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Single-cell transcriptomic
analysis in two patients with rare
systemic autoinflammatory
diseases treated with
anti-TNF therapy

Yichao Hua*, Na Wu, Junke Miao and Min Shen*

Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and
Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic
Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of
Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
Systemic autoinflammatory diseases (SAIDs) are a group of rare diseases

characterized by recurrent or continuous inflammation, typically accompanied

by genetic variants. Good responses to anti-TNF therapy were observed in SAIDs

patients. However, the mechanisms underlying the disease flare and the

response to TNF blocking therapy have not been fully elucidated. Here, single-

cell RNA sequencing technology was used to describe the transcriptomic profile

of PBMCs and PMNs in two SAID patients both before and after anti-TNF

treatment. Interferon responses were involved in the disease flare. After anti-

TNF therapy, clinical symptoms were alleviated while TNF and IL-1 were

unexpectedly increased, indicating that these inflammatory cytokines are not

positively correlated with disease activity. Trajectory analysis showed that

inhibition of macrophage differentiation, rather than reduction of the

inflammatory cytokines, as the potential mechanism of anti-TNF treatment

response in SAIDs.

KEYWORDS

systemic autoinflammatory disease, single-cell RNA sequencing, anti-TNF therapy,
Etanercept, cryopyrin-associated periodic syndromes (CAPS), TNF receptor-
associated periodic fever syndrome (TRAPS)
1 Introduction

Systemic autoinflammatory diseases (SAIDs) are a group of rare diseases caused by

defects or dysregulation of the innate immune system, characterized by recurrent or

continuous inflammation (e.g. fever, serosal, synovial, or cutaneous inflammation) and by

the lack of a primary pathogenic role of the adaptive immune system (autoreactive T-cells

or autoantibodies production) (1–4). This group of diseases includes more than 40
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monogenic, as well as several polygenic diseases (5, 6). Classic

monogenic SAIDs include familial Mediterranean fever (FMF,

caused by MEFV gene variants), TNF receptor-associated periodic

fever syndrome (TRAPS, by autosomal dominant variants in the

TNFRSF1A gene), cryopyrin-associated periodic syndromes

(CAPS)/NLRP3-associated autoinflammatory disease (NLRP3-

AID, by gain-of-function variants in the NLRP3 gene), and

hyper-IgD syndrome (HIDS)/mevalonate kinase deficiency

(MKD, by autosomal recessive variants in the MVK gene) (6).

Patients with high disease activity can present with recurrent attacks

of fever and other inflammatory symptoms, and a successful

treatment can reduce disease activity, as manifested by reduced

frequency or severity of disease flare or no flare. Regarding to

pathogenesis, these classic SAIDs are classified as IL-1 mediated

SAIDs, as the variants can directly or indirectly promote the

assembly of inflammasomes that proteolytically process the

inactive pro-IL-1b into active IL-1b. This can occur by increased

intracellular sensor/pattern-recognition receptors (PRR) function

(e.g. CAPS, FMF), generation of intracellular stress (e.g. TRAPS,

HIDS), or loss of a negative regulator (e.g. Deficiency of IL-1

receptor antagonist, DIRA) (6). A lot of studies focus on the

pathogenic role of the inflammasome – IL-1 axis in these SAIDs,

and many patients have good responses to IL-1-blocking agents

(e.g. anakinra, canakinumab, and rilonacept), although some

patients with FMF, TRAPS or HIDS are less responsive to IL-1

inhibition (7, 8; 9–15). Little is known about other pathways in the

pathogenesis of SAIDs, and the treatment response to other

biological agents, e.g. TNF or IL-6 blocking agents. Some studies

have reported increased NFkB activation and defective autophagy

as potential pathogenic mechanisms (16–18). In our previous study,

we observed a good response to TNF inhibitors in CAPS patients

(19). Whether there are other pathways involved in the

pathogenesis of SAIDs, and what the underlying mechanisms are

in response to TNF blocking therapy, remain to be elucidated.

Single-cell RNA sequencing (scRNAseq) is a powerful

technique to detect transcriptomics of single cells, which can

further reveal cellular heterogeneity, gene regulatory networks,

cell-cell interactions, and differentiation trajectories in tissues.

This technique has been widely used in oncology, microbiology,

neurology, and immunology (20). Yet, it has never been applied to

SAIDs research. In this study, we are the first to apply this technique

to classic SAIDs, aiming to identify the potential mechanisms of

disease flare other than the IL-1 pathway and the response to anti-

TNF therapy, and to provide the first transcriptomic resource of

SAIDs spectrum diseases.
2 Results

2.1 Single cell profiling of PBMCs and
PMNs in SAID patients

This study enrolled 2 patients with classic SAIDs. One patient

was a 20-year-old Chinese woman diagnosed as CAPS, with NLRP3
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D303G variation, and another patient was a 16-year-old Chinese

man diagnosed as TRAPS, with TNFRSF1A V202D variation.

Detailed information can be found in Supplemental Data S1. Both

patients had high disease activity during the first visit (pre-

treatment). The CAPS patient presented urticarial rash, arthritis

(interphalangeal joint and knees), lymphadenopathy, hearing loss,

and vision loss, while the TRAPS patient was in the intermittent

phase of disease episodes and did not show significant symptoms.

Both patients received Etanercept treatment, and during the 3-

month follow-up visit (on-treatment), both patients reported

significant remission of clinical symptoms and no disease relapse.

Peripheral blood mononuclear cel ls (PBMCs) and

polymorphonuclear neutrophils (PMNs) were extracted from pre-

treatment (CAPS_NT, TRAPS_NT) and on-treatment

(CAPS_TNFi, TRAPS_TNFi) blood samples of both patients, as

well as the blood of one healthy donor (HD). Then the cells were

subjected to 3’-scRNAseq (10X Genomics) to study the

transcriptomic profiles (Figure 1A). As the average detected genes

(Ngene) in different cell types varied dramatically (e.g. neutrophils

and platelets had very low Ngene, while monocytes and plasma cells

had higher Ngene, Figure 1F), we used different quality filtering

criteria for each cluster (see Materials and methods) and acquired

30,377 cells for the downstream analysis. To identify the common

clusters of all 5 samples, Harmony algorithm (21) was used to

remove the batch effect, and identified 17 clusters by unsupervised

clustering (Figures 1B, C), including two B-cell clusters (memory,

naïve), plasma cells, five T-cell clusters (memory CD4, naïve CD4,

memory CD8, naïve CD8, effector CD8), two NK-cell subtypes

(CD16+ and CD16-), two monocyte subtypes (CD14+, CD16+),

DCs, pDCs, neutrophils, platelets, and progenitors (Figure 1B).

Representative markers of each cell type were shown in Figure 1D.

T-cells, CD14 monocytes, CD16 NK-cells, and neutrophils were the

more frequent cell types in the blood (Figure 1E).
2.2 Gene expression profile alters
significantly after anti-TNF therapy in
CAPS patient

After identifying common clusters, we investigated the

differences among these samples in each cell type. Unaligned

uniform manifold approximation and projection (UMAP) was

plotted based on PCA without Harmony integration and it

intuitively showed marked changes in the gene expression profile

of CAPS after treatment, compared to other samples (Figure 2A).

This may suggest that the transcriptome is more associated with

disease attack rather than disease activity, as both patients had high

activity but only the CAPS patient was at disease flare. To make the

comparison more quantitative, we calculated the Pearson

Correlation of average gene expression of each cluster between

groups (Figure 2B). Note that low Ngene and cell counts can usually

generate lower Pearson Correlation value due to a higher variance,

like neutrophils, platelets, DCs/pDCs and CD16- NK cells. In

general, CAPS_TNFi shows a lower correlation value compared
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to other samples, which confirmed our observation in Figure 2A. B

cells, effector and memory CD8 T cells, NK cells and monocytes had

relatively higher variance than naïve or CD4 T cells, indicating that

these can be the main cell types that respond to anti-TNF therapy in

the CAPS patient.

To further look into which pathways contribute to the major

changes in CAPS_TNFi, Gene Set Enrichment Analysis (GSEA) was

performed based on Gene Ontology (GO) database, and identified

common top 10 up- and down-regulated pathways in some

representative cell types (Figure 2C). Surprisingly, many up-
Frontiers in Immunology 03
regulated pathways after anti-TNF therapy in CAPS were related

to stress response and innate immune response-activating signal

transduction, including pattern recognition receptor (PRR)

signaling pathways like toll−like receptor (TLR) and NOD2

signaling pathways. Meanwhile, some metabolic pathways related

to aerobic respiration were down-regulated (Figure 2C). To confirm

this, SCENIC analysis (22) was performed which inferred the gene

regulatory network and predicted regulon (transcription factor, TF)

activities, and found that indeed many inflammatory-related TFs

are activated in CAPS_TNFi, including canonical NFkB pathway
B

C

D

E

F

A

FIGURE 1

Single Cell Profiling of PBMCs and PMNs in SAID Patients. (A) Study design, comparing transcriptomics of PBMCs and PMNs from pre-treatment
(CAPS_NT, TRAPS_NT) and Etanercept treated (CAPS_TNFi, TRAPS_TNFi) blood samples of both patients and one healthy donor (HD). (B, C) UMAP plot,
colored by 17 subtypes (B) identified by unsupervised clustering or 5 sample origins (C). Batch effect removed by Harmony algorithm. (D) Expression of
representative markers of each cell type (y-axis) in 17 clusters (x-axis). Dot size represents the percentage of cells in which the gene is detected. Color
indicates the centered mean expression. (E) Fraction of 5 sample origins in 17 cell types. Total cell count of each sample was normalized to 100.
(F) Boxplot displaying the detected gene number (nFeature_RNA) and percentage of mitochondria genes (percent.mt) in each cell type.
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TFs (NFKB1, REL) and AP-1 complex (FOS, JUN) (23) (Figures 3A,

B). We reasoned that the upregulation of inflammatory pathways

could be a compensatory adjustment to anti-TNF therapy, although

this requires further validation.

Although gene expression changes were less pronounced in the

TRAPS patient after anti-TNF treatment than in CAPS, we also

performed a comprehensive analysis of differentially expressed

genes (DEGs), up/downregulated TF activities and GO pathways

in the TRAPS patient, which are documented in Supplementary

Data S2. The same analysis was performed comparing CAPS_NT/

TRAPS_NT to healthy donors to identify the potential pathogenic

genes in SAID (Supplementary Data S2). However, this may be

difficult due to the small sample size, as some DEGs may be

individual-specific (e.g. genes on the Y chromosome, ribosomal

proteins) and apparently not associated with the disease. These data

may be more useful when more SAID data becomes available in

the future.
Frontiers in Immunology 04
2.3 Disease flare is unnecessary to be
positively correlated with serum
inflammatory cytokines

One important clinical question is which markers are elevated

during disease attack. Normally, we evaluate clinical manifestations

and laboratory tests including white blood cell (WBC) count,

erythrocyte sedimentation rate (ESR), and C-reactive protein

(CRP), etc (24). Some inflammatory cytokines, like TNF, IL-1b
and IL-6 are considered to be the cause of systemic inflammation,

although IL-6 has both pro- and anti-inflammatory functions (25).

Thus, we asked how these inflammatory cytokines changed after

anti-TNF therapy. First, we checked which cell types were the main

source of each cytokine (Figure 4A), and found that TNF was

mainly secreted by CD16+ monocytes, IL-1b mainly by monocytes,

DCs and neutrophils, and IL-6 by a small subset of B cells. Next, the

expression levels of these cytokines were examined in the relevant
B

C

A

FIGURE 2

Gene Expression Profile Alters Significantly after Anti-TNF Therapy in CAPS Patient. (A) UMAP plot, colored by 17 subtypes (left) or 5 sample origins
(right). Batch effect not corrected. (B) Pearson correlation of all detected gene expression between samples in each cell type. (C) Heatmap showing
top 10 up- and down-regulated GO pathways in CAPS_TNFi.
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clusters. We noticed that in general they were even more highly

expressed after anti-TNF treatment (Figure 4B). This appears

counterintuitive, while similar to what we found in Figure 2C.

Thus, we asked if the increase of inflammatory cytokines after anti-

TNF treatment occurred commonly, by chance, or was just a

technical effect of scRNAseq. Therefore, we tried to validate this

using other methods. As some patients were tested for serum TNF

and IL-6 during their visit to the hospital, we checked if these

cytokines were increased after anti-TNF treatment at the protein

level. We reviewed our SAIDs cohort from 2015 (26), until Jan 2021,

and among total of 228 patients, 34 were received anti-TNF therapy

(either Etanercept, Infliximab, Golimumab or Adalimumab), and 8

patients were tested for TNF and IL-6 both before and after anti-

TNF therapy. The serum TNF levels were increased while IL-6

decreased after the treatment (Figure 4C). Although it is still not

clear what role IL-6 plays during the treatment, we confirmed that

TNF was increased after anti-TNF therapy, by both scRNAseq and

serum protein test. Taken together, the inflammatory cytokines, at

least TNF and IL-1b can be up-regulated after anti-TNF therapy

and are not necessarily positively correlated with disease flare.

Next, we asked what changes reflect the disease attack, if not

TNF or IL-1b. As we know that among the 5 samples, the

CAPS_NT sample was taken during disease attack while other

samples were not. Therefore, the DEGs of CAPS_NT in each cell

type were checked (Figures 4D, E). We noted that some interferon-

induced genes, including IFI, IFIT and IFITM families, which are
Frontiers in Immunology 05
involved in broad-spectrum antiviral functions (27) were

upregulated in CAPS_NT, remarkably in the CD16+ monocyte

subtype (Figure 4E). Consistently, by SCENIC analysis we also

observed that several interferon regulatory factors, e.g. IRF2, 5 and 7

were activated in the CAPS_NT sample in CD16 monocytes

(Figure 3B). These data indicated that the interferon response

might play a role in the disease flare.

We further investigated whether the increased interferon

response in CAPS_NT was caused by elevated stimuli levels (IFN-

a, IFN-g), or enhanced sensitivity in these monocytes. First, IFN-a
and IFN-g were checked at both RNA and protein levels. In the

single-cell RNA-seq data, we did not see increased IFN expression

in non-treated samples (Figure S1A). At the protein level, we

acquired several serum samples of non-treated SAID patients

(CAPS = 4, TRAPS = 1) from the biobank in our hospital as well

as 3 healthy donors, and tested IFN-a and IFN-g levels by ELISA.

Consistent with scRNAseq data, there was no increased serum IFN

in non-treated SAID samples (Figure S1B). We then checked the

IFN signaling pathways in CD16 monocytes. The IFN signaling

gene lists from the Reactome database (28) were used and calculated

the enrichment score using the AUCell package (22). We found that

indeed there was higher activation of IFN signaling pathways in

CAPS_NT (Figure S1C). These data supported that the increased

interferon response in CAPS_NT was probably caused by enhanced

sensitivity to the IFN stimuli in CD16 monocytes, rather than

elevated ligand levels.
B

A

FIGURE 3

Gene Regulatory Network (GRN) Predicted by SCENIC Analysis. (A) Heatmap showing top 6 most activated TFs in CAPS_TNFi predicted by SCENIC.
(B) Gene regulatory network (GRN) of CD16+ monocytes, predicted by SCENIC. The gene expression (round nodes) or regulon activity (square node)
in CAPS_NT (left) or CAPS_TNFi (right) is shown as node color (z-score).
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2.4 Inhibition of macrophage
differentiation is a potential mechanism of
anti-TNF therapy

From the previous analysis, we also noticed that complement

components (C1Qs) were more upregulated in pre-treatment than

on-treatment samples in CD16+ monocytes (Figure 4E), which is

one of the key features of macrophages (29). Interestingly, CD16+

monocytes indeed resemble macrophages in many aspects, as they

have low expression of classic monocyte markers like CD14 and

CCR2, and highly express CX3CR1 which explains why they

migrate and adhere more than CD16− monocytes to fractalkine-

secreting endothelium, and specialize in complement and FcR-

mediated phagocytosis and anti-viral responses (30–32). The lower

expression in complement after TNF blockade gave us a hint that
Frontiers in Immunology 06
the treatment might change the differentiation state of CD16+

monocytes. To validate this hypothesis, pseudo-time trajectory

analysis was performed within monocyte clusters using Palantir

and scVelo/Velocyto (33–35) which could predict the direction of

differentiation and “RNA velocity” — the time derivative of the gene

expression state — based on the relative abundance of nascent

(unspliced) and mature (spliced) mRNA (Figure 5A, B). We found

that before treatment, the CD16+ monocytes were highly dynamic

and differentiating into the terminal state, while after TNF blocking,

the differentiation was blocked, depicted by the arrows with shorter

lengths than untreated (Figure 5B). Indeed, TNF is known to be

involved in macrophage differentiation (36). This analysis shows

that inhibition of macrophage differentiation, rather than reducing

the overall level of inflammatory cytokines, could be a potential

mechanism of anti-TNF treatment response in SAIDs.
B

C D

E

A

FIGURE 4

Disease Flare Is Unnecessary to Be Positively Correlated with Inflammatory Cytokines. (A) Expression of inflammatory markers TNF, IL-1 and IL-6 of
each cell type (y-axis) in 17 clusters (x-axis). Dot size represents the percentage of cells in which the gene is detected. Color indicates the centered
mean expression. (B) Violin plots displaying the expression of inflammatory markers in their main source cell types, comparing 5 sample origins.
(C) Serum TNF and IL-6 levels in SAID patients, comparing before and after anti-TNF therapy. (D) Bar plot showing the number of up- and down-
regulated differentially expressed genes (DEGs) of CAPS_NT of each cell type. (E) Heatmap showing top 10 up-regulated DEGs in CAPS_NT.
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3 Discussion

In this study, we for the first time described the transcriptomic

profile of PBMCs and PMNs in SAIDs patients, and also revealed

transcriptional changes after anti-TNF therapy. We observed that

after anti-TNF therapy, some pathways related to stress response

and innate immune response-activating signal transduction were

up-regulated, while some metabolic pathways related to aerobic

respiration were down-regulated in CAPS, whereas there were no

significant changes in TRAPS. This may suggest that the

transcriptome is more associated with disease attack rather than

disease activity, and may partially explain the unexpected good

response to IL-1 blockade compared with anti-TNF therapy

observed in TRAPS patients in previous studies (37, 38). We also

identified that inflammatory cytokines such as TNF and IL-1b were

up-regulated after anti-TNF therapy and were not necessarily

positively correlated with disease activity. Interestingly, some

interferon-induced genes were up-regulated in the CAPS pre-

treatment sample, which indicated that the interferon response

can be correlated with disease flare. Further analysis revealed that

one of the potential mechanisms of anti-TNF treatment response in

SAIDs may be the inhibition of macrophage differentiation rather

than decreasing the overall level of inflammatory cytokines. As

macrophages are a major cell type involved in inflammation, and

their activation can be uncontrolled in SAIDs due to the genetic
Frontiers in Immunology 07
defect, inhibition of macrophage differentiation may help reduce

the frequency of disease flare.

As SAIDs are rare diseases, in this exploratory study where we

only enrolled 2 patients (one CAPS and one TRAPS) to test the

feasibility of using scRNAseq for SAIDs research. As the number of

samples was limited, we could not gain robust conclusions from this

study. However, we can see that after anti-TNF therapy, we

observed significant transcriptional changes after treatment in

CAPS patient, indicating that scRNAseq can be a useful

technique for the future study of SAIDs and treatment response.

Meanwhile, we are also aware of the shortcomings of this study

design, which can be improved in the future: i) Some differentiated

immune cells in the peripheral tissues (e.g. myeloid cells in skin

lesions or synovial fluid) may have important pro-inflammatory

functions. Therefore, we should consider not only extracting

circulating PBMCs/PMNs but also collecting samples from

peripheral tissues. ii) Some long-term effects caused by genetic

variation or treatment may be the result of epigenetic modifications

that cannot be revealed by scRNAseq, which is more reflective of

immediate changes in cell state. Novel techniques such as single cell

assay for transposase-accessible chromatin (ATAC) together with

RNA sequencing may help us better understand such mechanisms.

iii) In the study design we included neutrophils as they have

important pro-inflammatory functions. However, we then realized

that they had very few transcripts detected and less usable
B

A

FIGURE 5

Differentiation Trajectory Analysis of Monocytes. (A, B) Differentiation trajectory of NT/TNFi monocytes, predicted by Velocyto/ScVelo, based on
tSNE embeddings calculated by Palantir. Differentiation direction shown by arrows, in all samples (A) or split by each sample (B).
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sequencing reads, as they had relatively low RNA content and

relatively high levels of RNases with other inhibitory compounds.

This brought great challenges to the subsequent analysis as we could

not get high-quality information from these cells. In future studies,

we should consider either supplementing RNase inhibitor to

preserve the RNA or only keeping other high-quality cells

without neutrophils.

In conclusion, these results may indicate that interferon

response, rather than TNF or IL-1, may be involved in the disease

flare of the SAIDs. Trajectory analysis showed that inhibition of

macrophage differentiation as the potential mechanism of anti-TNF

treatment response in SAIDs. Our work provided new insights into

the potential mechanisms of disease flare and anti-TNF treatment

response, new transcriptomic resources of SAID spectrum diseases,

and expanded the application of single-cell RNA sequencing

technology to new disease areas.
3.1 Limitations of the study

As an exploratory study, the main limitation of this study is the

small sample size, making it impossible to generalize in this

situation. In addition, there is a lack of appropriate mouse models

to validate our conclusions. The aim of the further research should

be to expand the study cohort and apply multi-omics technology

(e.g. single-cell RNA-seq, scATAC-seq and sc-proteomics) to

various tissue types (e.g. PBMC, skin lesion or synovial fluid) to

gain further insight into the pathogenesis of SAIDs, and to validate

the findings by genetically engineered mouse models (GEMM) that

mimic the clinical phenotypes.
4 Materials and methods

4.1 Patients

This study enrolled 2 patients with classic SAIDs. One patient

was a 20-year-old Chinese woman diagnosed as CAPS, with NLRP3

D303G variation, and another patient was a 16-year-old Chinese

man diagnosed as TRAPS, with TNFRSF1A V202D variation.

Detailed information can be found in Supplemental Data S1. Both

patients were in the cohort of adult SAID patients in Peking Union

Medical College Hospital (PUMCH), which was described in the

previous publication (26). This study was approved by the

Institutional Review Board of Peking Union Medical College

Hospital and performed according to the Declaration of Helsinki.

Informed consents were obtained from all participants.
4.2 Single-cell RNA sequencing

4.2.1 Sample preparation
The processing of blood samples, including PBMC and

neutrophil isolation, library preparation, and single-cell RNA
Frontiers in Immunology 08
sequencing were done by CapitalBio Technology, Beijing. In brief,

ACCUSPIN™ System-Histopaque®-1077 and Histopaque®-1119

reagent were used to isolate mononuclear cells and granulocytes,

respectively, following the protocol on Sigma-Aldrich website.

Using single cell 3’ Library and Gel Bead Kit V3 (10x Genomics,

1000075) and Chromium Single Cell B Chip Kit (10x Genomics,

1000074), the cell suspension (300-600 living cells per microliter

determined by Count Star) was loaded onto the Chromium single

cell controller (10x Genomics) to generate single-cell gel beads in

the emulsion according to the manufacturer’s protocol. In short,

single cells were suspended in PBS containing 0.04% BSA. About

6,000 cells were added to each channel, and the target cell will be

recovered was estimated to be about 3,000 cells. Captured cells were

lysed and the released RNA were barcoded through reverse

transcription in individual GEMs. Reverse transcription was

performed on a S1000TM Touch Thermal Cycler (Bio Rad) at 53°

C for 45 min, followed by 85°C for 5 min, and hold at 4°C. The

cDNA was generated and then amplified, and quality assessed using

an Agilent 4200 (performed by CapitalBio Technology, Beijing).

4.2.2 Data processing and cell clustering
Raw sequencing data (fastq files) were mapped to the human

genome (build GRCh38) using CellRanger software (10x Genomics,

version 3.0.2). Raw gene expression matrices generated per sample

were analyzed with the Seurat package in R (39). To achieve clean

cell clustering results, we divided the cell filtering process into two

major steps: primary clustering and fine adjustment. Primary

clustering: 5 samples (CAPS_NT, CAPS_TNFi, TRAPS_NT,

TRAPS_TNFi, HD) were merged together and cells were filtered

by nFeature_RNA (genes detected) > 200 and percent.mt

(percentage of mitochondria genes) < 12.5%. High variable genes

were selected by FindVariableFeatures and auto-scaled by ScaleData

function using default parameters, and a principal component

analysis (PCA) was performed for all datasets using the default

RunPCA function in the Seurat package. Batch effect correction of

each sample was done using the Harmony algorithm (21) based on

PCA space, followed by FindNeighbors and FindClusters function

(dims = 30, resolution = 0.5) in the Seurat package for unsupervised

clustering. In total 20 clusters were found. As plasma cells were not

correctly identified by unsupervised clustering, they were manually

annotated. Fine adjustment: scDblFinder package was used to

predict potential doublets in the datasets (40). As neutrophils and

platelets naturally have much fewer transcripts than other cell types,

and DCs are often misclassified as doublets, we divided all cell types

into 3 groups and use different filter criteria for each group. Group1:

including Naïve CD4, Naïve CD8, Memory CD4, Memory CD8,

Effector CD8, CD16+ NK, CD16- NK, CD14 Mono, Naïve B, and

Memory B, these cells were filtered by nFeature_RNA > 1200 and

kept only singlets by scDblFinder; Group 2: including Neutrophil

and Platelet, these cells were filtered by nFeature_RNA < 800 and

kept only singlets by scDblFinder; Group 3, including FCGR3A

Mono, DC, and pDC, these cells were filtered only by

nFeature_RNA > 1200 regardless of scDblFinder prediction. In

addition, 1 RBC cluster, 3 doublet clusters and 1 mitotic cluster were
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removed as they were not informative. All plasma cells were kept

manually. After filtering, we ran the same pipeline as primary

clustering mentioned above with slightly changes of several

parameter (dims = 20, resolution = 0.4). Final clustering results

were shown in Figure 1B.

4.2.3 Differential expression analysis and
data visualization

To visualize cells on a 2D plot, Uniform manifold

approximation and projection (UMAP) was done by RunUMAP

function (dims = 20) in Seurat. Differentially expressed genes

(DEGs) were identified by the Wilcoxon Rank Sum test using the

FindMarkers function. Gene expression levels or gene set

enrichment scores (AUCell score) were shown in t-score or z-

score for heatmaps or waterfall plots. UMAP or tSNE plots were

done using DimPlot or FeaturePlot functions in Seurat. Heatmaps,

modified stacked violin plots, boxplots, and bar plots of cluster

proportion were generated using customized codes in R, and these

functions were integrated into the R package “SeuratExtend” which

is available on Github (https://github.com/huayc09/SeuratExtend).

4.2.4 SCENIC and gene set enrichment analysis
To carry out the transcription factor network inference,

SCENIC workflow was performed using Nextflow pipeline (22),

and regulon activity of each cell was evaluated using AUCell score

with Bioconductor package AUCell. For functional/pathway

analysis, gene set lists were collected from databases including

Gene Ontology (GO) and Reactome. For Gene Set Enrichment

Analysis (GSEA), the enrichment of given gene sets of each cell was

evaluated using AUCell package as well. Gene regulatory networks

(Figure 3) were plotted using Cytoscape software (41).

4.2.5 Trajectory analysis
For trajectory analysis (Figure 5), monocyte subsets of CAPS

and TRAPS samples were extracted and integrated by Harmony

algorithm. Python package Palantir (34) was used to calculate

diffusion map and diffusion components based on Harmony

space, then cells were visualized by tSNE. To predict the

differentiation direction, we conducted a Velocyto pipeline (33)

using the *.bam file and barcode information generated by

CellRanger, and used ScVelo in Python (35) for better visualization.
4.3 ELISA

The plasma levels of IFN-a and IFN-g were detected according

to the instructions of the commercial ELISA kits (EXCELL

Bio, China).
4.4 Statistical analysis

Differentially expressed genes (DEGs) were identified by the

Wilcoxon Rank Sum test using the FindMarkers function of Seurat
Frontiers in Immunology 09
package in R. All remaining statistical analysis were performed by

the ggpubr package in R with default parameters.
Data availability statement

The raw sequence data reported in this paper have been deposited

in the Genome Sequence Archive (42) in National Genomics Data

Center (43), China National Center for Bioinformation / Beijing

Institute of Genomics, Chinese Academy of Sciences (GSA-Human:

HRA003572) that are publicly accessible at https://ngdc.cncb.ac.cn/

gsa-human. All software is freely or commercially available. To ensure

data accessibility to non-bioinformaticians, wemade the an interactive

web tool generated by ShinyCell (44) at https://yichao-hua.shinyapps.

io/shen_lab_said_anti-tnfa/.
Ethics statement

The studies involving human participants were reviewed and

approved by Institutional Review Board of Peking Union Medical

College Hospital. Written informed consent to participate in this

study was provided by the participants’ legal guardian/next of

kin. Written informed consent was obtained from the individual

(s), and minor(s)’ legal guardian/next of kin, for the publication

of any potentially identifiable images or data included in

this article.
Author contributions

MS and YH conceived the study. YH performed the

bioinformatics analyses. NW performed the Elisa experiment. JM

summarized the medical history of SAID cohort. YH and MS wrote

the manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This work was supported by the Natural Science Foundation of

Beijing (Grant No.7192170), the National Key Research and

Development Program of China (Grant No.2016YFC090

1500; 2016YFC0901501).
Acknowledgments

The authors thank CapitalBio Technology for the technical

support of single-cell RNA sequencing, Peking Union Medical

College Hospital Laboratory Department for testing serum

cytokines, Dr. Junbin Qian (Zhejiang University) for the

suggestions of single cell analysis, Dr. Kathryn Jacobs (VIB-KU

Leuven) for the help with language modification.
frontiersin.org

https://github.com/huayc09/SeuratExtend
https://ngdc.cncb.ac.cn/gsa-human
https://ngdc.cncb.ac.cn/gsa-human
https://yichao-hua.shinyapps.io/shen_lab_said_anti-tnfa/
https://yichao-hua.shinyapps.io/shen_lab_said_anti-tnfa/
https://doi.org/10.3389/fimmu.2023.1091336
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hua et al. 10.3389/fimmu.2023.1091336
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
Frontiers in Immunology 10
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1091336/

full#supplementary-material

SUPPLEMENTARY DATA SHEET 2

Differentially expressed genes, regulon activities and GSEA
References
1. Centola M, Aksentijevich I, Kastner DL. The hereditary periodic fever syndromes:
molecular analysis of a new family of inflammatory diseases. Hum Mol Genet Oxford
Univ Press (OUP) (1998) 7(10):1581–8. doi: 10.1093/hmg/7.10.1581

2. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic
autoinflammatory diseases define new pathways in human innate immunity and
inflammation. Nat Immunol (2017) 18(8):832–42. doi: 10.1038/ni.3777

3. Ben-Chetrit E, Gattorno M, Gul A, Kastner DL, Lachmann HJ, Touitou I, et al.
Consensus proposal for taxonomy and definition of the autoinflammatory diseases
(AIDs): a Delphi study. Ann rheumatic diseases BMJ (2018) 77(11):1558–65.
doi: 10.1136/annrheumdis-2017-212515

4. Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders:
Conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol (2020)
146(5):925–37. doi: 10.1016/j.jaci.2020.08.017

5. Doria A, Zen M, Bettio S, Gatto M, Bassi N, Nalotto L, et al. Autoinflammation
and autoimmunity: bridging the divide. Autoimmun Rev (2012) 12(1):22–30.
doi: 10.1016/j.autrev.2012.07.018

6. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in
genetically defined autoinflammatory diseases: disorders of amplified danger signaling.
Annu Rev Immunol (2015) 33:823–74. doi: 10.1146/annurev-immunol-032414-112227

7. Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, et al.
Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated
periodic syndromes: results from two sequential placebo-controlled studies. Arthritis
rheumatism (2008) 58(8):2443–52. doi: 10.1002/art.23687

8. Hoffman HM, Throne ML, Amar NJ, Cartwright RC, Kivitz AJ, Soo Y, et al.
“Long-term efficacy and safety profile of rilonacept in the treatment of cryopryin-
associated periodic syndromes: results of a 72-week open-label extension study. Clin
Ther (2012) 34(10):2091–103. doi: 10.1016/j.clinthera.2012.09.009

9. Kuemmerle-Deschner JB, Ramos E, Blank N, Roesler J, Felix SD, Jung T, et al.
Canakinumab (ACZ885, a fully human IgG1 anti-IL-1b mAb) induces sustained
remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS).
Arthritis Res Ther (2011) 13(1):R34. doi: 10.1186/ar3266

10. Kuemmerle-Deschner JB, Tyrrell PN, Koetter I, Wittkowski H, Bialkowski A,
Tzaribachev N, et al. Efficacy and safety of anakinra therapy in pediatric and adult
patients with the autoinflammatory muckle-wells syndrome. Arthritis rheumatism
(2011) 63(3):840–9. doi: 10.1002/art.30149

11. Dinarello CA, van der Meer JWM. Treating inflammation by blocking
interleukin-1 in humans. Semin Immunol (2013) 25(6):469–84. doi: 10.1016/
j.smim.2013.10.008

12. Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes.
Annu Rev Med (2014) 65:223–44. doi: 10.1146/annurev-med-061512-150641

13. Cantarini L, Lopalco G, Cattalini M, Vitale A, Galeazzi M, Rigante D, et al.
Interleukin-1: Ariadne’s thread in autoinflammatory and autoimmune disorders. Israel
Med Assoc journal: IMAJ (2015) 17(2):93–7.

14. Schett G, Dayer J-M, Manger B. Interleukin-1 function and role in rheumatic
disease. Nat Rev Rheumatol (2016) 12(1):14–24. doi: 10.1038/nrrheum.2016.166

15. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G.
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