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Background: Biopsy-based diagnosis is essential for maintaining kidney allograft

longevity by ensuring prompt treatment for graft complications. Although

histologic assessment remains the gold standard, it carries significant limitations

such as subjective interpretation, suboptimal reproducibility, and imprecise

quantitation of disease burden. It is hoped that molecular diagnostics could

enhance the efficiency, accuracy, and reproducibil ity of traditional

histologic methods.

Methods: Quantitative label-free mass spectrometry analysis was performed on a

set of formalin-fixed, paraffin-embedded (FFPE) biopsies from kidney transplant

patients, including five samples each with diagnosis of T-cell-mediated rejection

(TCMR), polyomavirus BK nephropathy (BKPyVN), and stable (STA) kidney function

control tissue. Using the differential protein expression result as a classifier, three

different machine learning algorithms were tested to build a molecular diagnostic

model for TCMR.

Results: The label-free proteomics method yielded 800-1350 proteins that could

be quantified with high confidence per sample by single-shot measurements.

Among these candidate proteins, 329 and 467 proteins were defined as

differentially expressed proteins (DEPs) for TCMR in comparison with STA and

BKPyVN, respectively. Comparing the FFPE quantitative proteomics data set

obtained in this study using label-free method with a data set we previously

reported using isobaric labeling technology, a classifier pool comprised of features

from DEPs commonly quantified in both data sets, was generated for TCMR

prediction. Leave-one-out cross-validation result demonstrated that the random

forest (RF)-based model achieved the best predictive power. In a follow-up blind

test using an independent sample set, the RF-based model yields 80% accuracy for

TCMR and 100% for STA. When applying the established RF-based model to two
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public transcriptome datasets, 78.1%-82.9% sensitivity and 58.7%-64.4% specificity

was achieved respectively.

Conclusions: This proof-of-principle study demonstrates the clinical feasibility of

proteomics profiling for FFPE biopsies using an accurate, efficient, and cost-

effective platform integrated of quantitative label-free mass spectrometry

analysis with a machine learning-based diagnostic model. It costs less than 10

dollars per test.
KEYWORDS

biomarker, quantitative proteomics, machine learning, FFPE, kidney transplantation,
diagnosis, mass spectrometry
Introduction

In the United States alone, over 200,000 people are now living

with functioning kidney transplants, and rejection is the major cause

for transplant loss (1, 2). Although short-term graft survival is now

excellent (i.e., 92% and 83% at 1 and 3 years respectively), the 10-year

graft survival rate drops to ~60% due to a spectrum of allograft

pathology with a variety of distinct mechanisms and therapeutic

options (3). Timely diagnosis of pathology is imperative in preserving

allograft longevity and has traditionally been achieved using

conventional biopsy-based histologic methods. One major allograft

injury mechanism is T-cell-mediated rejection (TCMR), a classic

model for T-cell-mediated inflammatory diseases. With

contemporary immunosuppression, TCMR is less frequent but

remains the dominant early rejection phenotype and the end point

in many clinical trials (4).

At present, TCMR is mainly diagnosed using the Banff lesion score

i (Interstitial inflammation) to evaluate the degree of inflammation in

non-scarred areas of cortex. This diagnostic method has significant

limitations of being descriptive, non-quantitative, and empirically

derived, with significant inter-observer variability (5, 6). These

limitations could be avoided with a diagnostic method that evaluates

molecular changes in the tissue that preceded morphologic legion

development. Such a method would use small tissue samples

obtained from biopsies and would ideally be evaluated using

molecular markers (RNA, DNA or protein) that could be assayed by

a more sensitive, reproducible, and quantitative technology.

As the base of commercially available diagnostic tests, mRNA

profiling is available as a test that is marketed as the Molecular

Microscope or MMDx® system. It offers prospects of improved

disease classification but has several inherent limitations such as

high cost of mRNA extraction (7, 8). In addition, it’s easy to miss

the core with real disease information since the developed

technologies become dependent analysis of a small tissue fragment

taken from a longer core sent for routine histology (9, 10).

We have focused on working with proteins extracted from

formalin-fixed, paraffin-embedded (FFPE) biopsy specimens to

develop such a diagnostic assay. Compared with traditional

diagnostic methods, proteomics-based tests have many advantages,

including superior specificity, sensitivity, and accuracy as well as
02
being quantitative, high-throughput and low cost. These tests also can

simultaneously monitor multiple biomarkers, therefore providing a

better understanding of disease pathogenesis and a more systematic

evaluation of disease status. Compared with conventional biopsy

readings by human observers, biopsy-based proteomic profiling can

be a powerful tool to enhance biopsy interpretation, especially when

combined with computer modeling to predict outcomes.

Predictive modeling, a method of creating models that can

identify the likelihood of disease, has been widely discussed in

recent years (11, 12). In predictive modeling, machine learning

algorithms employ a variety of statistical, probabilistic and

optimization methods to learn from known knowledge and to

detect useful patterns from large data sets that rely on labeled

training data (13). Whereas a multitude of deep learning-based

prediction models for kidney transplant pathology have been

developed based on the transcriptomic data sets (14), prediction

models incorporating proteomic data have yet to be fully explored.

In our previous work, a Tandem Mass Tag (TMT)-based

quantitative proteomic workflow was developed for proteomic

profiling of FFPE biopsies (15). However, the TMT-based workflow

requires tedious procedures with expensive isobaric reagents that

likely preclude its incorporation into routine clinical practice. In the

current study, a more cost-efficient and easily manageable workflow

using label-free proteomic profiling technology was developed to

evaluate kidney allograft injuries. We used samples from patients

with TCMR or Polyomavirus BK nephropathy (BKPyVN), which is

easily confused with on routine light microscopy (9, 16), and samples

from patients without either condition to demonstrate proof-of-

concept for developing a clinical-friendly workflow. This system

uses label-free proteomic profiling technology and machine learning

to correctly differentiate three types of biopsy samples.
Materials and methods

Materials

All chemicals used in this study were of analytical grade and

purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise

stated. LC-MS grade solvents, including water, formic acid (FA),
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methanol and acetonitrile (ACN) were ordered from Fisher Scientific

(Pittsburgh, PA). The 10-kDa centrifugal filter unit was purchased

from Millipore Sigma (Burlington, MA). The complete mini protease

inhibitor cocktail was from Roche (Indianapolis, IN).
Patients and sample collection

This study was approved by the University of Pittsburgh IRB

(protocol 10110393). STA kidney specimens and biopsies diagnosed

as TCMR or BKPyVN were selected from weekly clinical conferences

conducted immediately prior to commencement of the study.

Diabetes mellitus, hypertension, and glomerulonephritis were the

three most common causes of end-stage kidney disease in these

subjects. All patients received Thymoglobulin induction followed by

dual maintenance immunosuppressive therapy consisting of

mycophenolate mofetil and tacrolimus. Corticosteroids were

tapered over the first 7 days and then discontinued. Histologic

diagnoses were based on the Banff classification for kidney allograft

pathology (17). Diagnostically relevant Banff scores for the TCMR

patients were g0, v0, i2, ptc0, cg0, ci1, ct1 for all biopsies. The t -score

was 2 in all biopsies, except for 1 biopsy in which it was t3. The core

needle biopsy specimens (18 gauge) were fixed in formalin

immediately and paraffin embedded within 24 h.

The patients (eight males, seven females) in the discovery cohort

ranged in age from 32 to 84 years with mean values of 60.8, 56.2, and

51.6 in the STA, BKPyVN, and TCMR groups, respectively. Biopsies

had been performed 23-526 days post-transplant (mean 263) and

showed renal cortex with mild interstitial fibrosis and tubular

atrophy. For the BKPyVN biopsies, the concentration of viral loads

ranged from 2.38E+08 to 6.67E+10 copies per mL in the urine and

8.11E+03 to 3.85E+05 copies per mL in the plasma. All biopsies

showed polyomavirus antigens on immunohistochemistry.

The patients (two males, seven females) in validation cohort

ranged in age from 27 to 73 years with mean values of 52.7.

Biopsies had been performed 74-106 days post-transplant (mean 88).
Deparaffinization and protein extraction

The biopsy tissue embedded in the paraffin blocks was extracted

with a sharp scalpel, followed by cutting into 1 mm pieces. Each

sample was deparaffinized by incubating with 1 mL of xylene at room

temperature (RT) for 5 min, centrifugating at 3,000 × g for 2 min. The

supernatant was discarded after centrifugation. The above xylene

washing step was repeated three times. The deparaffinized sample was

rehydrated by incubating with 1 mL of 100% ethanol at RT for 3 min.

The sample was centrifugated at 3,000 × g for 2 min, with the

supernatant discarded. The ethanol washing step was repeated three

times. After ethanol washing, 40 µL of lysis buffer (2% sodium dodecyl

sulfate (SDS), 20 mM tris(hydroxymethyl)aminomethane (Tris), 1%

protease inhibitor, pH 8.0) was added to each sample, which was then

subjected to a focused ultrasonication step (work 4s, suspend 6s, total

time 2min) with Model 120 Sonic Dismembrator (Fisher Scientific,

Pittsburgh, PA). After the focused ultrasonication repeated for five

times, the disrupted samples were incubated at 98˚C for 120 min.

With the supernatants collected by centrifugation at 10,000 × g for
Frontiers in Immunology 03
10 min at 4˚C, the concentration of the obtained protein supernatant

was measured by BCA Protein Assay Kit (Thermo Scientific,

Waltham, MA).
In-gel digestion

For each FFPE sample, 10 µg of the extracted proteins were

respectively subjected to in-gel trypsin digestion according to

standard procedures with minor modifications (18, 19). Briefly, the

protein concentration was adjusted to 1 mg/mL with lysis buffer. 4 ×

sample loading buffer was added to a final concentration of 1 x and

Tris(2-carboxyethyl) phosphine (TCEP) was added to a final

concentration of 10 mM. The protein samples were denatured and

reduced by incubating at 90°C for 20 min. After cooling down to the

room temperature, the samples were alkylated by incubating with 25

mM IAA at room temperature in the dark for 30 min. The protein

samples were then loaded into the wells of an SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) gel (i.e., 4% stacking gel and 10%

separating gel). The gel electrophoresis was stopped once the dye

front migrated into the separating gel and reached about 1cm from

the top of the separating gel. After Coomassie blue staining, the 1 cm

long gel band corresponding to proteins were excised and chopped

into about 20 small pieces. The gel pieces were distained by incubating

with 50% ACN in 50 mM ammonium bicarbonate (NH4HCO3) for

15 min at 37°C with sharking for three times, followed by incubating

with pure water for 1 h at 37°C with shaking for three times.

Subsequently, the gel pieces were treated with 100% ACN, followed

by rehydration with digestion buffer (50 mM NH4HCO3 buffer

containing 2% ACN). Protein tryptic digestion was performed at

37°C for overnight with 10 ng/µl trypsin (Promega, Mannheim,

Germany). Digestion was terminated with FA at a concentration of

1% (v/v). Finally, the tryptic digests were extracted by incubating with

50% ACN followed by 80% ACN, purified with stage-tip protocol (20)

and lyophilized with a vacuum concentrator (Thermo Scientific,

Waltham, MA).
On-filter digestion

For each FFPE sample, 10 µg of the extracted proteins were

processed using a filter-aided sample preparation (FASP) method

(21) with minor modifications. Briefly, the proteins were denatured

and reduced by incubating with 100 mM TCEP for 10 min at 90°C.

After the sample was cooled down to RT, 100 µL of 8 M urea

(dissolved in 100 mM NH4HCO3) was added to the sample and

mixed. Then the mixture of each sample was loaded onto a 10-kDa

centrifugal filter unit (250 µL/unit) followed by centrifugation at

14,000 g for 20 min. After the proteins on the membrane were washed

with 200 µL of 8 M urea once, 200 µL of 8 M urea containing 20 mM

IAA was added to the membrane and incubated at RT for 30 min in

the dark. Next, the proteins on the membrane were washed with 200

µL of 8 M urea three times followed by 100 mM NH4HCO3 three

times. Finally, 150 µL of 100 mM NH4HCO3 (pH 8.0) containing 0.4

µg of trypsin was added to each unit and incubated at 37°C for

overnight. After digestion, FA was used to acidify the protein digests

to terminate digestion at 1% FA (v/v). The filtrate units were
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centrifuged at 14,000 g for 15 min, and the flow-through containing

the peptides was collected. To increase peptide recovery from the

membrane, the membrane was further washed with 150 µL of water,

with elutes lyophilized with a vacuum concentrator.
Liquid chromatography with tandem
mass spectrometry

The LC-MS/MS experiments were performed using

nanoACQUITY Ultra-Performance LC (UPLC) system (Waters,

Milford, MA) coupled with a LTQ Orbitrap Velos mass

spectrometer (Thermo Scientific, San Jose, CA). Peptide separation

was performed on a C18 capillary column (10.5 cm, 3 mm, 120 Å)

from New Objective (Woburn, MO). The two eluent buffers were

H2O with 2% ACN and 0.1% FA (mobile phase A), and ACN with 2%

H2O and 0.1% FA (mobile phase B), and both were at pH 3. The

gradient of the mobile phase B was set as follows: sample loaded at 2%

B for 10 min, then 2%-35% B in 45 min, 35%-98% B in 10 min, and

maintained at 80% B for 10 min. After separation, the column was

equilibrated at 2% B for 25 min. The flow rate was 350 nL/min.

The LTQ Orbitrap Velos mass spectrometer was operated in the

data-dependent acquisition (DDA) mode. MS1 scans were acquired

in the Orbitrap analyzer at a resolution of 1.5 × 104 over the m/z 350-

1,500 range. The AGC targets were set as 1 × 106 and 5 × 103 for MS

scans and MS/MS scans, respectively. The ion accumulation times

were set as 60 ms for MS scans and 50 ms for MS/MS scans. To

improve spectrum utility, only ions with charge state between 2 and 4

were subjected to fragmentation with a minimum signal threshold of

500. The 20 most intense ions were fragmented at a normalized

collision energy of 35%. Tandem mass spectra were acquired in the

ion trap. The dynamic exclusion time was set to 30 s, with the

isolation window as 2 Da. For MS2, the selected precursor ions were

fragmented with activation time of 20 ms while activation q as 0.25.
Data analysis

Raw data files were processed using Proteome Discoverer

(Thermo Scientific, version 1.4) with SEQUEST search engine. MS/

MS spectra were matched with a Uniprot Homo sapiens database

(204,961 entries, May 2022) and BK polyomavirus (strain AS)

(BKPyVN) database (5 entries, May 2022), using the following

parameters: full trypsin digest with maximum 2 missed cleavages,

static modification carbamidomethylation of cysteine (+57.021 Da),

dynamic modification of phosphorylation at serine, threonine, or

tyrosine (+79.966 Da) as well as oxidation at methionine (+15.995

Da). Precursor and fragment ion mass tolerance was 10 ppm and 0.8

Da, respectively. Peptide spectral matches were validated using

percolator with 1% false discovery rate (FDR). To enable

meaningful expression comparison of different proteins. The data

across different phenotypes were quantile normalized with

normalyzer software (22), which was implemented in R using

Bioconductor packages. Principal component analysis (PCA) was

performed by subjecting data to Perseus software (version 1.6.10.50,

available online: https://maxquant.net/perseus/) (23) based on

singular value decomposition (24).
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Statistical analysis and
bioinformatics analysis

Statistical analysis was performed using the empirical Bayes

method implemented in R package LIMMA (25) to determine

proteins with statistically significant difference in abundance across

different biopsies. To minimize the inaccuracy issues associated with

label-free quantitative proteomics, log transformation followed by

quantile normalization were performed before quantification analysis

(26). DEPs were selected using two criteria: 1) their expression levels

in TCMR biopsies significantly changed (i.e., the Benjamin–Hochberg

procedure adjusted p value < 0.05) in comparison with STA samples;

2) fold changes (FC) of protein expression levels between TCMR and

STA are >2 or <0.5.

Bioinformatics analysis, including protein localization and

signaling pathways involved by the identified proteins, was

performed using QIAGEN Ingenuity Pathway Analysis (IPA)

(https://digitalinsights.qiagen.com). Database for Annotation,

Visualization and Integrated Discovery (DAVID) (https://david.

ncifcrf.gov/) was performed for the functional annotation of the

identified proteins (27, 28). In addition, the protein-protein

interaction was predicted using the STRING software (https://

string-db.org/) with a confidence cutoff as 0.7, followed by

visualization using Cytoscape software (https://cytoscape.org/).
Machine learning and validation

Three machine learning predictive models were used: linear

discriminant analysis (LDA), support vector machine (SVM), and

random forest (RF). LDA uses Gaussian assumptions and Bayes

theorem to estimate the posterior probability of being classified as

TCMR for each testing sample (29). Those with posterior

probabilities greater than or equal to a specific cutoff are classified

as TCMR. LDA was implemented by the “lda” function in the R

package “MASS”. The second method SVM separates the STA and

TCMR samples by finding a higher-dimension hyperplane that

maximizes the margin, which is the minimum distance of the

objects to the hyperplane (30). SVM was implemented by the

“svm” function in the R package “e1071”. RF classifies the samples

by a majority vote of random trees using the classification and

regression tree algorithm. The trees are constructed by

bootstrapping of samples and subsampling of features (31). This

method was implemented using “randomForest” function in the R

package “randomForest”. To evaluate the prediction performance of

the protein signatures panel to distinguish TCMR, STA and BKPyVN,

we performed a leave-one-out cross-validation (32) and employed the

three, above-mentioned learning algorithms (i.e. LDA, SVM and RF)

respectively. In each leave-one-out cross-validation procedure, one

sample was held out as testing sample and the remaining samples are

used as training set (33–35). Missing values were imputed. DEP

analysis for the TMT and label-free training sets with all protein

features was performed using an empirical Bayes method by R

package LIMMA (25). The co-differentially expressed protein

(cDEP) features of TMT and label-free proteomics data were then

selected. The label-free intensities of selected proteins were used to

construct classifiers by implementing the three machine learning
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algorithms. Then we predict the classification of the testing sample

using the classifiers we constructed. Performance was evaluated by

calculating sensitivity, specificity, and accuracy. The detailed machine

learning code was described in Supplementary Materials.
Results

Development of a label-free quantitative
proteomics workflow for kidney
FFPE biopsies

We previously reported a quantitative proteomic workflow for

FFPE specimens, consisting of a loss-less sample preparation method, a

TMT10plex-proteomic protocol, and a systematic data analysis pipeline

(Figure 1A) (15). In this work, to simplify the workflow, a modified

FASP method, which showed a comparable performance with in-gel

digestion strategy for biopsy specimens (data not shown here), was

applied for the protein digestion. In addition, instead of labeling the

tryptic peptides with isobaric reagents followed by fractionation, the

tryptic digests of FFPE specimens were injected directly to the

separation column for LC-MS/MS analysis without peptide

fractionation (Figure 1B). After database search, the identified and

quantified proteins were subjected to systematic statistical analysis

using the bioinformatics tool of R package LIMMA to obtain DEPs

(Figure 1C) before building a predictive model (Figure 1D). Using this

workflow, we analyzed 15 FFPE biopsies containing 5 TCMR, 5
Frontiers in Immunology 05
BKPyVN and 5 STA. A total of 800-1350 proteins were identified

and quantified with high confidence in each individual sample

(Supplementary Table S1–S3) using a 45 min LC gradient.
Label-free quantitative proteomics analysis
distinguishes different kidney transplant
injury biopsies

Each step in the label-free proteomics workflow was optimized for

FFPE biopsies to improve reproducibility. As shown in Figure 2A, a

Pearson’s correlation coefficient as high as 0.9 among the replicate

experiments was achieved using our label-free workflow,

demonstrating a good reproducibility in analyzing FFPE biopsies. To

test whether label-free proteomics could distinguish different kidney

transplant pathologies from one another, PCA was performed to the

label-free proteomic data (Supplementary Table S4). As shown in

Figure 2B, the quantified FFPE proteins not only segregate TCMR

biopsies from control specimens (TCMR vs. STA), but also distinguish

the two tested disease phenotypes from each other (TCMR vs. BKPyVN).
Differential expression analysis reveals
potential biomarkers for TCMR

To identify DEPs that can serve as biomarkers to distinguish

TCMR from BKPyVN and STA, differential expression analysis was
A

B

DC

FIGURE 1

A flow chart showing the procedures to diagnose TCMR by FFPE biopsy-based proteomics and machine learning. (A) Experimental procedures for TMT-
based quantitative proteomics. The proteins were extracted from 5 TCMR, 5 BKPyVN, and 5 STA biopsies, the digested peptides were labeled with
TMT10-plex-reagents and separated by basic reverse phase C18 material. The fractionated peptides were subjected to LC-MS/MS analysis; (B)
Experimental procedures for label-free quantitative proteomics. The proteins were extracted from 5 TCMR, 5 BKPyVN, and 5 STA biopsies, the digested
peptides were directly subjected to LC-MS/MS analysis; (C) The proteins were subjected to a systematic statistical analysis consisting of log
transformation, quantile normalization, and LIMMA analysis to obtain differentially expressed proteins; and (D) The machine learning algorithm was
established based on the training data and validated with testing data.
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performed using an empirical Bayes method implemented in R

package LIMMA (25). In total, 329 out of the 924 quantified

proteins were identified as DEPs for TCMR when comparing to

STA (Supplementary Table S5), with the expression levels of 86

proteins upregulated and 243 downregulated. Similarly, LIMMA

analysis revealed that a total of 645 DEPs significantly dysregulated

in BKPyVN in comparison to STA biopsies (Supplementary Table

S5), with the expression levels of 357 proteins upregulated and 288

downregulated. In addition, significant changes in expression levels of

467 proteins in TCMR occurred in comparison with BKPyVN

biopsies (Supplementary Table S5).
Build protein signature panels for STA,
TCMR and BKPyVN

To build specific protein signature panels for FFPE biopsies of

different diseases, the cDEPs that were confidently quantified with the

same trend (increase or decrease) in both label-free- (Supplementary

Table S5) and TMT-based proteomics analyses (Supplementary Table

S6) were extracted. The STA samples were applied as negative

controls for the disease samples. As a result, 106, 40, and 154

proteins were identified as cDEPs in both quantitative proteomics

methods for TCMR vs. STA, TCMR vs. BKPyVN, and BKPyVN vs.

STA, respectively (Supplementary Tables S7and S8). As shown in the

reference sections in Supplementary Tables S9 and S10, a number of

these potential biomarkers were previously reported to be associated

with kidney transplant injuries.
Frontiers in Immunology 06
Comparison of different machine learning
algorithms for construction of a prediction
model for TCMR

To develop a prediction model that can diagnose TCMR, the

DEPs commonly quantified from both label-free- and TMT-based

quantitative proteomics (Supplementary Table S7) were used as the

classifiers. After combining the above 106, 40 and 154 cDEPs and

removing the overlapped proteins, a total of 247 proteins formed a

panel of protein classifiers (Supplementary Table S11) for predictive

model construction. The detailed procedures to construct the

predictive model are outlined in Figure 3. Three different machine

learning algorithms, i.e., LDA, SVM and RF, were applied to the panel

of protein classifiers, respectively. The performance of these machine

learning algorithms was compared by using a leave-one-out cross-

validation method. During this analysis, each algorithm was

performed once for every instance, with the selected instance as a

single-item test set and all the other instances as training data set. As

shown in Figure 4, the disease and normal phenotypes could be

obviously distinguished from each other using the three prediction

models, with 100%, 100% and 93.3% accuracy achieved in pairwise

cross-validation for SVM, RF and LDA, respectively. The receiver

operating characteristic (ROC) curve, which has been widely used in

clinical epidemiology, was also performed to evaluate the accuracy of

our prediction model to discriminate between “diseased” and “non-

diseased” (36, 37). For all three algorithms, the area under the curve

(AUC) of 1 for the injury subtype provides 100% specificity and 100%

sensitivity between each two disease types (Figure S1).
A

B

FIGURE 2

Quantitative proteomic profiling of FFPE biopsies segregates different kidney transplant injuries. (A) Repeatability of label-free quantitative analysis.
Correlations among 3 replicates for each sample were shown. The correlation coefficient shown in the figure represents the statistical relationship
between every two replicates. The larger the value, the higher repeatability between the two replicates. (B) A PCA plot obtained by Perseus software
demonstrated that the quantified FFPE biopsy proteins were able to segregate TCMR, BKPyVN and STA samples. The PC1 axis is the first principal
direction along which the samples show the largest variation. The PC2 axis is the second most important direction, and it is orthogonal to the PC1 axis.
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Validation of the TCMR prediction model
with blindly tested biopsies

To verify the predictive power of the TCMR prediction models,

an independent set of validation samples consisting of 5 TCMR and 5

STA biopsies was used for blind testing. The samples were subjected

to label-free proteomics analysis, and the data obtained from each

sample was quantile normalized based on the testing data one by one

(Supplementary Tables S12 and S13). With the RF-based model, all

(100%) the 5 STA and 4 (80%) out of 5 TCMR samples were correctly

predicted (80% sensitivity and 100% specificity). With the SVM-based

model, 3 (60%) out 5 STA and 4 (80%) out of 5 TCMR samples were

correctly predicted (80% sensitivity and 60% specificity). Meanwhile,

with the LDA-based model, all (100%) of the 5 STA and 3 (60%) out

of the 5 TCMR samples were correctly predicted (60% sensitivity and

100% specificity).
Validation of the TCMR prediction model
using published transcriptome data sets

To further validate the predictive power of the TCMR prediction

models, published transcriptome data was used. The classifiers using

the 247 proteins from proteomics analysis were applied to two

microarray-based data sets [GSE48581 (38) and GSE36059 (39)]

posted on the Gene Expression Omnibus website. Applying the

three predictive models to GSE36059 achieves 26/35 = 74.3%
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(SVM), 29/35 = 82.9% (RF) and 25/35 = 71.4% (LDA) in sensitivity

as well as 170/281 = 60.5% (SVM), 165/281 = 58.7% (RF) and 182/281

= 64.8% (LDA) in specificity, respectively. Meanwhile, when applied

to GSE48581, the sensitivities of the three models are 24/32 = 75%

(SVM), 25/32 = 78.1% (RF) and 24/32 = 75% (LDA) and the

specificities are 142/222 = 64.0% (SVM), 143/222 = 64.4% (RF) and

136/222 = 61.3% (LDA), respectively.
Discussion

The FFPE specimen is an invaluable archive for the development

of novel molecular diagnostic tests (40). Nucleic acid-based tests have

been explored using material from fresh frozen specimens but have

been hampered by the low quality and efficiency and high cost of

DNA/RNA extraction, along with the scant amount of tissue generally

available from needle biopsies (41). We have focused on developing

proteomics-based molecular diagnostic tests using proteins extracted

from FFPE biopsy specimens.

In comparison with urine and blood, which are also valuable

sources in clinical proteomics for disease screening, diagnosis and

management as they can be obtained non-invasively, FFPE specimens

are advantageous in several aspects. For instance, the FFPE samples

are stable at room temperature, and the storage time (up to 32 years)

does not have a significant effect on protein identifications from FFPE

kidney tissues (42). By contrast, the protein abundance would change

significantly when urine was stored up to 3 days at 4°C or up to 6
FIGURE 3

Development of machine learning derived disease prediction model for TCMR, BKPyVN and STA. With the LC-MS/MS data sets of the total of 15 kidney
transplant FFPE samples collected, the protein names and corresponding intensities were obtained after database search. Feature selection process
selects the critical features (e.g., intensity) for the prediction of kidney rejection disease. After feature selection, preprocessing procedures such as outlier
removal, feature scaling (log transformation) and quantile normalization were performed. Various classification techniques were applied to the
preprocessed data, with performance evaluated via leave-one-out cross-validation strategy. For a total of 15 samples (5 TCMR + 5 BKPyVN + 5 STA), 14
were used as training dataset and the other one as test dataset. Finally, the optimized biomarker panel and disease prediction model were obtained.
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hours at room temperature (43). Similar changes in protein

abundance were observed in blood samples when were stored for 1

month at temperatures above -20°C (44). In addition, the extremely

wide concentration range, spanning at least nine orders of magnitude,
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raises a significant challenge for the discovery of blood biomarkers

(45). Due to the differences in the daily intake of fluid, the protein and

peptide concentrations widely vary with time of collection in urine

samples (43), which limit the study of urine biomarkers. Therefore,
FIGURE 5

Biological classification of DEPs from label-free quantitative proteome data sets. Treemap of cellular categories altered in disease biopsies in comparison
with STA sample illustrated by Proteomaps. The conditions of each disease are marked on the upper side.
FIGURE 4

Diagnostic ability of the three different predictive models applied to disease and normal phenotypes. The probability calculated for the kidney transplant
biopsy specimens using biomarker panel with the three different prediction models. LDA directly provides posterior probabilities. For random forest (RF),
the probabilities are the proportions of votes among the ensembled trees. For SVM, we fit logistic distribution and obtain posterior probabilities by setting
probabilities=TRUE in svm function of “e1071” package. R1-R5 are individual samples in each kidney pathology.
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FFPE specimens constitute a major part of most archival biobank and

provide an invaluable resource for retrospective studies. As biopsy-

based histopathologic examination remains essential for evaluating

kidney allograft dysfunction, developing clinical proteomics assays

using FFPE biopsy specimens is of great significance to assist the

pathologists to enhance biopsy interpretation.

In our previous work, a TMT-based quantitative proteomic

workflow was developed for molecular profiling of FFPE specimens

(15). However, this workflow is not easily manageable in clinical

practice for several reasons. First, TMT-labeling reagents are

expensive and analyzing TMT-labeled samples requires high-end

mass spectrometers with high resolution. Second, the TMT labeling

procedures are labor-intensive, and quantitative accuracy is

hampered by low labeling efficiency if the experiments are not

performed under optimal conditions. Therefore, in this work, we

developed a label-free quantitative proteomic workflow for FFPE

biopsies as a widely applicable, user-friendly clinical tool, combining

the advantages of a simplified sample preparation process with the

possibility to perform comparative quantification across many

samples. In addition, the cost for reagents can be as low as a few

dollars per test.

As a proof-of-principle study, we applied this label-free

quantitative proteomic workflow to a small discovery cohort of 15

FFPE biopsies including 5 TCMR, 5 BKPyVN and 5 STA. The high

Pearson’s correlation coefficient between the replicate experiments

demonstrated that a good reproducibility can be achieved. Although

only about one third of proteins (800-1350 proteins) were identified

and quantified in the label-free proteomics workflow compared to

those (2,798 proteins) in the TMT-based workflow, the PCA

clustering result revealed that the obtained label-free proteomic

data sets is capable of differentiation among different

graft pathologies.

To gain insight into disease mechanism, the 329 DEPs between

TCMR vs. STA and the 645 DEPs between BKPyVN vs. STA obtained

by label-free proteomics were subjected to bioinformatic analysis. The

Proteomap analysis revealed that these two pools of DEPs shared

many enriched biological functions and pathways (46). As shown in

Figure 5, proteins involved in splicing (spliceosome), protein

synthesis (ribosome), and PI3K-AKT signaling pathway were

enriched in the DEPs upregulated in both TCMR and BKPyVN.

Proteins involved in metabolism pathways (e.g., amino acid

metabolism, carbohydrate metabolism, lipid and steroid

metabolism) and energy production (e.g., oxidative phosphorylation

and glycolysis) are mostly downregulated in both disease phenotypes.

It is worth mentioning that a number of proteins in the mitochondrial

electron transfer chain, responsible for oxidative phosphorylation and

ATP synthesis, were downregulated in both TCMR and BKPyVN.

Whether the downregulation of the mitochondrial electron transfer

chain proteins is one of the causes or the results of the kidney allograft

rejection needs to be further investigated.

A similar observation was noted when the 329 DEPs between

TCMR vs. STA were subjected to STRING analysis (Figure S2A).

Many proteins involved in electron transfer chain and energy

production, for example, oxidoreductases and proteins for glycolysis

and oxidative phosphorylation, were expressed at lower levels in

TCMR biopsies in comparison with STA specimens. To get more

clues to disease mechanism for TCMR, the 329 DEPs between TCMR
Frontiers in Immunology 09
vs. STA were subjected to DAVID analysis; and several groups of

proteins stood out (Supplementary Table S14 and Figures S2B–E).

Most of these proteins are involved in innate immune system and

inflammation response. The first group is collagens (Figure S2B).

Compared with STA specimens, the expression of the many collagens,

including COL1A2, COL6A1, COL6A3, COL1A1, COL4A2, COL6A2

AND COL18A1, was upregulated in TCMR. It is interesting that a

recent genome study on the adaptive immune landscape of kidney

allograft biopsies showed a significant increase in both formation and

degradation of collagens in TCMR compared with STA biopsies (47).

The second group of proteins that stood out in the 329 DEPs between

TCMR vs. STA is the ion channel proteins and transporters.

Abnormal ion transport is known to be associated with local or

systemic inflammatory response (48). In this study, most of the ion

channel proteins and transporters were downregulated in TCMR in

comparison with STA (Figure S2C). For example, chloride

intracellular channel protein CLIC1, which was reported to

participate in the regulation of the NLRP3 inflammasome (49), was

found to be decreased in its expression in TCMR in comparison with

STA. The third group of proteins is protein kinases (Figure S2D). As

an important class of intracellular enzymes that play a crucial role in

most signal transduction cascades, from controlling cell growth and

proliferation to the initiation and regulation of immunological

responses (50), many protein kinases were found to be decreased in

TCMR in comparison with STA biopsies. For example, creatine

kinase (CK), which is associated with reduced inflammation (51),

decreased 7-fold in TCMR biopsies. The fourth group of proteins that

significantly changed in their expression levels between the TCMR

and STA biopsies is translation and transcription regulators (Figure

S2E). Among them, HNRNPK, which could promote the activation of

NLRP3 inflammasome (52), increased 2-fold in TCMR biopsies. The

bioinformatic analysis demonstrated that the developed label-free-

based proteomics method in this study not only could facilitate the

understanding of the molecular mechanisms associated with TCMR,

but also provide the potential biomarkers for disease diagnosis.

To obtain a panel of protein classifiers/biomarkers to diagnose

TCMR with high accuracy, we chose the DEPs confidently quantified

with the same trend (increase or decrease) in protein expression in

both label-free-based- and TMT-based proteomics analyses. As a

result, 106, 40, and 154 proteins were identified as potential classifiers

for TCMR vs. STA, TCMR vs. BKPyVN, and BKPyVN vs. STA,

respectively (Supplementary Table S7). The 106 potential classifiers/

biomarkers between TCMR vs. STA were subjected to Ingenuity

Pathway Analysis (IPA). The analysis revealed that the 106

potential classifiers/biomarkers were mainly located in extracellular

exosome, nucleus, plasma membrane, ER-golgi and mitochondrion

(Figure 6A), while more than 60% of them were enzymes (Figure 6B).

In addition, these proteins were enriched in various signaling

pathways associated with the inflammatory response, including iron

homeostasis signaling pathway (53), energy production pathways

(e.g., galactose and sucrose degradation) (54), apoptosis pathways

(e.g., LXR/RXR and FXR/RXR activation) (55), and atherosclerosis

signaling (56) (Figure 6C and Supplementary Table S15). In addition,

these 106 potential classifiers/biomarkers between TCMR vs. STA are

associated with kidney damage (e.g., ATP1B1, CST3, FAH, GSS, HPX

and LYZ), tubule injury (e.g., CRYM, GSS, HAGH, HPX and LYZ)

and kidney inflammation (e.g., DCN) (Supplementary Table S15). For
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example, CST3 (cystatin C), an extracellular space protein, was used

as a biomarker to evaluate kidney function (glomerular filtration rate,

GFR) (NCT00300066 in ClinicalTrials.gov database) and to predict

the risk of ischemic stroke (NCT00479518). CST3 was also used as a

potential biomarker to measure the efficacy of valsartan in the

treatment of hypertension for patients with kidney dysfunction

(NCT00140790). In addition to CST3, other proteins such as VIM

(vimentin), LCP1 (lymphocyte cytosolic protein 1), and FTL (ferritin

light chain) are also potential biomarkers for clinical diagnosis (Table

S9). The above analysis showed that many proteins in the potential

classifier panel were reported not only influences innate immunity but

also determine T-cell-mediated immune response, demonstrating the

feasibility of using this potential classifier panel in building TMCR

disease prediction model.

We further evaluated whether a workflow integrating label-free

quantitative proteomics technology with machine learning could be

developed into a disease prediction tool for TCMR diagnosis. The

protein intensity data (the summarized intensities of all identified

peptides for each protein) in the FFPE biopsies of TCMR, BKPyVN

and STA obtained from the label-free-based experiments was used as the

classifiers for machine learning predictionmodel. As the core component

of the developed prediction model, the selection of an optimal machine

learning algorithm is prerequisite. LDA, Logistic Regression, Decision
Frontiers in Immunology 10
Tree, k-Nearest Neighbors, RF, SVM, Naive Bayes and Artificial Neural

Network are among the commonly used machine learning techniques

(57–59). In this study, three machine learning algorithms, LDA, SVM,

and RF, were applied to the quantitative proteomics data collected from

kidney FFPE biopsies. cDEPs identified in common from both TMT and

label-free proteomic workflows were used as classifiers. With leave-one-

out cross-validation, all three algorithms were found to achieve

preliminary predictive performance for rejection with 100% sensitivity

and specificity when applied to the discovery sample set. In addition,

using an independent validation sample set of 5 TCMR and 5 STA

biopsies, the TCMR prediction models also achieved satisfactory

predictive power. A good prediction result was also achieved when the

models were applied to transcriptome data published by others. Among

the three models constructed in this study, RF-based TCMR prediction

model outperformed the two other models. These results demonstrated

the diagnostic potential of RF-based prediction model for kidney

transplant injuries.

Although we applied stringent histopathologic criteria to define

TCMR, rejection is a heterogenous process, and a larger sample size

will be necessary to cover the broad spectrum of TCMR. Since no

simple rule of thumb is available to determine the necessary sample

size for omics studies seeking to find novel biomarkers, our study has

limitations. The potential classifiers/biomarkers identified in this
A B

C

FIGURE 6

Bioinformatics analysis of 106 potential classifiers between TCMR and STA commonly quantified from two methods. Ingenuity Pathways Analysis of
cDEPs commonly identified from both TMT- and label-free quantitative proteome analysis revealed cellular component (A), molecular function (B), and
canonical pathways (C) enriched in the 106 potential classifiers between TCMR vs. STA samples. The orange and green labeled bars respectively
represented the up-regulated and down-regulated proteins in TCMR in comparison with STA.
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study will need to be optimized and validated using larger kidney

rejection biopsy cohorts. The potential classifiers/biomarkers

identified by mass spectrometry-based proteomic technology also

need to be verified using other biomedical methods before being used

to develop molecular tests. More accurate and specific molecular

testing can lead to more effective treatment, prolong graft life, and

improve the quality of life for patients with chronic kidney failure.
Conclusion

Taken together, we have successfully developed an integrative pipeline by

combining label-free quantitative proteomics and machine learning

prediction models for TCMR diagnosis. Instead of relying on a single

biomarker for disease diagnosis, we used a multi-biomarker panel to

enhance diagnostic accuracy, sensitivity, and specificity. Because of the

small sample size in this pilot study, the biomarker panel identified here

will require further optimization and validation in larger biopsy data sets. As

a proof-of-principle study, however, this report demonstrates the feasibility of

clinical implementation of molecular diagnostics tests integrating label-free

quantitative proteomics and machine learning predictive models.
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