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Heatstroke, which is associated with circulatory failure and multiple organ

dysfunction, is a heat stress-induced life-threatening condition characterized by

a raised core body temperature and central nervous system dysfunction. As global

warming continues to worsen, heatstroke is expected to become the leading

cause of death globally. Despite the severity of this condition, the detailed

mechanisms that underlie the pathogenesis of heatstroke still remain largely

unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent

activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a

tumor-associated and interferon (IFN)-inducible protein, but has recently been

reported to be a Z-nucleic acid sensor that regulates cell death and inflammation;

however, its biological function is not yet fully understood. In the present study, a

brief review of the main regulators is presented, in which the Z-nucleic acid sensor

ZBP1 was identified to be a significant factor in regulating the pathological

characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal

mechanism of heatstroke is revealed, in addition to a second function of ZBP1

other than as a nucleic acid sensor.
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1 Introduction

Heatstroke is generally regarded as one of the most dangerous illnesses, with rapid

progression after onset. The primary feature of heatstroke is a high core body temperature,

which is caused by strenuous exercise or exposure to hot environments, and the direct

cause is the imbalance of heat metabolism, manifested as the heat generation being greater

than the heat dissipation (1). Clinically, heatstroke is defined as extreme hyperthermia

(usually over 40.0°C), central nervous system (CNS) dysfunction, and multiple organ

dysfunction multiple organ dysfunction syndrome (MODS), which are caused by the

complex interaction between thermal-related cytotoxicity, inflammatory response, and

coagulation abnormalities (2–4). Depending on the trigger, heatstroke is clinically classified

as either classic heatstroke (CHS) or exertional heatstroke (EHS). The direct cause of both

types is high temperature; however, despite their clinical manifestations being similar, the

mechanisms of the two slightly differ. CHS is mainly caused by passive exposure to high

temperatures, while EHS is mainly caused by strenuous exercise. The former involves the

absorption of too much heat from the environment, while the latter involves the
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production of too much endogenous heat due to an accelerated

metabolism (3). As for the survival rate of heatstroke, the reported

mortality rate was as high as 23.3%, and the death rate from

heatstroke has been predicted to increase as a result of climate

change and the estimated whole world increase in the frequency and

intensity of heat waves (5–8). Although adequate lowering of the

body temperature and timely treatment can be administered,

heatstroke remains hazardous, and individuals who do survive

from heatstroke may suffer long-lasting neurological sequelae (7, 9).

Z-DNA-binding protein 1 (ZBP1) was originally identified as an

interferon (IFN)-inducible tumor-associated protein involved in the

host response to tumors (10). The amino terminus of ZBP1 contains

two nucleic acid-binding domains and two receptor-interacting

protein homotypic interaction motif (RHIM) domains (11, 12). The

nucleic acid-binding domains sense and bind viral nucleic acids and

are involved in the innate immune response. One the other hand, the

RHIM domains bind to homologous proteins and are involved in the

regulation of cell death and inflammation. The carboxy-terminal of

ZBP1 has been reported to be involved in signal transduction

(Figure 1) (12, 15, 16).

Numerous studies on heatstroke and ZBP1 have been published,

including several review articles. Despite such research, at present,

there are no reports on the relationship between heatstroke and ZBP1

(1–3, 7, 17–19). Studies on heatstroke over the past several decades

have suggested that heatstroke results from the complex interaction of

thermoregulatory failure with the amplification of acute-phase

response (3, 4, 7, 9, 20). In a recent study by us, a novel function of

ZBP1 in mediating heatstroke has been identified, which not only

supplemented the understanding of the pathogenesis of heatstroke

but also revealed a second function of ZBP1 other than as a nucleic

acid sensor (Figure 2) (21). In the present review, the latest research

advances on ZBP1 are summarized, as well as the pathogenesis and

pathophysiology of heatstroke.
2 The Role of ZBP1

2.1 ZBP1 in viruses

2.1.1 ZBP1 in influenza A virus
Influenza A virus (IAV) is a negative-sense RNA virus that is

cytotoxic to most cell types in which it replicates. The primary IAV
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host is aquatic birds, with virus replications occurring in the

gastrointestinal tract that commonly are asymptomatic. However,

mammalian IAV strains replicate in respiratory tissues and produce

symptoms that range from mild cases to severe and sometimes fatal

(13). Owing to the high mutation rates and the genetic recombination

thereof, IAV is commonly associated with epidemics (22). Several

pattern recognition receptors (PRRs), including Toll-like receptors

(TLRs), RIG-I-like receptors (RLRs), and nucleotide-binding domain

leucine-rich repeat-containing receptors (NLRs), have been found to

be involved in IAV infection (22). Virus recognition by these

receptors triggers an innate immune response to restrict virus

replication and clear the infection. The sensing of IAV initiates a

variety of intracellular signaling pathways.

In a previous study, ZBP1 was found to be able to sense

nucleoprotein (NP) and polymerase subunit PB1, which are

components of IAV, and to promote activation of the nucleotide-

binding domain leucine-rich repeat and pyrin domain-containing

receptor 3 (NLRP3) inflammasome and pro-inflammatory cytokine

production via receptor-interacting protein kinase 3 (RIPK3)

signaling. At the same time, ZBP1 is regulated by IFN regulatory

factor (IRF1) (23, 24). Aside from caspase-8, caspase-6 has also

been reported to promote ZBP1-mediated programmed cell death

(PCD) during IAV infection. The authors also found that

pyroptosis, which is another PCD, could mediate cell death

during IAV infection (25). In addition, regarding selectively

deficient apoptosis in an IAV infection mouse model, necroptosis

could completely compensate for the role of apoptosis (26). In

further research, ZBP1 was also discovered to be able to sense IAV

genomic RNA, bind to RIPK3, and trigger both the necroptosis and

apoptosis of PCD to clear away infected cells and accordingly

protect the host (27). In addition, a new pathogen-associated

molecular pattern, Z-RNA, generated from replicating IAV, could

activate ZBP1 via the Za2 domain thereof in infected cells (28, 29).

Despite these findings on the mechanisms promoting ZBP1

activation to induce PCD during IAV infection, further studies

have confirmed the involvement of viral sensing of the IAV viral

ribonucleoprotein (vrnP) complexes and sensing of the IAV RNA

by retinoic acid-inducible gene I (RIG-I) , which then

triggered ZBP1-related cell death (30). Moreover, IAV can also

induce the ubiquitination of ZBP1, and tripartite motif 34

(TRIM34) has been notably reported to be involved in regulating

IAV-induced PCD by mediating the K63-linked polyubiquitination
FIGURE 1

Schematic representation of full-length ZBP1. ZBP1 encodes two N-terminal Z-DNA-binding domains, which are reported to bind to Z-DNA, B-DNA, and RNA.
ZBP1 also has two receptor-interacting protein homotypic interaction motif (RHIM) domains in the central part that facilitate the interaction with other RHIM
domain-containing proteins. These RHIM domains are important in mediating ZBP1-dependent cell death and inflammatory responses (13, 14).
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of ZBP1 (24, 30, 31). Thus, to a certain extent, these findings

together explain the activation of ZBP1 during infection with IAV.

2.1.2 ZBP1 in cytomegalovirus
Cytomegaloviruses (CMVs), which belong to the herpesvirus

family, are enveloped double-stranded DNA (dsDNA) viruses with

a genome size of approximately 235 kbp. CMVs are slowly replicated

in several specific cell types (32). The CMV genomes include over 200

independent genes with the potential to encode antigenic proteins.

They also contain a common core of genes conserved in all

herpesviruses, which is in the central 100 kbp. These gene families

encode most of the glycoproteins that are required for virus

replication (32).

As early as 2009, protein 45 of themouse CMV (M45) was identified

as a RHIM-containing protein that could bind to ZBP1 via the

functional RHIMs thereof when overexpressed. At the same time,

M45 can inhibit the phosphorylation of RIP3 and has the potential to

disrupt ZBP1–RIP interactions, suggesting that it is significant in the

suppression of cell death during mouse CMV (MCMV) infection (33).

Notably, M45 was found to promote self-assembly into amyloid fibrils

and interact with the RHIM-containing domain so as to form

heteromeric amyloid fibrils and mediate necroptosis (34). Further

studies verified that the MCMV-encoded viral inhibitor of RIP
Frontiers in Immunology 03
activation (vIRA) serves a similar function to M45, i.e., the targeting

of ZBP1–RIP3 complexes, as well as the suppression of PCD induced by

these complexes (35, 36). Recently, viral immediate-early protein 3

(IE3)-dependent transcription has been found to be indispensable for

ZBP1-mediated cell death, and both the Za2 and RHIM domains are

required for MCMV-mediated necroptosis (37). Human

cytomegalovirus (HCMV), much like MCMV, can also interact with

ZBP1, which triggers strong antiviral immune responses (14, 38, 39).

2.1.3 ZBP1 in herpes simplex virus 1
Herpe s s imp l ex v i ru s 1 (HSV-1 ) be l ong s to the

alphaherpesvirinae subfamily. It is a dsDNA virus with a genome

size of approximately 152 kbp. To date, over 80 genes encoded by

HSV-1 have been confirmed (40). HSV-1 primarily infects epithelial

cells, manifests vesicular eruptions (mainly in the oral or genital

mucosa), and has lifelong latency in neurons (41, 42). Primary

infection of HSV-1 generally occurs at a young age, with the great

majority of infection causing mild clinical symptoms in

immunocompetent people, in addition to the fairly high mortality

rate in neonates (43). Approximately 3.7 billion individuals aged

under 50 years are infected with HSV-1 worldwide (44).

In an earlier study in 2012, ZBP1 was found not necessary for

HSV-1 DNA sensing in HepG2 hepatocellular carcinoma cells.
FIGURE 2

ZBP1 senses RNA virus infection, DNA virus infection, and heat stress, following which the necrotic complex will be assembled to induce apoptosis,
pyroptosis, and necroptosis (14, 16).
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However, ectopic ZBP1 expression repressing the HSV-1 viral

replication depends on the Zb and D3 domains rather than the Za
domain (45). In further research, HSV-1 ICP6 was identified as a

RHIM-containing viral inhibitor analogous to vIRA/M45, which can

target RIPK3 and function as a ZBP1–RIPK3 signaling inhibitor,

thereby inducing death in murine cells and survival in human cells

(46). ICP6 was also confirmed to promote tumor necrosis factor

(TNF) receptor 1-induced necrosome assembly (47). Notably, in

astrocytes, HSV-1 can also induce necroptosis through ZBP1

signaling (48). In a study on HSV-2-infected primary vaginal

epithelial cells, it was found that ZBP1 was also required to

recognize HSV-2 (49). In a recent study, it has been revealed that

ZBP1 can interact with AIM2 and pyrin inflammasome components

and mediate multiple pathways of PCD, including apoptosis,

necroptosis, and pyroptosis (50).

2.1.4 ZBP1 in other viruses
In addition to IAV, CMV, and HSV, a variety of diverse viruses,

including vaccinia virus (VV) (51–55), Zika virus (ZIKV) (56–58),

West Nile virus (WNV) (57), severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (59–61), Japanese encephalitis virus

(JEV) (62), and human immunodeficiency virus type 1 (HIV-1) (63),

have been demonstrated to induce or repress ZBP1-mediated PCD

during infection. Together, these studies clearly illustrate that ZBP1-

mediated PCD acts as a significant defense mechanism against

viral infection.

2.1.5 ZBP1 in other pathogenic microorganisms
ZBP1 is not only involved in virus-mediated PCD, but it has also

been reported in other pathogenic microorganisms such as bacteria

(64–67), fungi (50, 68), and parasites (69, 70). Similar to its function

in viruses, ZBP1 promotes the induced inflammasome activation and

PCD of these microorganisms, but the mechanisms of the natural

ligands or signals that activate the inflammasome and PCD

remain unclear.
2.2 ZBP1 in tumors

ZBP1 was initially identified in the tumor stroma and tumor cells

as an IFN-inducible protein that senses Z-form nucleic acids, but was

later confirmed in the cytosolic sensing of both DNA and RNA (10,

11, 28). Recently, ZBP1 has been found to be involved in the

occurrence and development of various tumors, including breast

cancer (71–74), melanoma (75–77), colorectal cancer (76, 77), non-

small cell lung cancer (76), multiple myeloma (78), ovarian cancer

(79), urothelial carcinoma (80), fibrosarcoma (71), and kidney renal

clear cell carcinoma (81). A common feature of these studies is the

finding that ZBP1 mediates PCD in the aforementioned tumors.

However, several of these aforementioned studies were performed in

cell lines and there was a lack of animal experiments. Moreover, the

specific mechanism of ZBP1-mediated PCD in tumor cells remains

unclear. As such, further studies including animal experiments are

still required.
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2.3 ZBP1 in adenosine deaminase
acting on RNA 1

More recently, studies have revealed that RNA-specific adenosine

deaminase 1 (ADAR1) is involved in ZBP1-mediated signaling.

ADAR1 belongs to the adenosine deaminase acting on RNA

(ADAR) family. ADARs were initially found to have dsRNA

unfolding activities (82), but were later confirmed to be adenosine-

to-inosine RNA editing enzymes (83). ADAR1 has a catalytic

deaminase domain and three dsRNA-binding domains, with two

different functional isoforms: ADAR1p110 and ADAR1p150. The

p110 isoform contains one Z-DNA-binding domain, Zb, while the

p150 isoform not only has the Zb but also the Za domain (84).

ADAR1 also has editing-dependent functions, can regulate innate

immunity, and alters miRNA maturation (85).

A breakthrough was recently made with regard to the research on

ADAR1 and ZBP1. In a previous study using murine colorectal cancer

and melanoma models, ADAR1 was found to suppress ZBP1-

mediated inflammasome activation and PCD, including apoptosis,

necroptosis, and pyroptosis (77). Most recently, several Nature

articles have reported that ADAR1 could inhibit Z-RNA

accumulation and ZBP1-dependent cell death by preventing the

accumulation of mRNA transcripts. In parallel, further studies have

identified ADAR1 as a negative regulator of sterile ZBP1 activation by

means of ADAR1 mutations (75, 86). Through ADAR1 mutations,

ZBP1 could also contribute to type I interferonopathies (87). With

further in-depth research, the Za domain of ADAR1 was confirmed

to interact with ZBP1 and inhibit its signaling (88).
2.4 ZBP1 in heatstroke

The molecular mechanism of heatstroke pathogenesis remains

unclear. The focus of previous research has been on the nucleic acid

receptor function of ZBP1 and its mediation of PCD. In our recent

studies, ZBP1 has been found to cause heatstroke pathology by

activating the RIPK3-induced activation of mixed lineage kinase

domain-like pseudokinase (MLKL)-dependent necroptosis and

caspase-8-dependent cell death both in vivo in genetic mouse

models and in vitro in cultured cells (21). A further study found

that heat stress increased the expression of ZBP1 through HSF1 and

promoted the aggregation of ZBP1 fusion proteins, which was

followed by the recruitment of RIPK3, phosphorylation of MLKL,

and the cleavage of caspase-8 (21).
3 Pathogenesis and pathophysiology of
heatstroke

In the early phase of heatstroke, the organism is in a status of

compensation, in which a balance is maintained between heat

dissipation and heat generation. Upon entering the late stage of

heatstroke, the organism produces more heat than it dissipates,

with the cardiac output being reduced and is becoming inadequate
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to deal with the high thermoregulatory demands, ultimately leading

to a status of decompensation. The heatstroke injury to the organism

mainly occurs in the decompensation stage, which results in thermal-

related cytotoxicity, inflammatory responses, and coagulation

responses, eventually causing MODS, disseminated intravascular

coagulation (DIC), and even death (Figure 3) (1–3, 89, 90). Such

pathological features of heatstroke were found to be mediated by

ZBP1 through the triggering of the RIPK3-induced activation of

MLKL-dependent necroptosis and caspase-8-dependent cell death,

which was identified in vivo in genetic mouse models and in vitro in

cultured cells (21).
3.1 Hypoxia and oxidative stress

Upon entering the non-compensable phase, the cardiac output is

reduced and becomes inadequate to deal with the high

thermoregulatory demands; subsequently, hypoxia occurs. Hypoxia

further induces the generation of reactive oxygen species (ROS) (91–

101). Several possible mechanisms cause the production of ROS

during heatstroke. Li et al. (91) found that heat stress can promote

the activation of the p38–MK2 signaling pathway, which promotes

apoptosis by regulating the accumulation of ROS. Heat stress can also

stimulate the production of ROS by inducing mitochondrial fission or

inhibiting the activity of mitochondrial complex I (92, 93). Kikusato

and Toyomizu (94) showed that the change in the mitochondrial

membrane potential may be a significant factor in the overproduction

of ROS under heat stress stimulation. Wang et al. (101) reported that

heat stress can induce the production of ROS via the upregulation of

Ang II and the receptor AT1 thereof.

The generated ROS can oxidatively damage lipids, proteins, and

DNA, among others. The mitochondria represent the main
Frontiers in Immunology 05
production site of ROS and also its main active site, with damage to

the mitochondria being able to induce apoptosis (91–95, 97, 102, 103).

Under heat stress, the generated ROS can induce necroptosis and

pyroptosis (103–105). Studies have revealed that ROS can induce

apoptosis by promoting the release of apoptotic factors (105). Several

studies have also demonstrated that ROS are pivotal upstream factors

in the progress of apoptosis induced by heat stress (103, 106, 107).

They can promote heat stress-induced apoptosis via ERK and Bcl-2

signaling (103). The accumulation of ROS, in particular O2
−,

promotes the elevation of Ca2+ in the cytoplasm via upregulating

the inositol triphosphate receptor (IP3R), and the increased Ca2+ then

induces apoptosis (108). Notably, similar results were found in

another study, wherein heat stress induced apoptosis through the

ROS-, Ca2+-, and p53-dependent translocation of Bax (106).

Apoptosis can also be prevented by scavenging ROS (107, 109). In

a recent study by us, heat stress has been found to be able to induce

necroptosis, apoptosis, and pyroptosis via the ZBP1–RIPK3 signaling

pathway, genetic deletion, or the targeted inhibition of ZBP1, RIPK3,

or both caspase-8 and MLKL, which can prevent the multiple forms

of cell death and improve survival. Although ROS was not directly

detected, heat stress induced the generation of intravascular

thrombin, and the occlusion of the microcirculation was attenuated

by ZBP1 and RIPK3 deficiency (21). Therefore, a reasonable

assumption could be made that blocking this pathway could reduce

the production of ROS, then mitigating cell death. However, these

findings require further validation.
3.2 Inflammatory response

Hyperthermia syndrome is an ongoing exacerbation process that

consequently leads not only to a direct heat-related cytotoxicity effect
frontiersin.org
FIGURE 3

Possible pathophysiological pathway leading to heatstroke. The sequence of events leading to heatstroke involves a transition from a compensable
thermoregulatory state to the non-compensable condition. Heat stress initiates a thermoregulatory response to maintain the balance of heat production
and heat dissipation. When the arterial blood pressure begins to decrease substantially, the core temperature begins to increase rapidly and becomes
non-compensable. This thermoregulatory failure aggravates pathophysiological processes, including the inflammatory response and multi-organ
dysfunction, and is ultimately expressed as heatstroke (3).
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but also to an inflammatory response. The heat stress-induced

inflammatory response is considerably similar to that in systemic

inflammatory response syndrome (SIRS) (2, 3). As is well known,

SIRS can lead to rapid deterioration of the clinical status, resulting in

multi-organ dysfunction, DIC, and death (110). Hence, akin to SIRS,

heatstroke is considered a heat-related SIRS (2, 3). In a clinical study

including patients with heatstroke, approximately 84% at the same

time met the diagnostic criteria for SIRS (111). Existing studies have

suggested that cytokines are involved in the heatstroke responses

from patients with heatstroke to experimental animal models. Both

clinical and experimental pieces of evidence have revealed multiple

cytokines elevated in plasma and tissues, including both pro-

inflammatory [such as interleukin-1 beta (IL-1b) and tumor

necrosis factor alpha (TNF-a)] and anti-inflammatory [such as

interleukin-6 (IL-6) and interleukin-10 (IL-10)] cytokines (3, 112).

As such, multi-organ dysfunction is considered to be caused by heat-

related cytotoxicity combined with the subsequent SIRS (2).

Cytokines are immune modulators that are released by a variety of

cells, including immune and non-immune cells, e.g., macrophages,

endothelial cells, T cells, B cells, andmicroglia, which act as intercellular

chemical messengers (113). Elevated levels of cytokines can be detected

in the plasma of patients and experimental animal models. These

elevated cytokines include both pro-inflammatory [e.g., IL-1b, TNF-a,
and interferon gamma (IFN-g)] and anti-inflammatory (e.g., IL-6 and

IL-10) cytokines (2, 3, 7, 112, 114). The plasma levels of cytokines differ

during the progress of heatstroke, and loss of the balance between pro-

and anti-inflammatory cytokines may result in inflammation-

associated injury and immunosuppression. Previous studies in

humans, rats, and mice have confirmed that heatstroke promotes

systemic and local generation of pro-inflammatory cytokines (i.e., IL-

1b, IL-6, IFN-g, and TNF-a) (115–118). The levels of TNF receptors

and IL-6 have been reported to be correlated with the severity of

heatstroke (119, 120).

Studies conducted on the regulation of the inflammatory response

of heatstroke in rat models revealed that neutralizing the

inflammatory mediators with recombinant activated protein C,

cytokine receptor antagonist, or corticosteroids reduced tissue

injury, resulting to an improved survival (121, 122). However,

increased mortality was observed in studies involving baboons that

received corticosteroids and involving mice, in which the expression

levels of the TNF-a receptor and IL-6 were deficient (114, 123).

Consistent with prior research, a previous study by us that used a

mouse model also showed elevated serum levels of pro-inflammatory

cytokines (i.e., IL-1b, IL-6, TNF-a, and IL-1a) and the genetic

deletion of RIPK3 or ZBP1 in mice, which significantly reduced the

serum levels of the aforementioned pro-inflammatory cytokines (21).

The described evidence supports the inflammatory response possibly

being either beneficial or detrimental, depending on the phase and

magnitude of the induced response.
3.3 Coagulopathy

Coagulation disorders are prominent features in patients with

heatstroke and in animal models. Heatstroke has been identified to be
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associated with the activation of coagulation, anti-coagulation, and

fibrinolytic systems (124–132). There are several different

components of the coagulation, anti-coagulation, and fibrinolytic

pathways that have been identified to be altered during heatstroke

both in human and animal models, such as increased plasminogen

activator inhibitor 1 (PAI-1), increased thrombin/anti-thrombin

(TAT) complex, thrombocytopenia, decreased fibrinogen (Fib)

levels, increased D-dimer levels, delayed prothrombin time (PT),

and delayed activated partial thromboplastin time (APTT) (21, 133,

134). The most serious coagulopathy complicated by heatstroke is DIC,

and the mortality rate of patients with DIC is significantly increased.

Pathological manifestations such as congestion, hemorrhage,

endothelial cell injury, extensive microthrombosis, and necrosis were

observed in multiple organs in heatstroke rats (135). In our study

recently published in Science, thrombin activation, fibrin deposition,

and platelet adhesion were directly observed in a mouse model of heat

stress using spinning disk confocal intravital microscopy (SD-IVM)

(21). Furthermore, genetic deletion of ZBP1 or RIPK3 obviously

decreased the thrombin activation, fibrin deposition, and platelet

adhesion in the liver microvasculature of heat-stressed mice, while

the plasma levels of the anticoagulant components PAI-1 and TAT

complex were significantly decreased (21).

During the pathogenesis of heatstroke, various factors such as

high temperature, ischemia, hypoxia, and inflammatory responses

can lead to disorders of the coagulation system and even induce DIC.

Clinically, DIC is characterized by extensive microthrombosis and

bleeding due to damage to the microvascular system, activation of

coagulation, excessive consumption of coagulation factors, and

secondary hyperfibrinolysis (2). It is a fatal complication of

heatstroke that can initiate during the recovery period and is

thought to be a significant mechanism of fatality (3, 7, 129). The

endothelium regulates vascular permeability and leukocyte

movement, and it maintains the balance between procoagulants,

anticoagulants, and fibrinolysis. Previous in vitro studies have

revealed that heat stress induces a hypercoagulable state, increases

vascular permeability, and promotes the expression of adhesion

molecules (3, 7, 129). In vitro studies have also suggested that heat

directly activates platelets, promotes platelet aggregation, and causes

hyper-aggregation (129, 136, 137). Hyperthermia also results in the

increased concentrations of platelet-derived microparticles (PMPs)

and endothelial-derived microparticles (EMPs) in the circulation

(138). EMPs have been reported to be involved in promoting

endothelial oxidative stress, diminishing nitric oxide bioavailability,

enhancing cell adhesion molecule expression, and impairing the

endothelial vasomotor function (138, 139). PMPs, which are

released as a result of platelet activation, cause endothelial injury

and contribute to a hypercoagulable state (138–140). Circulating

levels of several platelet aggregation-promoting components [such

as von Willebrand factor (vWF) and thrombomodulin (TM)] and

intercellular adhesion molecules are elevated, which indicates an

interaction between endothelial cells and leukocytes in vivo

(128, 141).

Tissue factor (TF) is the initiator of the coagulation process and is

widely expressed in various tissues and cells. It initiates the

coagulation cascade via the extrinsic coagulation pathway (142).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1091766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1091766
Bouchama et al. reported that, in a baboon model of heatstroke,

inhibiting TF with recombinant anticoagulant protein significantly

attenuated the coagulation activation. However, neutralizing TF had

no apparent effect on fibrinolysis and inflammation. These findings

suggest that TF is the main trigger of coagulopathy under such

conditions, but it is dispensable for tissue damage and organ

dysfunction (143). At present, the specific role of TF on coagulation

during heat stress remains unclear, and further research is

still needed.
3.4 Tissue injury responses

Heat stress induces extensive tissue damage, including damage to

the liver, lung, kidney, spleen, gastrointestinal tract, brain, and skeletal

muscles. Although these injuries are commonly seen in human and

animal studies (3, 4, 7, 21, 115), most of the tissue damage and organ

dysfunction are attenuated after the genetic deletion of ZBP1 or

Ripk3, as shown in our previous study (21). A typical symptom of

heatstroke is CNS dysfunction, which manifests as varying degrees of

mental status changes (8, 112, 144, 145). An elevated brain

temperature is caused by the combination of an increased cerebral

metabolic rate and a decreased cerebral blood flow (112). A decrease

in cerebral blood flow causes cerebral ischemia, hypoxia, cerebral

edema, the generation of ROS, activation of the microglia, disruption

of the blood–brain barrier, an increase in the permeability of the

blood–brain barrier, and further promotion of the leakage of vascular

contents into the brain. The aforementioned series of responses

promote the occurrence of neuroinflammation and neuronal

damage. Neuroinflammation and neuronal damage may directly

cause cognitive dysfunction (74, 115, 116, 118, 119, 146, 147). As

reported in previous studies, 100% of patients with heatstroke

presented acute neurological symptoms, with a total of 71.4% of the

impaired patients developing long-term cerebellar dysfunction and

approximately 34.4% of the survivors being left with long-lasting

neurological damage, which may be associated with irreversible brain

damage (8). However, the role of the brain in the progression of

heatstroke remains unknown. Further research on the pathogenesis of

encephalopathy is still needed.

Extensive peripheral tissue damage has been found in both patients

and animals with heatstroke, and the commonly used index to assess the

damage to peripheral tissues and organs is the alteration in the serum

enzyme levels. For instance, elevation of the levels of creatine kinase,

creatine kinase-MB, and alanine aminotransferase can indicate damage

to different organs (3, 4). Histopathology has also fully confirmed the

morphological and other pathological changes in patients and animals

with heatstroke (4, 148–150). When heat stress persists, the blood flow is

redistributed, which is manifested as a decreased visceral blood flow and

an increased blood flow to the skin and vital organs, so as to meet the

needs of heat dissipation. These factors lead to intestinal ischemia, which

induces the generation of intestinal free radicals and intestinal mucosal

edema and increases intestinal permeability, all of which promote

intestinal disruption and lead to the release of a large number of

intestinal toxins into the blood circulation (13, 109, 151–158). Renal

failure is a common complication of heatstroke that is mainly manifested
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as tubular necrotizing acute renal failure and can be caused by massive

protein deposition in the renal tubular epithelial cells after hemolysis and

rhabdomyolysis (13, 21, 158–166). Liver dysfunction in patients with

heatstroke and in animal models is considerably common, with the liver

injury mainly occurring in the recovery period of heatstroke (167–174).

Under heat stress, the liver can actively release various inflammatory

mediators such as high-mobility group box-1 (HMGB1), which

aggravates liver damage, suggesting that this factor may be a

consequence of the inflammatory response that ensues during recovery

rather than an acute response to heat stress (21, 97, 104, 112, 175). Liver

injury under heat stress has also been considered to be associated with a

large proportion of hepatocyte cell death, functional disorders of Kupffer

cells, and abnormal expression of heat-related proteins, among other

factors (21, 174). During the heatstroke process, the lungs are the most

vulnerable and injured organs owing to their unique structure. Patients

mainly present with acute lung injury (ALI), accompanied by pulmonary

edema, pulmonary hemorrhage, pleural effusion, and exudation of

inflammatory cells and cytokines (150, 176, 177). ALI was also found

in mouse and rat models of heatstroke (21, 99, 158, 177–183).

Rhabdomyolysis is more common in patients with EHS, and several

possible mechanisms cause such phenomenon (3, 166, 184–193). One

potential mechanism is the elevated muscle tension caused by strenuous

activity, which increases the chance of tissue injury (184). Direct thermal

cytotoxicity of hyperthermia may be another cause. Alterations of the

calcium channels inmuscle cell membranes have also been reported to be

involved in rhabdomyolysis (7, 194–196). In parallel, more detailed

studies revealed that heat stress-induced rhabdomyolysis could be

partly attributed to the Ca2+-dependent increases in the levels of

reactive oxygen and nitrogen, which exacerbated muscle membrane

injury (7, 197). Another potential mechanism of rhabdomyolysis is

dehydration, which increases blood redistribution and reduces the

skeletal muscle blood flow. Such changes make the skeletal muscles

ischemic, cause hypoxia, and increase Ca2+, which in turn increases the

activation of the proteolytic enzymes in intramuscular Ca2+ that

contribute to skeletal muscle breakdown, eventually causing

rhabdomyolysis (198, 199). Ferroptosis has also been reported to

mediate rhabdomyolysis (193).
3.5 Gastrointestinal integrity and
flora imbalance

During heat stress, the body’s blood flow is redistributed in order

to maintain the balance between heat generation and heat dissipation.

This redistribution results in a decrease in splanchnic blood flow,

causing gastrointestinal ischemia and hypoxia, and the generation of

ROS and nitrogen species. Furthermore, the damage to the intestinal

mucosa and cells is in turn aggravated and the permeability of the

intestinal mucosal barrier increased, thereby allowing toxins and

pathogens to leak into circulation, which further aggravates

multiple organ injury (200). These factors also result in the

gastrointestinal flora imbalance, including the decreased diversity

and abundance of flora, which is mainly manifested as a decrease in

beneficial bacteria and an increase in pathogenic bacteria (201, 202).

In turn, the increase in pathogenic bacteria promotes intestinal
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inflammation and disrupts the intestinal barrier, resulting in a vicious

cycle (203). The results of our previous study using a heatstroke

mouse model also revealed the loss of intestinal integrity and

inflammatory cell infiltration (21).
4 Conclusions

In the present review, the most recent advances with regard to

ZBP1 and the pathogenesis of heatstroke were summarized. Recent

research has indicated that the clinical characteristics of heatstroke

result from the complex interaction between thermal-related

cytotoxicity, inflammatory response, coagulopathy, rhabdomyolysis,

and gastrointestinal disruption. In a most recent study by our group,

in addition to demonstrating the features of heatstroke in a mouse

model, it was also confirmed that genetic deletion or targeted

inhibition of the ZBP1 pathway, this pathway being a significant

factor in heatstroke, was able to significantly improve organ function,

reduce multiple organ injury, inhibit DIC, and, most notably, improve

survival (Figure 4). Another function of ZBP1, in addition to being a

nucleic acid sensor, was also discovered. These findings are of

considerable significance in revealing the pathogenic mechanism of

heatstroke. However, the present understanding of the pathogenesis

and pathophysiology of heatstroke is still incomplete. Additional

research is still needed to fully elucidate the pathogenic mechanism

of heatstroke so as to provide critical direction and basis for its clinical
Frontiers in Immunology 08
diagnosis and treatment, thereby reducing morbidity and improving

patient survival.
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FIGURE 4

Schematic of the mechanism of heat stress-induced programmed cell death, disseminated intravascular coagulation (DIC), and multiple organ
dysfunction syndrome (MODS) (14, 16).
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Glossary

ZBP1 Z-DNA-binding protein 1

DAI DNA-dependent activator of IFN-regulatory factors

CNS central nervous system

MODS multiple organ dysfunction syndrome

CHS classic heatstroke

EHS exertional heatstroke

RHIM receptor-interacting protein homotypic interaction motif

IAV influenza A virus

PRRs pattern recognition receptors

TLRs Toll-like receptors

RLRs RIG-I-like receptors

NLRs nucleotidebinding domain leucine-rich repeat-containing receptors

NP nucleoprotein

NLRP3 nucleotide-binding domain leucine-rich repeat and pyrin domain-
containing receptor 3

RIPK3 receptor-interacting protein kinase 3

IRF1 IFN regulatory factor

PCD programmed cell death

RIG-I retinoic acid-inducible gene I

TRIM34 tripartite motif 34

CMV cytomegalovirus

M45 protein 45 of the mouse CMV

MCMV mouse CMV

vIRA viral inhibitor of RIP activation

IE3 immediate-early protein 3

HCMV human cytomegalovirus;

dsDNA double-stranded DNA

VV vaccinia virus

ZIKV Zika virus

WNV West Nile virus

SARS-
CoV-2

severe acute respiratory syndrome coronavirus 2

JEV Japanese encephalitis virus

HIV-1 human immunodeficiency virus type 1

HSV1 herpes simplex virus 1

AIM2 absent in melanoma 2

ADAR1 adenosine deaminase acting on RNA

DIC disseminated intravascular coagulation

ROS reactive oxygen species

IP3R inositol triphosphate receptor
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SIRS systemic inflammatory response syndrome

IL-1b interleukin-1 beta

TNF-a tumor necrosis factor alpha

IL-6 interleukin-6

IL-10 interleukin-10

IFN-g interferon gamma

PAI-1 plasminogen activator inhibitor 1

TAT thrombin–anti-thrombin

Fib fibrinogen

PT prothrombin time

APTT activated partial thromboplast

SD-IVM spinning disk confocal intravital microscopy

PMPs platelet-derived microparticles

EMPs endothelial-derived microparticles

vWF von Willebrand factor

TM thrombomodulin

TF tissue factor

ALI acute lung injury

GI gastrointestinal

HMGB1 high-mobility group box-1
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