrin repeats1

HCQ Hydroxychloroquine

MHCII MHC class II gene
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