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Although interactions of small molecular drugs with serum proteins have been

widely studied from pharmacokinetic and pharmacodynamic perspectives, there

have been few reports on the effects of serum components on therapeutic

antibody functions. This study reports the effect of abundant serum proteins on

antibody-dependent cellular cytotoxicity (ADCC) mediated by rituximab and Fcg
receptor III (FcgRIII). Human serum albumin (HSA) and the Fab fragment from the

pooled serum polyclonal IgG were found to compromise ADCC as non-

competitive inhibitors. Our nuclear magnetic resonance data provided direct

evidence for the interactions of HSA with both the Fab and Fc regions of

rituximab and also with the extracellular region of FcgRIII (sFcgRIII). The degree

of involvement in the interaction decreased in the order of rituximab-Fab >

rituximab-Fc > sFcgRIII, suggesting preferential binding of HSA to net positively

charged proteins. Although much less pronounced than the effect of HSA,

polyclonal IgG-Fab specifically interacted with rituximab-Fc. The NMR data also

showed that the serum protein interactions cover the Fc surface extensively,

suggesting that they can act as pan-inhibitors against various Fc receptor-

mediated functions and pharmacokinetics. Our findings highlight the importance

of considering serum–protein interactions in the design and application of

antibody-based drugs with increased efficacy and safety.
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1 Introduction

Most drugs enter the blood after administration and are

distributed to various tissues. In the bloodstream, they bind to

serum proteins, such as albumin. The interactions of drugs with

serum proteins significantly affect their pharmacokinetics and

pharmacodynamics and are therefore carefully evaluated during

drug discovery and development (1–3). Many of the currently used

therapeutic antibodies are administered intravenously and exert their

effect in the blood (4). However, limited studies have been conducted

on the effects of interactions between therapeutic antibodies and

serum proteins.

A previous study found that serum polyclonal antibodies had a

negative effect on antibody-dependent cellular cytotoxicity (ADCC) (5).

This may be the result of their competitive inhibition of the binding of

therapeutic antibodies to Fcg receptor IIIa (FcgRIIIa) through their Fc

region. In this regard, the binding target of the serum protein is not the

therapeutic antibody, but rather its cognate receptor. Such Fc-mediated

competitive binding unavoidably occurs with various Fc receptors,

including FcRn, thereby affecting other effector functions and

pharmacokinetics of therapeutic antibodies, such as blood half-life (6).

On the other hand, several studies have indicated that human serum

components can interact with immunoglobulin G (IgG). For instance,

analytical ultracentrifugation indicated that human serum albumin

(HSA) interacts with human monoclonal IgG1 (7, 8), whereas our

nuclear magnetic resonance (NMR) studies demonstrated that mouse

IgG2b semi-specifically interacts with the Fab region of pooled human

serum polyclonal antibody but barely with HSA (9, 10). However, the

functional effects of these interactions remain unexplored.

Given this situation, we investigated the effects of the interaction

between serum proteins and human IgG1 on its ADCC function

mediated by FcgRIIIa. We used rituximab, an anti-CD20 mouse/

human-chimeric IgG1 (11), along with HSA and polyclonal antibody,

which together account for >70% of the serum proteins (12).

Additionally, we characterized the interactions using stable-isotope-

assisted NMR spectroscopy.
2 Materials and methods

2.1 Human serum proteins

Pooled off-the-clot human serum was purchased from Access

Biologicals. Human serum polyclonal IgG and HSA were purchased

from Sigma-Aldrich. The Fab fragment of the polyclonal IgG was

digested using papain (13), purified using a Protein G Sepharose

column (Cytiva) to remove Fc fragments, and then applied to a

Superdex 200 16/60 gel filtration column (Cytiva) as previously

described (9). Rituximab without isotope labeling was purchased

from Zenyaku Kogyo.
2.2 Preparation of isotope-labeled proteins

Metabolic isotope labeling of antibodies was performed as

previously described (14). A Chinese hamster ovary cell line

producing rituximab (14), grown in a modified Nissui NYSF-404
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medium containing appropriate stable isotope-labeled metabolic

precursors was used. The amino acid components in the medium

were substituted by uniformly 15N-labeled algal amino acid mixture

supplemented with 15N-labeled analogs of the following amino acids:

L-leucine, L-histidine, L-cysteine, and L-asparagine. The Fab and Fc

fragments of isotope-labeled IgG1 were prepared through proteolytic

digestion using papain as described above and subjected to NMR

measurements. Digestion products were separated into Fab and Fc

fragments using a protein A affinity column (GE Healthcare) and

further purified through gel filtration using a HiLoad 16/60 Superdex

200 pg column (GE Healthcare) equilibrated with 50 mM Tris–HCl

(pH 8.0) containing 150 mM NaCl (9). The rituximab-Fc fragment

was treated with recombinant b1,4-galactosidase from Streptococcus

pneumoniae (New England Biolabs), producing a uniformly

fucosylated, nongalactosylated glycoform as previously described

(14). A soluble form of human FcgRIIIb (NA2 form) composed of

the extracellular domains (simply designated as sFcgRIIIb) was

bacterially expressed with a C-terminal hexahistidine tag and

uniform 15N-labeling and purified as previously described (15).
2.3 NMR measurements and
spectral analysis

NMR measurements, the concentrations of the 15N-labeled forms

of rituximab-Fc, rituximab-Fab, and sFcgRIIIb were set to 120 mM,

240 mM, and 120 mM, respectively, in 5 mM sodium phosphate buffer

containing 50 mMNaCl. Serum polyclonal IgG, its Fab fragment, and

HSA were added at final concentrations of 120 mM, 240 mM and 600

mM, respectively. The pH and temperature of the solutions were set to

pH 7.4 and 37°C, respectively. 1H-15N heteronuclear single-quantum

coherence (HSQC) peaks originating from the backbone of Fc were

assigned based on the previous assignment in the BioMagResBank

database (http://www.bmrb.wisc.edu) under the accession number

25224 (16). A series of NMR spectra were obtained using AVANCE

800 and AVANCEIII 900 spectrometers (Bruker BioSpin). The

obtained data were processed using the NMRpipe software (17).
2.4 Biolayer interferometry analysis

An Octet HTX system (Sartorius) was used for biolayer

interferometry (BLI) measurements of rituximab-FcgRIIIa
interaction using the extracellular region of human FcgRIIIa (158V

allele) in which Asn45 and Asn162 were N-glycosylated while the

remaining N-glycosylation sites were substituted by glutamine. This

bis-glycosylated receptor was expressed by CHO/dhFr- cells (ATCC®

CRL-9096) with a C-terminal hexahistidine tag, purified using

cOmplete His-Tag Purification Resin column (Roche), and

biotinylated as previously described (13, 18, 19). Before each assay,

SAX (High Precision Streptavidin) biosensor tips were pre-wetted in

200 µL of HBS-P+ buffer (Cytiva, BR100827; 0.01 HEPES, 0.15 M

NaCl and 0.05% (v/v) Surfactant P20) for at least 10 min. The

measurements were performed at 30°C. First, a baseline was

established using the buffer for 90 s, followed by the capture of the

biotinylated receptor. Subsequently, a second baseline was obtained

using HBS-P+, followed by the association and dissociation of
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rituximab with or without HSA and polyclonal IgG-Fab. The two-fold

dilution series of rituximab starting at 2.0 µM were used for the assay.

The regeneration step was performed using 1 M MgCl2 (Fujifilm

Wako Pure Chemical Corp., 136–03995) after the cycle, and the same

samples were measured thrice (n = 3).
2.5 ADCC reporter bioassay

Cell-based ADCC assays of rituximab were performed using a

nuclear factor of activated T cell (NFAT)-driven luciferase reporter

system (recombinant Jurkat T cells expressing firefly luciferase gene

under the control of NFAT response elements with constitutive

expression of human FcgRIIIa, high affinity (V158) variant and FcR

g chain) as previously described (20). Briefly, Jurkat/FcgRIIIa/NFAT-
Luc cells (effector cells) were seeded at an effector with a target ratio of

10:1 and cultured with serially diluted rituximab mixed with

polyclonal IgG-Fab or HSA at a final concentration of 240 mM or

600 mM, respectively. After incubation at 37°C for 4 h in a 5% CO2

atmosphere, luciferase activity was evaluated using the ONE-Glo

Luciferase Assay System (Promega).
2.6 Protein isoelectric point calculation

Protein isoelectric point was calculated using Compute pI/

Mw (21).
3 Results

Rituximab is clinically used to treat certain cancers, including

chronic lymphocytic leukemia and non-Hodgkin’s lymphoma (11).

The anticancer activity of this therapeutic antibody is based on ADCC

through its interaction with FcgRIIIa, which is typically expressed on

natural killer cells. We evaluated ADCC activity using a reporter cell

line expressing human FcgRIIIa and NFAT-driven luciferase reporter

gene (20). The EC50 obtained from the present ADCC reporter assay

was approximately 20 ng/mL, which is consistent with the previous

report (22). The serum concentrations of HSA and polyclonal IgG have

been reported as 35-50 mg/mL and 4.1-21.7 mg/mL, respectively (23,

24). Taking this into account, 600 mM of HSA or 240 mM of polyclonal

human IgG-Fab were added to this cell-based assay system. However,

an equimolar amount of their Fab fragment was used instead of

polyclonal IgG antibodies because full-length IgG was expected to be

competitive with rituximab regarding the Fc-mediated binding to

FcgRIIIa (5). The assay results revealed that ADCC was moderately

compromised by the polyclonal IgG-Fab fragments, while HSA

negatively affected ADCC more intensely (Figure 1). These serum

proteins little affected EC50, but rather reduced the magnitude of the

maximum response, indicating their non-competitive inhibition.

Next, the effects of these serum proteins on IgG1–FcgRIIIa
interaction were examined via BLI analysis. The extracellular region

of FcgRIIIa was immobilized onto a sensor, which was subjected to

rituximab solutions in the presence or absence of HSA or polyclonal

IgG-Fab. The results showed that HSA negatively affected their
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interaction, while no significant inhibition was observed by

polyclonal IgG-Fab (Figure 2). Hence, we attempted to use a more

sensitive technique for detecting weak interactions involving the

serum proteins.

NMR can be a valuable tool for detecting weak interactions while

dealing with heterogeneous systems. For selective observation of

antibody NMR signals, we have established stable-isotope-labeling

techniques of IgG glycoproteins using various eukaryotic expression

systems (10, 14, 25, 26). In the present study, we prepared uniformly
15N-labeled rituximab, which was cleaved into Fab and Fc fragments for

HSQC spectral measurements, to assess their interactions with HSA or

polyclonal IgG-Fab. Additionally, we subjected uniformly 15N-labeled

sFcgRIIIb to HSQC spectral measurements. Upon addition of HSA, the

HSQC peaks of these 15N-labeled proteins exhibited attenuation of

intensity (Figure 3), which was quantified for each peak according to

the equation (Io-Ip)/Io, where Io and Ip are original peak intensity and

intensity after perturbation, respectively. The degree of impact by HSA

decreased in the order of rituximab-Fab > rituximab-Fc > sFcgRIIIb
(Figure 4). The serum polyclonal IgG-Fab induced significant intensity

attenuation for the peaks originating from rituximab-Fc, but the impact

was smaller than that caused by HSA (Figures 3, 4). We have

established assignments of the backbone HSQC peaks originating

from Fc (16) and sFcgRIIIb (15), enabling us to map the spectral

perturbation on their crystal structures (27, 28). The results showed that

the interactions with HSA and polyclonal IgG-Fab cover these

molecular surfaces extensively (Figure 5). Thus, the NMR data

provide valuable information regarding the interactions of rituximab

with the serum proteins, although the method required much higher

concentrations of 15N-labeled proteins as compared with the expected

concentration in the blood for rituximab treatment (>10 mg/mL), due to

the sensitivity limitations of the NMRmethod (30). Human serum itself

and the full-length form of serum polyclonal IgG caused more

enhanced spectral changes of rituximab-Fc than the polyclonal IgG-

Fab and HSA (Figure 6).
FIGURE 1

Rituximab-mediated ADCC activity influenced by the presence of serum
components. ADCC activity of rituximab was measured in the absence
(black circle) or presence of HSA (red triangle) or polyclonal IgG-Fab (blue
rectangle). Rituximab concentration was prepared as a series of 3-fold
dilutions from 1 mg/mL. Final concentrations of HSA and polyclonal IgG-
Fab were 600 mM and 240 mM, respectively. Data represent the
mean±SD (n=3). Significant p-values (*p <0.05, #p <0.01) are compared
to the control by two-way ANOVA followed by Tukey’s multiple
comparisons.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1090898
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yanaka et al. 10.3389/fimmu.2023.1090898
4 Discussion

This study demonstrated that HSA, themost abundant serumprotein,

negatively affects the interaction between rituximab and FcgRIIIa and

compromises ADCC. The NMR data provide direct evidence for the

interaction of HSA with rituximab, and to a lesser extent, with the

extracellular region of FcgRIIIb. The extracellular region of FcgRIIIa
shares 96% amino acid identity with that of FcgRIIIb and therefore

possibly interacts with HSA to the same extent as FcgRIIIb in this

condition, although their N-glycans may affect the interaction. HSA

interacted with both the Fab and Fc regions of rituximab, but to a greater

extent with Fab, which is not only responsible for antigen binding but also

directly involved in the interaction with FcgRIIIa (13, 19, 31). Hence, HSA
Frontiers in Immunology 04
may interfere at various points in ADCC, at least for interaction with

FcgRIIIamediatedbybothFabandFc, andpossibly for antigen recognition.

Residues perturbed by HSA were widely distributed in the Fc and

sFcgRIIIb molecules, including their binding sites, suggesting that the

interaction is notmediated by specific sites (Figure 5). Our previousNMR

study demonstrated thatmouse IgG2b-Fc interacted with polyclonal IgG-

Fab from pooled human serum but to a considerably weaker extent with

HSA (9). In contrast, analytical centrifugation detected weak reversible

interactions between HSA and adalimumab, a human IgG1 monoclonal

antibodyantagonizing tumornecrosis factor (7).Thus, the interactionwith

HSA exhibits specificity for human IgG1 to a certain extent.

Although HSA harbors versatile binding pockets that accommodate

basic, acidic, or neutral small molecules (32), the overall physical
B CA

FIGURE 3

HSQC spectral changes of rituximab-Fc, rituximab-Fab, and sFcgRIIIb induced by the serum components. HSQC spectra of uniformly 15N-labeled rituximab-
Fab (A), rituximab-Fc (B), and sFcgRIIIb (C) were measured in the absence (black) or presence (red) of HSA (lower) or polyclonal IgG-Fab (upper).
BA

FIGURE 2

Effect of HSA on the interaction between rituximab and FcgRIIIa. Interaction of rituximab with the immobilized form of the extracellular region of human
FcgRIIIa was observed by BLI in the (A) absence or (B) presence of HSA.
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properties, such as net charges, rather than local structural features, may

govern its interactions with macromolecules. Indeed, charge variation in

IgG affects the binding to FcgRIIIa (33). In a neutral solution, HSA (pI =

5.7) is net negatively charged and therefore interacts preferably

with positively charged proteins. This consistently explains the NMR

observations, i.e., extensive, moderate, and undetectable interactions with

rituximab-Fab (pI = 8.8), rituximab-Fc (pI = 7.1), and sFcgRIIIb (pI = 6.2),
respectively. This may also explain whymouse IgG2b-Fc (pI = 6.3) shows

little binding to HSA. This means that charge variations of IgG1, such as

deamination, affect its interaction with HSA. According to this theory, an

Fab with a l chain would be more intensively interact with HSA than

rituximab-Fab. This is because the Cl domains have a higher isoelectric
Frontiers in Immunology 05
point (pI = 6.9 – 9.1) than that of the Ck domain (pI = 5.6), which is

harbored in rituximab-Fab.

Although much less pronounced than the effect of HSA, the Fab

fragment from the pooled serum polyclonal IgG specifically interacted

with the Fc region of rituximab and significantly affected ADCC. It was

unexpected that polyclonal IgG-Fab interacted with the Fc region of

rituximab, i.e. human IgG1-Fc, rather than the more heterologous

rituximab-Fab harboring mouse-derived variable region. As in the HSA

interaction, this significantpreferencemaybeattributed to thedifference in

net charge between Fab and Fc regions in rituximab because polyclonal

IgG-Fab isolated from human serum generally has a pI of >7 (34).

However, polyclonal IgG-Fab barely interacts with sFcgRIIIb, which has
B

C D

A

FIGURE 5

Mapping on the crystal structure of (A, C) human IgG1-Fc [PDB code: 3ave (27)] and (B, D) sFcgRIIIb [PDB code: 1T89 (28)] with the observed spectral
perturbations by addition of (A, B) HSA, and (C, D) polyclonal IgG-Fab. The attenuation in intensity of the HSQC peaks originating from the backbones of
human IgG1-Fc and sFcgRIIIb was calculated as (Io-Ip)/Io, where Io and Ip are original peak intensity and intensity after perturbation, respectively, and
mapped on their crystal structures. The proline residues and the residues whose 1H-15N HSQC peaks could not be observed as probe because of
broadening and/or overlapping are shown in gray. The N-glycans of IgG1-Fc are shown as stick models. The molecular graphics were generated using
PyMOL (29).
BA

FIGURE 4

Histograms of the 1H-15N HSQC peaks exhibiting attenuation in intensity upon addition of serum proteins. The residues showing different degree of peak
attenuation by the addition of (A) polyclonal IgG-Fab and (B) HSA were counted for 15N-labeled forms of rituximab-Fab (white), rituximab-Fc (black), and
sFcgRIIIb (gray). The data were calculated from the spectra shown in Figure 3. The attenuation in intensity [(Io-Ip)/Io, where Io and Ip are original peak
intensity and intensity after perturbation, respectively] was calculated for all observable 1H-15N HSQC peaks. The average levels of peak intensity
attenuation caused by HSA were 0.60, 0.51, and 0.41 for rituximab-Fab, rituximab-Fc, and sFcgRIIIb, respectively, and those by polyclonal IgG-Fab are
0.33, 0.07, and 0.11 for rituximab-Fab, rituximab-Fc, and sFcgRIIIb, respectively.
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the lower pI value than rituximab-Fc, suggesting that some unknown

factors determine the reactivity of polyclonal IgG-Fab. Anyway, the

negative effect on ADCC is plausibly enhanced in the full-length form of

serum polyclonal IgG with bivalency and bulkiness in addition to the Fc-

mediated competition for FcgRIIIa (5). Indeed, the intact form of

polyclonal IgG and human serum containing it had greater impacts on

rituximab-Fc than the Fab fragment derived it (Figure 6).

Because many therapeutic antibodies and Fc-fusion therapeutics share

the common Fc region derived from human IgG1 (35), serum polyclonal

IgG as well as HSA are likely to interact with these protein drugs affecting

their interactions with FcgRIIIa and functional efficacy. The interactions

with the serumproteins cover the Fc surface so extensively that they can act

pan-inhibitory on various Fc receptor-mediated functions and

pharmacokinetics. Furthermore, the non-competitive inhibition of ADCC

by HSA and polyclonal IgG-Fab suggests that they can be allosteric

inhibitors of Fc affecting its dynamic structure (36). Therefore, controlling

the interactions with the serum proteins is an essential factor to consider in

thedevelopmentof therapeuticantibodiesandFc-fusion therapeutics.Their

interactions are likely to depend on artificial and naturally occurring

modifications, such as drug conjugation and glycosylation, and are

presumably controllable through mutational charge modifications. Serum

components, including HSA and polyclonal antibodies, can differ

qualitatively and quantitatively depending on the disease state and drug

administration history (37). In this regard, methods to assess interactions

withserumcomponentsarevaluable for thedevelopmentandapplicationof

antibody-based drugs with increased efficacy and safety.
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