
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhe Li,
The University of Sydney, Australia

REVIEWED BY

Kaiming Zhang,
Taiyuan Central Hospital, China
Trinidad Montero-Vilchez,
Virgen de las Nieves University Hospital,
Spain
Meirong Li,
People’s Liberation Army General Hospital,
China

*CORRESPONDENCE

Xiaobing Fu

fuxiaobing@vip.sina.com

Siming Yang

ysm0117@126.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Cytokines and Soluble
Mediators in Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 08 November 2022

ACCEPTED 31 January 2023
PUBLISHED 20 February 2023

CITATION

Yang J, Xiao M, Ma K, Li H, Ran M, Yang S,
Yang Y, Fu X and Yang S (2023)
Therapeutic effects of mesenchymal stem
cells and their derivatives in common skin
inflammatory diseases: Atopic dermatitis
and psoriasis.
Front. Immunol. 14:1092668.
doi: 10.3389/fimmu.2023.1092668

COPYRIGHT

© 2023 Yang, Xiao, Ma, Li, Ran, Yang, Yang,
Fu and Yang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 20 February 2023

DOI 10.3389/fimmu.2023.1092668
Therapeutic effects of
mesenchymal stem cells and their
derivatives in common skin
inflammatory diseases: Atopic
dermatitis and psoriasis

Jie Yang1,2†, Minglu Xiao1,2†, Kui Ma2†, Hongyu Li1,2,3, Mingzi Ran2,
Shuxu Yang1,2, Yuguang Yang1, Xiaobing Fu2* and Siming Yang1,2*

1Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China, 2Research
Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department,
PLA General Hospital and PLA Medical College, Beijing, China, 3Tianjin Medical University, Tianjin, China
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis

have been considered uncontrolled inflammatory responses, which have usually

troubled patients around the world. Moreover, the recent method to treat AD and

psoriasis has been based on the inhibition, not regulation, of the abnormal

inflammatory response, which can induce a number of side effects and drug

resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and

their derivatives have been widely used in immune diseases based on their

regeneration, differentiation, and immunomodulation with few adverse effects,

which makes MSCs a promising treatment for chronic skin inflammatory diseases.

As a result, in this review, we aim to systematically discuss the therapeutic effects of

various resources of MSCs, the application of preconditioning MSCs and

engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical

evaluation of the administration of MSCs and their derivatives, which can provide

a comprehensive vision for the application of MSCs and their derivatives in future

research and clinical treatment.

KEYWORDS

MSCs (mesenchymal stem cells), MSCs derivatives, skin inflammatory diseases, atopic
dermatitis, psoriasis, extracellular vesicles
1 Introduction

Skin inflammatory diseases, mainly including atopic dermatitis (AD) and psoriasis, are

considered an uncontrolled response to systemic inflammation, the main symptoms and

pathological features of which are manifested in the skin (1, 2). The problems caused by

inflammatory skin diseases plague people all over the world and bring a huge economic

burden. The incidence of AD accounts for higher than 20% of children and approximately

10% of adults in some countries including both developing and developed counties and
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continues to increase (3, 4). Unlike AD, psoriasis accounts for

approximately 1% of children and 11% of adults in an

epidemiological study of 20 countries (5). Moreover, the age

distribution of psoriasis has a bimodal onset including before the

age of 40 years accounting for 75% of cases and after the age of 40

years, according to two different subtypes of its pathological features

(6). The reasons we choose AD and psoriasis to represent the skin

inflammatory diseases are that a) AD and psoriasis are kinds of skin

inflammatory diseases that affect the largest number of patients and

the quality of patients’ life around the world, b) AD and psoriasis are

difficult to cure and the treatments for them have a series of side

effects, and c) among skin inflammatory diseases, the treatment and

pathogenesis of AD and psoriasis are the hottest research

topic nowadays.

As mentioned before, skin inflammatory diseases are mainly caused

by the imbalance between pro- and anti-inflammatory factors. The

pathogenesis of AD is known as the abnormal activation of T helper 2

(Th2) lymphocyte, which can subsequently secrete a series of pro-

inflammatory cytokines including immunoglobulin E (IgE),

interleukin-4 (IL-4), IL-5, IL-13, IL-17, IL-22, IL-31, and thymic

stromal lymphopoietin (TSLP), leading to epidermal barrier defect

and increased skin inflammation (7–9), whereas psoriasis is mainly

considered the abnormal activation of Th1 and Th17 lymphocytes

which secrete pro-inflammatory cytokines such as tumor necrosis

factor (TNF)-a, interferon-g (IFN-g), IL-17, and IL-23 (10).

However, although the current therapeutic methods vary from

phototherapy to immunosuppressant drugs and biological agents, the

curing mechanism is based on the inhibition, not regulation, of the

abnormal inflammatory response to suppress the symptoms. The

traditional administration of drugs, such as corticosteroids and

calcineurin inhibitors, can induce a series of side effects, including

absorption and hypothalamic–pituitary–adrenal axis suppression,

growth suppression, atrophy, cataracts, and drug resistance in long-

term treatment (11, 12). Although recent research indicates that

biological agents can effectively improve the symptoms of skin

inflammatory diseases, they can also induce serious side effects. For

example, the JAK inhibitors including abrocitinib and dupilumab can

induce a series of adverse events such as upper respiratory tract

infection, conjunctivitis, asthma, and nasopharyngitis (13). The

TNFa inhibitor such as adalimumab can induce adverse events such

as serious infection, tuberculosis, and tumor (14).

Mesenchymal stem/stromal cell (MSC) derivatives have been

widely used in clinical treatments in virtue of their abilities of

regeneration, differentiation, and immunoregulation (15, 16). The

resources of MSCs can be harvested from various tissues including

umbilical cord (UC-MSCs) (17) or its blood (UCB-MSCs) (18), bone

marrow (BM-MSCs) (19) or adipose tissue (AD-MSCs) (20), and

gingiva (GMSCs) (21), which may have different therapeutic effects

on skin inflammatory diseases. In addition to those resources, there

are also some important issues to be considered in stem cell-based

therapy, such as the number of cells transplanted, preconditioning of

the cell preparation, relevant targets of the therapy, and route and

frequency of administration (22–24). In addition, the MSCs of

patients with skin inflammatory diseases show abnormal biological

abilities to regulate inflammation, differentiation, and regeneration

compared to the healthy population. The target to improving those

MSCs from the patients of skin inflammatory diseases may become
Frontiers in Immunology 02
another cured target for clinical treatments (25–27). However, there

are still mild adverse effects such as headache, fever, and the risk of

embolism, but there have been no documented cases of embolism

during treatment of AD and psoriasis patients (28, 29). It is worth

noting that various administrations of MSCs and their derivatives

may have obviously different effects on treating common chronic skin

inflammatory diseases, AD, and psoriasis. As a result, in this review,

we provide an overview of current strategies regarding the use of MSC

derivatives including the therapeutic effects of different resources,

preconditioning of the cell preparation, extracellular vesicles (EVs),

and the improvements of MSCs in the lesion skin; a clinical evaluation

of patients treated who have MSCs in inflammatory skin diseases; and

future directions needed to develop this field.
2 The therapeutic target aiming at
lesional MSCs in AD and psoriasis

AD and psoriasis are systemic and immune-allergic inflammatory

skin diseases, the mechanism of which is the dysregulation of

immunology (30–32), whereas MSCs play a role on regeneration

and more importantly on immunomodulation (33–35). As a result, it

could be the new clinical target whether the biological function of

MSCs in skin lesion of AD and psoriasis changed and evolved in the

pathogenesis of skin inflammatory diseases. Recent studies reveal that

skin-derived MSCs in patients show an obviously differential function

compared with common MSCs. Orciani et al. found that MSCs

isolated from the skin lesion of patients in AD can enhance the

activation of Th1 and Th17 cells and promote the production of their

pro-inflammatory cytokines including IL-6, IL-13, IL-17A, IL-17F,

transforming growth factor-beta (TGF-b), and IFN-g, whereas they
decrease the number of Th2 cells and their production including IL-2,

IL-4, IL-5, and IL-23A. Interestingly, some proinflammatory factors

are not changed including chemokine (C–C motif) ligand 1 (CCL1),

IL-17C, and TNF-a (36). Campanati et al. also found that MSCs

derived from patients of AD can overexpress the levels of IL-6 and IL-

13 whereas there is no significance with the level of IL-4 compared

with healthy MSCs (27). In psoriasis, recent research found that

MSCs from skin lesion performed an abnormal role in two ways

compared with normal MSCs. Firstly, compared with healthy donors,

MSCs from skin lesion of psoriasis patients decreased the level of

TGF-b and its receptor and thus increased the ratio of Th17/Treg and

their inflammatory cytokines including IFN-g and TNF-a (37–40).

Secondly, pathological MSCs from psoriasis patients expressed high

levels of vascular endothelial growth factor (VEGF) and inducible

nitric oxide synthase (iNOS), which was different from the MSCs of

the normal population and AD patients. The increasing levels of

VEGF and iNOS would be more vulnerable to recruit a number of

immune cells, proinflammatory cytokines, and chemokines into skin

lesion (41–43). Moreover, as AD and psoriasis are a kind of immune

diseases, the hematopoietic microenvironment is altered in those

chronic inflammatory diseases. Compared with BM-MSCs from

healthy people, BM-MSCs show an abnormal secretion of

inflammatory cytokines and chemokines in patients with psoriasis,

which showed a different hematopoietic microenvironment (26). In

addition, Zhang et al. found that bone marrow hematopoietic stem

cells (BMHSCs) from psoriasis patients have a different cell
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phenotype and an increased expression of CD45, which may account

for the activation of T cells and be closely associated with disease

severity (44) (Figure 1). Considering that the inflammatory cascade in

AD and psoriasis begins at the mesenchymal level, an upstream

therapeutic intervention to treat the abnormal MSCs can potentially

improve the pathogenesis of those inflammatory diseases. However,

the therapeutic methods to treat lesional MSCs have been still

unrevealed and how to use the improved MSCs to treat the skin

inflammatory diseases needs to be further studied.
3 The effects of MSCs from different
resources on AD and psoriasis

With advancing technology for administering MSCs, the

application of MSCs has emerged as a promising strategy for the

treatment of skin inflammatory disease due to their capability of

regeneration, immunomodulation, and differentiation (45). Recent

research found that MSCs have efficacy in the reduction of disease

severity and epidermal thickness, arranging layers of epidermal layers,

and keeping an intact basement membrane through its powerful

capability of immunoregulation (46, 47). MSCs can be harvested from
Frontiers in Immunology 03
different tissues as mentioned before, whereas from different

resources MSCs may have various therapeutic effects on skin

inflammatory diseases.
3.1 AD-MSCs

Among various resources of MSCs, AD-MSCs have become one of

the most attractive therapies because of their easy way to harvest, few

ethical concerns, and most importantly their secreting capacity of

numerous growth factors and adipokines to assist tissue survival (48).

In AD, intravenous administration of human AD-MSC in mice (2 × 105

or 2 × 106 cells/200 mL normal saline) can alleviate allergic inflammation

which includes decreasing the number of degranulated mast cells (MCs),

IgE level, amount of histamine released, and prostaglandin E2 level;

inhibiting the secretion of pro-inflammatory cytokines and chemokines;

increasing the expression of Th1 and Th2 cells; and promoting the

expression of regulatory T (Treg) cells (49). Kim et al. found that

intravenous administration of AD-MSCs in mice [1 × 106 cells in 100

µl phosphate-buffered saline (PBS)] can decrease the macrophage

inflammatory protein-2 (MIP-2) level to overexpress the miR-122a-5p

level, regulating the level of cytokine signaling 1 (SOCS1), to decrease the
FIGURE 1

The effects of lesional MSCs in AD and psoriasis patients. Compared with MSCs from healthy donor, MSCs in skin lesion of AD and psoriasis patients can
enhance the activation of Th1 and Th17 cells and promote the production of their pro-inflammatory cytokines including IL-4, IL-6, IL-13, IL-17A, IL-17F,
IL-17C, CCL, TNF-a, and IFN-g and suppress the activation of Treg.
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internal inflammation and clinical symptoms (20). Except for the

beneficial effects mentioned previously, Guan et al. also found that

subcutaneous injection of mouse AD-MSCs in mice (1 × 106 cells in

1ml PBS) can especially inhibit the expression of Th17 and its relative

pro-inflammatory products including IL-17A, CCL20, and matrix

metalloproteinase 12 (MMP12) in AD (50) (Table 1).
3.2 UCB-MSCs

Another type of MSCs only found in treating AD is from umbilical

cord blood. UCB-MSCs have the advantage of having an easy way to

harvest and a low probability of pathophoresis (59). In AD, three ways

are found in immunomodulatory effects functioned by UCB-MSCs in

recent research. The first one is that subcutaneous administration of

UCB-MSCs with 2 × 106 cells in mice can decrease the level of TNFa to

inhibit the infiltration of mast cells and decrease the level of IgE into

skin lesions by secreting TGF-b (18). Second is that subcutaneous

administration of UCB-MSCs in mice (2 × 106 cells) can reduce allergic

inflammatory symptoms by inhibiting Th2 cell differentiation and mast

cell activation through the cyclooxygenase-2 (COX2)–prostaglandin E2

(PGE2) pathway (60). The last is that subcutaneous administration of

UCB-MSCs in mice (2 × 106 cells) can decrease the level of pro-

inflammatory cytokines including IL-4, TNF-a, thymus, activation-

regulated chemokine (TARC), and IL-22 through secreting the

epidermal growth factor (EGF) in skin lesion (61) (Table 1).
3.3 UC-MSCs

On the contrary, research on the effects of UC-MSCs in psoriasis has

attracted extensive attention, whereas little attention is given to those in

AD. In psoriasis, subcutaneous or intravenous administration of UC-

MSCs (2 × 106 cells) can effectively reduce the severity of psoriasis-like

dermatitis, delay the appearance of skin lesions, and accelerate the

recovery of skin lesions by reducing the number of Th1 and Th17 cells

and their secreted pro-inflammatory products and increasing the number

of Treg cells (17). Other research found that intravenous administration

of UC-MSCs inmice (1 × 106 cells) can inhibit the infiltration of immune

cells into the dermal layer and suppress the secretion of IFN-g from

plasmacytoid dendritic cells (pDCs) (52).
3.4 MSCs from other resources

Despite fewer applications of other resources of MSCs in recent

research, they indeed play an important role in treating skin

inflammatory diseases. Unlike AD-MSCs or BM-MSCs, which

include invasive procedures to harvest the cells, inadequate

numbers for production, and the most worrying problem, that is,

the sources from the mesoderm may have barriers to differentiation

into ectodermal and endodermal tissues (55, 62), tonsil-derived

mesenchymal stem cells (TMSCs) can be easily isolated from

surgically removed tonsil and expanded in cultures, which have

been proposed as an alternative source of adult stem cells (63). In

AD, subcutaneous administration of TMSCs in mice (2 × 104 cells)

can decrease the levels of pro-inflammatory cytokines including IL-6,
Frontiers in Immunology 04
IL-1b, TNF-a, and IL-4 secreted by Th1 and Th2 cells and the level of
IgE secreted by B cells and mast cells (56). Bone marrow is the

classical resource to harvest MSCs, but it is limited in production—

BM-MSCs have been to some extent in AD. Na et al. found that

intravenous administration of BM-MSCs in mice (2 × 105 cells) can

suppress the activation of T cells and B cells. The T cell and its

inflammatory products including IFN-g and IL-4 have been

suppressed by nitric oxide (NO)-dependent pathways to increase

the level of transcription factors including T-bet, GATA-3, and c-Maf.

B cells and IgE have been suppressed by the downregulation of AID

and BLIMP-1 (19). Interestingly, some sources from the oral cavity to

harvest MSCs have been found in treating AD and psoriasis. Xiong

et al. found that subcutaneous or intravenous administration of MSCs

isolated from human exfoliated deciduous teeth (SHEDs), a special

type of MSCs with superior capability of immunoregulation, in mice

(2 × 106 cells) can effectively improve the disruption of skin barrier

function and enlarged spleens, decrease the levels of IgE and TLSP,

and inhibit the activation of Th1, Th2, and Th17 cells in skin lesion

(57). Moreover, Ye et al. found that intravenous administration of

human gingiva-derived MSCs in mice (2 × 106 cells) can reduce the

levels of pro-inflammatory cytokines including IFN-g, TNF-a, IL-6,
IL-17A, and IL-21 secreted by Th1 and Th17 cells and promote the

increasing number of Treg cells in mouse psoriasis-like models (21).

However, studies on the application and comparison of different types

of MSCs in skin inflammatory diseases are still lacking. As a result,

different types of MSCs in therapeutic effects of MSCs from the

various resources in AD and psoriasis need to be further elucidated

(Tables 1, 2).

4 The therapeutic effects of
preconditioning MSCs on AD
and psoriasis

With the technology advancing, recent research generally

indicates that preconditioning MSCs can effectively improve the

immunoregulation capability in treating diverse immune diseases (51,

64, 69). Superoxide dismutase (SOD), an antioxidant enzyme, plays an

essential role in inflammatory diseases, which can convert the

superoxide to hydrogen peroxide and oxygen and exert an anti-

inflammatory role (70). SOD3, an extracellular isoform of SOD, can

be transduced into MSCs, which can increase the therapeutic potency

of MSCs in antioxidant response and immunomodulation (53). In AD,

Sah et al. found that subcutaneous administration of SOD3-transduced

UCB-MSCs (SOD-MSCs) in mice (2 × 106 cells) can improve the

therapeutic effects of MSCs in two pathways. Firstly, SOD-MSCs can

alleviate the allergic inflammation in keratinocytes through

competitively interacting with the histamine H4 receptor (H4R) and

IL-4Ra. Secondly, SOD-MSCs can reduce the inflammation in the skin

through the JAK-STAT pathway (54). In psoriasis, another research

found that subcutaneous administration of SOD-MSCs (UC-MSCs) in

mice (2 × 106 cells) can ameliorate the symptoms of skin lesion by

regulating the inflammatory pathways including toll-like receptor-7,

nuclear factor-kappa B(NFkB), p38 mitogen-activated kinase (MAPK),

and JAK-STAT pathways (71) (Figure 2). Other studies indicate that

hepatocyte growth factor-transduced MSCs (HGF-MSCs) also exert a

better capability of antioxidant response in various acute/chronic
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TABLE 1 The therapeutic effects of MSCs and their derivatives from different sources in AD.

Sources of
MSCs Animal model Route of

administration Dose Main outcome

Shin
et al.,
2017
(49)

Human AD-
MSCs

Mouse model
induced by
Dermatophagoides
farinae

Intravenous
2 × 105/2 ×
106 cells

hAD-MSCs reduced epidermal thickness, lymphocyte infiltration, and MC
degranulation

Kim
et al.,
2018
(22)

Human AD-
MSCs

Mouse model
induced by using
DNCB

Intravenous
1 × 106 cells
on 12 and
23 days

Decreasing MIP-2 to overexpress the level of miR-122a-5p, regulating the level of
cytokine signaling 1 (SOCS1), to decrease the internal inflammation and clinical
symptoms

Guan
et al.,
2022
(50)

Mouse AD-
MSCs

Mouse model
induced by
ovalbumin

Subcutaneous 1 × 106 cells Inhibiting the expression of Th17 and its relative pro-inflammatory products

Park
et al.,
2020
(18)

Human UCB-
MSCs

Mouse model
induced by
Dermatophagoides
farinae

Subcutaneous 2 × 106 cells
Decreasing the level of TNFa to inhibit the infiltration of MC and decrease the
level of IgE into skin lesions by secreting transforming growth factor-beta (TGF-
b)

Shin
et al.,
2021
(28)

Human UCB-
MSCs

Mouse model
induced by
Dermatophagoides
farinae

Subcutaneous 2 × 106 cells
Reducing allergic inflammatory symptoms by inhibiting Th2 cell differentiation
and MC activation through the COX2–PGE2 pathway

Jung
et al.,
2022
(51)

Human UCB-
MSCs

Mouse model
induced by
Dermatophagoides
farinae

Subcutaneous 2 × 106 cells Decreasing IL-4, TNF-a, TARC, and IL-22 through EGF in skin lesion

Jung
et al.,
2021
(52)

Human TMSCs
Mouse model
induced by using
DNCB

Subcutaneous 2 × 104 cells
Decreasing IL-6, IL-1b, TNF-a, and IL-4 secreted by Th1 and Th2 cells,
respectively, and IgE secreted by B cells and MC

Na
et al.,
2014
(19)

Mouse BM-
MSCs

Mouse model
induced by
ovalbumin

Intravenous 2 × 105 cells
Suppressing T cells and its inflammatory products by NO-dependent pathways.
Suppressing B cells and IgE by the downregulation of AID and BLIMP-1.

Xiong
et al.,
2022
(53)

Human sheds
Mouse model
induced by using
DNCB

Intravenous/
subcutaneous

2 × 107

cells/mL,
and 2 × 106

cells on days
17, 24, and
31

Improving the disruption of skin barrier function and enlarged spleens.
Decreasing IgE and TLSP Inhibiting the activation of Th1, Th2, and Th17 cells in
skin lesion

Sah
et al.,
2018
(54)

Human UCB-
MSCs (SOD3-
tranduced)

Mouse model
induced by
ovalbumin

Subcutaneous
2 × 106 cells
on days 20,
28, and 42

Alleviating the allergic inflammation in keratinocytes through competitively
interacting with H4R and IL-4Ra. Reducing the inflammation in the skin through
the JAK-STAT pathway

Park
et al.,
2019
(55)

Human WJ-
MSCs
(preconditioned
with the TLR3
agonist poly I:C
or IFN-g)

Mouse model
induced by Af
extract

Subcutaneous \
Decreasing proinflammatory cytokines. Ameliorating epidermal thickness and
inflammatory cell infiltration in skin lesions.

Cho
et al.,
2018
(56)

Human AD-
MSCs (EVs)

Mouse model
induced by
Dermatophagoides
farinae

Intravenous/
subcutaneous

0.14, 1.4,
and 10 mg/
head

Reducing pathological symptoms, serum IgE, the number of eosinophils in blood,
and the infiltration of MC, CD86+, and CD206+ cells in skin lesions. Decreasing
IL-4, IL-23, IL-31, and TNF-a in AD skin lesions

Shin
et al.,
2020
(57)

Human AD-
MSCs (EVs)

Mouse model
induced by
oxazolone (Ox)

Subcutaneous/
topical

1, 3, and 10
mg/head

Restoring epidermal barrier functions in AD by facilitating the de novo synthesis
of ceramides

(Continued)
F
rontiers in
 Immunology
 05
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1092668
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1092668
disease (58). Meng et al. found that in psoriatic skin lesions, intravenous

administration of HGF-transduced dental pulp stem cells (HGF-

DPSCs) in mice (2 × 106 cells) can ameliorate psoriasis-like

erythema, scaling, and thickening and the expression of cytokeratin 6

(CK6) and cytokeratin 17 (CK17). In addition, in inflammatory respect,

HGF-DPSCs can decrease the levels of inflammatory cytokines such as

IFN-g, IL-6, and TNF-a; reduce the number of Th1; and increase the

number of Th2. Moreover, HGF-DPSCs exerts more efficacy compared

with pure DPSCs (72) (Figure 2). Finally, preconditioning MSCs with

inflammatory factors can more effectively treat skin inflammatory

diseases. Park et al. revealed that subcutaneous administration of

human Wharton’s jelly-derived MSCs (WJ-MSCs) preconditioned

with the Toll-like receptor 3 agonist poly I:C or IFN-g can decrease

the levels of proinflammatory cytokines in a murine model of AD.

Moreover, they can ameliorate more epidermal thickness and

inflammatory cell infiltration in skin lesions than non-preconditioned

MSCs (73). Zhang et al. found that intradermal administration of EVs
Frontiers in Immunology 06
derived from UC-MSCs stimulated by IFN-g (IFNg-sEVs) (150 µg) in

mice can effectively reduce the symptom of psoriasis through

decreasing the levels of pro-inflammatory cytokines including IL-

17A, IFN-g, IL-6, and TNF-a and Th17 cells and increasing the

population of Th2 cells in both spleen and skin in psoriasis (74)

(Figure 2). Up to now, there are still few research focusing on

preconditioning MSCs in AD and psoriasis, which need to be

further studied.
5 The therapeutic effects of EVs
derived from MSCs on AD and psoriasis

Although MSCs have been widely used for treating skin

inflammatory diseases due to their immunomodulation capability, but

an increasing concern about their adverse effects such as embolism and

inefficient homing to the target limits their application. Recent research
TABLE 1 Continued

Sources of
MSCs Animal model Route of

administration Dose Main outcome

Kim
et al.,
2022
(58)

Canine AD-
MSCs (EVs)

Mouse model
induced by using
DNCB

Subcutaneous
2 × 1010

particles/
head

Decreasing serum IgE, epidermal inflammatory cytokines, such as IL-4, IL-13, IL-
31, RANTES, and TARC. Repairing skin barrier by restoring transepidermal
water loss, enhancing stratum corneum hydration, and upregulating the
expression levels of epidermal differentiation proteins. Reducing IL-31/TRPA1-
mediated pruritus and activation of JAK/STAT signaling pathway
TABLE 2 The therapeutic effects of MSCs and their derivatives from different sources in psoriasis.

Sources
of MSCs

Animal
model

Route of
administration Dose Main outcome

Chen
et al.,
2022
(17)

Human UC-
MSCs

Mouse
model
induced by
IMQ cream

Intravenous/
subcutaneous

2 × 106

cells

Reducing the severity of psoriasis-like dermatitis. Delaying the appearance of skin lesions.
Accelerating the recovery of skin lesions by reducing the number of Th1 and Th17 cells and
their secreted pro-inflammatory products. Increasing the number of Treg cells.

Chen
et al.,
2019
(64)

Human UC-
MSCs

Mouse
model
induced by
IMQ cream

Intravenous
1 × 106

cells
Inhibiting the infiltration of immune cells into the dermal layer Suppressing the secretion of
IFN-g from pDCs

Ye
et al.,
2022
(21)

Human
gingiva-
derived
MSCs

Mouse
model
induced by
IMQ cream

Intravenous

2 × 106

cells on 1
and 4
days

Reducing pro-inflammatory cytokines including IFN-g, TNF-a, IL-6, IL-17A, IL-21 secreted
by Th1 and Th17 cells
Promoting the number of Treg cells

Sah
et al.,
2016
(65)

Human UC-
MSCs
(SOD3-
tranduced)

Mouse
model
induced by
IMQ cream

Subcutaneous
2 × 106

cells
Ameliorating the symptoms of skin lesion by regulating the inflammatory pathways
including TLR-7, NFkB, MAPK, and JAK-STAT pathways

Meng
et al.,
2021
(66)

Human
DPSCs
(HGF-
transduced)

Mouse
model
induced by
IMQ cream

Intravenous
2 × 106

cells

Ameliorating the psoriasis-like erythema, scaling, and thickening and the expression of CK6
and CK17. Decreasing inflammatory cytokines such as IFN-g, IL-6, and TNF-a. Reducing
the number of Th1. Increasing the number of Th2.i90op.

Zhang
et al.,
2022
(67)

Human UC-
MSCs
(IFNg-sEVs)

Mouse
model
induced by
IMQ cream

Intradermal 150 µg
Reducing the symptom of psoriasis through decreasing the levels of pro-inflammatory
cytokines including IL-17A, IFN-g, IL-6, and TNF-a and Th17 cells. Increasing the
population of Th2 cells in both spleen and skin.

Zhang
et al.,
2022
(68)

Human UC-
MSCs (EVs)

Mouse
model
induced by
IMQ cream

Subcutaneous 50 µg
Reducing proinflammatory cytokines and chemokines including IL-17, IL-23, TNFa, and
CCL20 suppressing the activation of DCs through inhibiting the JAK-STAT pathway
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revealed that EVs derived from MSCs cannot only effectively be instead

of the functions of MSCs but also easy to be engineered to better exert

their functions (17, 65, 74, 75). In AD, EVs are mainly from AD-MSCs

and function in three ways. Firstly, in the AD mouse model,

subcutaneous administration of EVs derived from AD-MSCs in mice

can reduce the levels of inflammatory cytokines and IgE including IL-4,

IL-5, IL-13, TNF-a, IFN-g, IL-17, and TSLP in skin lesion. Secondly, they

can reduce trans-epidermal water loss and enhance stratum corneum

(SC) hydration. At last, EVs can restore the skin barrier and lipid

metabolism in skin lesion (66, 67, 76). Moreover, in psoriasis, Zhang

et al. found that subcutaneous administration of EVs derived from UC-

MSCs in mouse psoriasis-like models (50 µg) can effectively reduce the

level of proinflammatory cytokines and chemokines including IL-17, IL-

23, TNFa, and CCL20 and suppress the activation of DCs through

inhibiting the JAK-STAT pathway (68). Another research found that

intradermal administration of IFNg-preconditioned EVs fromUC-MSCs

in mice (150 µg) can also reduce the symptoms of psoriasis described

previously (74) (Figure 2). However, the different resources and

mechanism of EVs are still under revealed and the engineered EVs are

little applied in treating skin inflammatory diseases, which needs to be

further studied in future.

6 The clinical efficacy of MSCs
and their derivatives applied in AD
and psoriasis

The administration of MSCs in AD and psoriasis has been tested

in clinical treatment; the efficacy and side effects are detailed in the
Frontiers in Immunology 07
following part. Shin et al. intravenously administered BM-MSCs to

five patients with AD (1.0 × 106 cells/kg three times every 2 weeks)

and observed for 16 weeks (treatment for 4 weeks and follow-up for

12 weeks). After 16 weeks, the follow-up was to identify the period

during which the patient’s improved symptoms are maintained by

using medications without additional use of systemic steroids and

immunomodulators. They found that the Eczema Area and Severity

Index (EASI) improved significantly at 16 weeks, which had a long-

term efficacy for an average of 38 weeks (range, 16–86), whereas it

showed no serious side effects in the patients. Moreover, the pro-

inflammatory cytokines in their blood significantly decreased at the

end point (28). Similarly, Kim et al. recruited 34 patients with

moderate-to-severe AD with a follow-up for 1 and 3 months

revealed that subcutaneously administering a high dose of UCB-

MSCs (5.0 × 107 cells) could effectively reduce the symptom of AD

and with little adverse effects and no relapse (29). In psoriasis, Ahn

et al. found a clinical case that a 47-year-old man, diagnosed with

psoriasis in 1995, has received various treatments for 25 years but

with no improved psoriatic condition. After both intravenous and

local administration of UC-MSCs, his erythema gradually

disappeared (10 ml for intravenous administration with 3 × 106

cells/ml in 0.9% physiological saline and 2–4 ml for local

administration with 1 × 106 cells/ml in 0.9% physiological saline).

The follow-up was 122 days, and the symptom was gradually

becoming better without any side effects (77). In addition, in a 17-

patient clinical trial, Cheng et al. also found that intravenous

administration of UC-MSCs (1.5 × 106 cells/kg once time every 2

weeks, four times as a course of treatment) can effectively reduce the

symptoms of psoriasis with no severe adverse effects. The follow-up
FIGURE 2

The potential mechanism of preconditioned MSCs and EVs in treating AD and psoriasis. SOD3-transduced MSCs can alleviate the allergic inflammation in
keratinocytes through competitively interacting with H4R and IL-4Ra. SOD-MSCs can reduce the inflammation in the skin through the NFkB, MAPK, and
JAK-STAT pathways. HGF-transduced MSCs can ameliorate psoriasis-like erythema, scaling, and thickening and the expression of CK6 and CK17 and
decrease pro-inflammatory cytokines such as IFN-g, IL-6, and TNF-a. Preconditioned with the TLR3 agonist poly I:C or IFN-g can ameliorate more
epidermal thickness and inflammatory cell infiltration in skin lesions. IFNg-sEVs can decrease pro-inflammatory cytokines including IL-17A, IFN-g, IL-6,
and TNF-a and Th17 cells and increase the population of Th2.
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was at 15 days, 30 days, 45 days, 2 months, 3 months, and 6 months

after treatment and there are no relapse and severe adverse effects

observed (78). However, the number of clinical studies of using MSCs

in AD and psoriasis is still inadequate. Moreover, more detailed

information such as the choosing of safe dose, resources, and delivery

way of MSCs should be cleared, which needs to be further studied.
7 Comparing alternatives of MSCs
and their derivatives applied in AD
and psoriasis

There are some limitations in the application of MSCs and their

derivatives: a) there is a need for the conduction of double-blinded,

placebo-controlled studies to indicate the potential clinical

application of MSCs in AD and psoriasis, and b) the production

and cost of MSCs cannot reach the standard, which makes it difficult

to translate into clinical treatment. However, the application of those

treatments is still more effective in treating AD and psoriasis at the

present compared with other treatments. In the application of

different resources of MSCs in both AD and psoriasis, we have

summarized the mechanism of different types of MSCs in the

diseases. Interestingly, we found that UC-MSCs performed in the

present studies were only used in psoriasis (17, 52, 78), UCB-MSCs

only in AD (18, 59–61). It may be attributed to the mechanism of both

kinds of MSCs to regulate inflammation, in which UC-MSCs were

more likely to regulate the activation of Th1 and Th17 cells and their

production, whereas UCB-MSCs were more likely to regulate the Th2

cells as present studies have mentioned. However, there is no research

to compare both kinds of MSCs in the same skin inflammatory

diseases. Moreover, various resources of MSCs were applied to

administer into AD such as AD-MSCs, UCB-MSCs, TMSCs, BM-

MSCs, and MSCs from the oral cavity, but only UC-MSCs were

directly used in psoriasis in the present studies as mentioned above.

Firstly, it may be attributed to the different pathogenesis of AD and

psoriasis (79), whereas both the two diseases show signs of

dysregulation of inflammation (80). Secondly, the chosen resources

of MSCs may be primarily biased on the local storage facilities and

policies of MSCs (the application of UC-MSCs in psoriasis mainly

from Chinese). However, the comprehensive and systematic

comparison of MSCs lines is still urgently needed in AD and

psoriasis at the present.

Despite many studies associated with the application of adult

mesenchymal stem cells such as AD-MSCs in treating AD and

psoriasis, there are still limitations. Firstly, the adult-MSCs can just

be harvested from the patients, which may limit the production of

MSCs. Secondly, the therapeutic effects of MSCs can be seriously

influenced by the age of the patients. Lastly, as we mentioned in the

manuscript, the MSCs from patients may have lower effects compared

with healthy donors, whereas compared with adult MSCs, MSCs from

the fetus such as UC-MSCs have lower immunogenicity and more

powerful therapeutic effects. Most importantly, they can be extracted

from oneself or non-relative donators, thus enhancing the production

of MCSs. As a result, we believe that MSCs from the fetus such as UC-

MSCs may be the best resource to be employed to treat AD

and psoriasis.
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Furthermore, based on the present studies in which the accurate

target is still unrevealed, the preconditioned MSCs showed more

healing capability than normal MSCs as mentioned in the previous

paragraphs, which makes the preconditioning technology a more

promising method in dealing with MSCs in vitro—the next step in

choosing the resource of MSCs. Above all, the two skin inflammatory

diseases have also been accompanied by other immune diseases, aside

from skin symptoms (81–84). Based on the condition, only

subcutaneous injection of MSCs to improve the skin symptoms

cannot be enough to cure the AD and psoriasis completely.

Moreover, intravenous injection of MSCs increases the risk of

embolism. As a result, administration of a small molecule, EVs

from MSCs, through the vein may be the best method to avoid the

side effects. Moreover, the present studies uncovered that EVs from

MSCs can be almost a substitute of MSCs in treating diseases, but EVs

alone cannot accurately home to the target of the diseases. As

mentioned above, engineered EVs with the targeted ligand may be

perfect to resolve the problem. However, the technology applied to

engineer EVs has been little studied and there is still a need to find out

the key targets of AD and psoriasis. Moreover, despite the advancing

technology and that the application of MSCs has been widely used in

clinical treatment, the price for the administration is still high beyond

the expectation of patients, not to mention using biological

programming techniques in engineering EVs from MSCs to treat

skin problems. Another strategy for the application of MSCs is

subcutaneous administration of MSC-CM (conditioned medium),

which may dissolve the high cost of MSCs (85). However, as the

content of MSC-CM may not be ensured, the effects including

therapeutic efficacy and adverse effects and its mechanism need

more studies to elucidate. Above all, the techniques to improve the

production of MSCs and thus decrease the cost will not only stimulate

more and more studies on MSCs in treating diseases but also allow

more patients around the world to use MSCs and their derivatives to

improve their refractory disease.
8 Conclusion

Chronic skin inflammatory diseases such as AD and psoriasis are

mainly caused by unregulated immune response, which not only can

induce the symptoms of skin lesion but also are accompanied by other

immune diseases. Evidence of therapeutic effects and mechanisms

found by current studies indicates that biological therapy based on

MSCs and their derivatives is a promising approach for the treatment

of skin inflammatory diseases. As a result, additional studies aiming at

uncovering the mechanisms of the therapeutic effects of MSCs in AD

and psoriasis may help define better therapeutic strategies for

these diseases.
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3. Ramıŕez-Marıń HA, Silverberg JI. Differences between pediatric and adult atopic
dermatitis. Pediatr Dermatol (2022) 39(3):345–53. doi: 10.1111/pde.14971

4. Hadi HA, Tarmizi AI, Khalid KA, Gajdács M, Aslam A, Jamshed S. The
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