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Immunotherapy using immune checkpoint inhibitors (ICIs) is a breakthrough in

oncology development and has been applied to multiple solid tumors. However,

unlike traditional cancer treatment approaches, immune checkpoint inhibitors

(ICIs) initiate indirect cytotoxicity by generating inflammation, which causes

enlargement of the lesion in some cases. Therefore, rather than declaring

progressive disease (PD) immediately, confirmation upon follow-up

radiological evaluation after four–eight weeks is suggested according to

immune-related Response Evaluation Criteria in Solid Tumors (ir-RECIST).

Given the difficulty for clinicians to immediately distinguish pseudoprogression

from true disease progression, we need novel tools to assist in this field.

Radiomics, an innovative data analysis technique that quantifies tumor

characteristics through high-throughput extraction of quantitative features

from images, can enable the detection of additional information from early

imaging. This review will summarize the recent advances in radiomics

concerning immunotherapy. Notably, we will discuss the potential of applying

radiomics to differentiate pseudoprogression from PD to avoid condition

exacerbation during confirmatory periods. We also review the applications of

radiomics in hyperprogression, immune-related biomarkers, efficacy, and

immune-related adverse events (irAEs). We found that radiomics has shown

promising results in precision cancer immunotherapy with early detection in

noninvasive ways.

KEYWORDS

radiomics, immunotherapy, precision medicine, pseudoprogression, hyperprogression
1 Introduction

Immunotherapy using ICIs has been revolutionary in cancer treatment owing to its

significant impact on the reactivation of the immune system (1, 2). Unlike traditional

cancer treatment approaches, which kill tumor cells directly, ICIs initiate indirect

cytotoxicity by generating inflammation and may cause enlargement of the lesion in
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some cases. Hence, there may be different interpretations of medical

imaging for patients undergoing immunotherapy (3).

Medical images contain many quantitative biomedical features

based on intensity, shape, size or volume, and texture, which can

offer information on the tumor microenvironment and phenotype.

These features are difficult to identify by human vision alone.

Radiomics is an emerging field that extracts quantitative

features from medical images and converts digital medical images

into mineable, high-dimensional data with new high-

throughput approaches.

Features extracted in radiomics can be divided into two

categories: “semantic” and “agnostic” (4). Semantic features

include shape, location, vascularity, speculation, necrosis,

attachments, and lepidics, commonly used in imaging reports.

However, radiomics can quantify these features with computer

assistance. Agnostic features include histograms (skewness,

kurtosis), haralick textures, laws textures, wavelets, Laplacian

transforms, Minkowski functionals, and fractal dimensions. These

features can provide intratumoral heterogeneity information

through quantitative descriptors (4).

The process of radiomics involves the following discrete steps:
Fron
1. Image acquisition (i.e., CT, MR, and PET/CT)

2. Volume of interest (VOI) identification and segmentation:

identifying tumors and their surroundings as VOIs and

delineating the borders of the volume

3. Feature extraction and qualification: extracting and

qualifying high-dimensional features from the VOI
tiers in Immunology 02
4. Modeling: mining extracted features with artificial

intelligence to develop classifier models that aid detection,

diagnosis, prognosis assessment, and treatment response

prediction
This approach could be applied to any aspect of medical

imaging analysis, including immunotherapy, thereby providing a

novel noninvasive approach to precision cancer treatment.

Genomic and microenvironment heterogeneity within the

tumor volume is displayed on the imaging, while these fine

distinctions cannot be recognizable by the naked eye, even for

experienced radiologists. Nevertheless, these subtle differences can

be recognized by radiomics using quantitative assays, allowing for

microscopic analyses of medical imaging to establish predictive,

diagnostic, and prognostic models (Figure 1).

This review summarizes radiomics concerning immunotherapy

from a clinical perspective. It discusses its potential to predict

outcomes, molecular biomarkers, atypical responses, and

immune-related adverse events (irAEs) of immunotherapy.
2 Prediction of immune-related
biomarkers

To date, predictive biomarkers of immune responses are mainly

driven by invasive tissue biopsy, while limited biopsy samples may be

difficult to provide a holistic picture of the heterogeneity within the

tumor and its microenvironment. Radiomics is a powerful auxiliary
FIGURE 1

Radiomics analysis can obtain more information from medical images. (A) There is genomic and microenvironment heterogeneity within the tumor
volume displayed on the imaging, while these fine distinctions cannot be recognizable by the naked eye, even for experienced radiologists. (B) These
subtle differences can be recognized by radiomics using quantitative assays, allowing microscopic analyses of medical imaging to establish
predictive, diagnostic, and prognostic models.
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to conventional invasive biopsies, overcoming the intratumoral

heterogeneity within the same patient. The section below describes

current progress in immune-related biomarkers using radiomics and

how radiomics can overcome these limitations (Table 1).
2.1 Radiomics and programmed cell death
ligand 1

As a promising treatment for cancer patients, immunotherapy is

not effective for all patients (3, 29, 30). Thus, recognizing the

appropriate candidate for immunotherapy is of vital importance. PD-

L1 expression examined via immunohistochemistry (IHC) is associated

with the clinical efficacy of anti-PD-1/PD-L1 therapy. It has been widely

applied as a reference to immunotherapy decision-making in most

cancer types during clinical practice (29, 31). The expression levels of

PD-L1 may change during therapy (32, 33). Due to the existence

of intratumoral heterogeneity, the IHC test results of a small number of

biopsy samples could not be representative of the whole (34–36).

As the artificial intelligence (AI) field progresses, PD-L1

prediction with radiomics has received increased attention in recent

years (Table 1). Giulia Mazzaschi et al. established a noninvasive

model with computed tomography (CT)-extracted features to predict

the level of PD-L1 expression and tumor infiltrating lymphocytes

(TILs). They found that texture, effect, and margins were directly

associated with PD-L1 expression and TILs. These features also

correlated with the prognosis of patients with non-small cell lung

cancer (NSCLC) (5). Similarly, researchers have tried to explore the

potential of radiomics biomarkers for predicting the immuno-

oncologic characteristics of hepatocellular carcinomas (HCC) based

on magnetic resonance imaging (MRI). They found that radiomics

features, specifically texture feature variance and enhancement ratios,

were strongly associated with PD-L1 expression and were predictive

diagnostic biomarkers for assessing early HCC recurrence (6).

PET/CT was also applied to predict PD-L1 expression levels.

The researchers extracted imaging histology features from PET/CT

images of 399 lung cancer patients, of which 24 features were closely

related to PD-L1 expression levels. The researchers further

developed prediction models based on these features. PET/CT-

based prediction model achieves 88% AUC in predicting patients

with >50% PD-L1 expression (8).

Radiomics features, in combination with clinical characteristics,

may present a better predictive performance. Yoon et al. built a PD-

L1 prediction model using both the Rad-score and clinical variables,

which turned out to be more accurate than the clinical-variable-

only derived model (7).

To date, radiomics remains insufficient to replace IHC testing

for the detection of PD-L1. Despite this, the repeatable and

noninvasive nature of radiomics analysis may offer additional

information for difficult-to-repeat invasive PD-L1 analyses.
2.2 Radiomics and TILs

TILs in the tumor microenvironment play an essential part in

the immune response against cancer and appear to be associated
Frontiers in Immunology 03
with the outcome of immunotherapy. Previous studies have

indicated that tumor-infiltrating regulatory T cells (Treg) and

tumor - a s so c i a t ed mac rophage s (TAMs) induc e an

immunosuppressive microenvironment that is directly responsible

for the failure of immunotherapy, while CD8+ T tumor infiltration

is associated with better outcomes to cancer immunotherapy (37).

One of the early attempts to create radiomics signatures aimed

at predicting the presence of CD8+ T cells and the clinical efficacy of

immunotherapy was conducted by Sun et al. The signature

combining eight radiomics features was developed from CT

images, genomic data, and ribonucleic acid (RNA) sequencing.

The signature was validated on external cohorts to discriminate

CD8+ cells and immune phenotypes. Researchers also found that a

higher baseline radiomics score is associated with a better response

to immunotherapy (12). This study used a radiomics-based

biomarker to correlate pathology with prognosis, while the area

under the ROC curve (AUC) score for this prediction model was

relatively low. In addition, the parameters of image acquisition were

not uniform. Therefore, the credibility of the radiomics signature

would be affected (12). Another retrospective study revealed that

low CT image intensity and high heterogeneity were associated with

lower PD-L1 expression and higher CD3 cell infiltration, which was

an immune-activated state strongly correlated with favorable

overall survival (OS) (13).

Many studies extract radiomics features from pretreatment or

posttreatment medical images to predict the TILs associated with

the response to immunotherapy (14, 15). “Delta radiomics” can

explore changes in the tumor microenvironment before and after

immunotherapy. Therefore, it may provide an earlier and more

accurate prediction of the efficacy of immunotherapy before visible

changes to the naked eye. Khorrami and colleagues explored the

potential of radiomics using pretreatment and subsequent CT

images from 135 NSCLC patients treated with ICIs. The

concordance of the radiomics features with TIL infiltration was

confirmed by comparison with TIL infiltration in diagnostic biopsy

samples. They reported that delta-radiomics is associated with

response and OS in NSCLC patients undergoing ICIs (16).
2.3 Radiomics and tumor
mutational burden

Previous studies have suggested that TMB is another predictive

biomarker for immunotherapy across multiple cancer types, as high

TMB is correlated with greater neoantigen and immune

infiltration (38).

Researchers have investigated the potential of applying

radiomics to predict the TMB status in patients with advanced

NSCLC and endometrial and bladder cancers (17, 18, 21, 22)

(Table 1). He et al. constructed the TMB radiomics biomarker

(TMBRB) to predict the pretreatment TMB status. They observed

that TMRRB could accurately divide patients into high TMB and

low TMB, thus predicting the OS and progression-free survival

(PFS) of NSCLC patients treated with ICIs. The predicted treatment

efficacy improves when combined with the Eastern Cooperative

Oncology Group (ECOG) performance status (17).
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TABLE 1 Summary of Key Studies on the Role of radiomics in predicting the expression of immune-related biomarkers.

Prediction model Machine learn-

ing software

Results Type of validation

ltiparametric prognostic

el

SPSS, STATA AUC: 0.91 Independent validation

with single-center data

iomics features MA TLAB,

SPSS

R=0. 41–0.47,

p<0. 029

Independent validation

with single-center data

ical-Radiomics model SPSS,

MedCalc, R

C-statistic,

0.667

Independent validation

with single-center data

iomics model Python The highest

AUC, 0.97

Independent validation

with single-center data

tural index of correlation SPSS OR, 0.009 (p

= 0.015)

Independent validation

with single-center data

p learning score MATLAB AUC, 0.81 Independent validation

with multi-center data

iomics features

rseness and

LM_ZLNU)

R P=0.025,0.035 Independent validation

with single-center data

iomics signature R AUC, 0.67 Independent validation

with multi-center data

iomics model R AUC, 0.853 Independent validation

with single-center data

iomics model R AUC, 0.751 Independent validation

with single-center data

ical -radiomics

ogram

Python, R AUC, 0.926 Independent validation

with single-center data

ta-radiomics model R AUC=0.88 ±

0.08

Independent validation

with multi-center data

p learning model Python, R AUC= 0.85 Independent validation

with single-center data

ical-radiomic model R AUC(MMR)

=0.78;

Independent validation

with single-center data

(Continued)

Z
h
o
u
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
3
.10

8
8
8
74

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

Reference Tumor type Application NO. of

cases

Imaging

modality

Segmention Segmention

software

Machine learning algo-

rithm

Giulia

Mazzaschi (5)

NSCLC PD-L1 100 CT Semi-

automatically

3d-Slicer Regression Mu

mo

Hectors (6) HCC PD-L1 48 MRI Manual OsiriX Logistic regression Rad

Yoon (7) Advanced lung

adenocarcinoma

PD-L1 153 Pretreatment

thin section CT

Semi-

automatically

Aview

Research

Logistic regression Clin

JIANG M (8) NSCLC PD-L1 399 PET/CT Semiautomatically ITK-Snap Logistic regression and

random forest classifier

Rad

CHEN (9) Squamous Cell Carcinoma

of the Head and Neck

PD-L1 53 PET/CT Manual SPSS Regression Tex

MU (10) NSCLC PD-L1 616 PET/CT Semiautomatically ITK-Snap Deep learning Dee

Polverari (11) NSCLC PD-L1 57 PET/CT Semiautomatically LIFEx Regression Rad

(co

GL

Sun (12) Advanced solid tumours Tumour-infiltrating CD8 cells and

response to immunotherapy

491 CT Semiautomatically LIFEx Regression Rad

Tang (13) NSCLC PD-L1 and CD3 infiltration 290 CT Semiautomatically 3D Slicer,

IBEX

Hierarchical clustering

algorithm

Rad

LIAO (14) HCC Tumor-Infiltrating CD8+T Cells 142 CT Manual ITK-SNAP Elastic net regression Rad

CHEN (15) HCC Immunoscore 207 MRI Manual A.K.

software

Regression Clin

nom

Khorrami (16) NSCLC TILs 139 CT Manual 3D SLICER Linear discriminant

analysis (LDA) classifier

Del

HE (17) NSCLC TMB 327 CT Semiautomatically 3D SLICER Deep learning Dee

Veeraraghavan

(18)

Endometrial cancers MMR, TMB 150 CT Manual ITK-SNAP Random forest classifier Clin
d

a

Z
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TABLE 1 Continued

achine learning algo-

rithm

Prediction model Machine learn-

ing software

Results Type of validation

AUC(TMB)

=0.87

dom forest classifier Clinical -Radiomics model MATLAB AUC=0.80 Independent validation

with single-center data

ep learning Deep learning model MATLAB, R AUC=0.84 Independent validation

with multi-center data

port vector machine

M)

Clinical-radiomic model R AUC= 0.671 Independent validation

with single-center data

ression Radiomics model R AUC=0.853 Independent validation

with single-center data

ression Clinicopathological

radiomics model

R AUC(PD-L1)

= 0.839

AUC(TMB)=

Independent validation

with single-center data

ression Radiomics model Python AUC=0.828 Independent validation

with single-center data

ression Clinical Radiomics

nomogram

R AUC=0.898 Independent validation

with multi-center data

ression Clinical Radiomics

nomogram

R AUC=0.74 Independent validation

with single-center data

ression Deep learning model Python AUC= 0.868 Independent validation

with single-center data

ression Radiomics model R AUC= 0.766 Independent validation

with multi-center data

istic regression Radiomics model R AUC= 0.768 Independent validation

with single-center data
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software

M

Golia (19) Colorectal cancer MSI 198 CT Manual ITK-SNAP Ran

Kather (20) Gastrointestinal cancer MSI 81 H&E histology Manual Macenko

method

De

Wang (21) Lung adenocarcinoma TMB 51 CT Manual 3D-Slicer Sup

(SV

Tang (13) Bladder cancer TMB 75 CT Manual 3D-Slicer Reg

WEN (22) NSCLC TMB; PD-L1 120 CT Manual 3D Slicer Reg

Li (23) Colorectal cancer MSS 173 PET/CT Manual ITP-SNAP Reg

CAO (24) Colorectal cancer MSI 502 CT Manual ITP-SNAP Reg

Pei (25) Colorectal cancer MSI 702 CT Manual – Reg

Zhang (26) Rectal cancer MSI 491 MRI Manual ITK-SNAP Reg

Jiang (27) Gastric cancer Immunescore based on

immunohistochemistry

1778 CT Manual ITK-SNAP Reg

Xue (28) Rectal cancer Immunescore based on

immunohistochemistry

133 MR Manual ITK-SNAP Log
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Radiomics has the potential value of being a powerful aid in

classifying TMB status. Specifically, combining clinical and

pathological features may improve prediction performance (14–

16). Radiomics may provide sufficient information despite

intratumor heterogenei ty to ass is t c l inical decis ions

on immunotherapy.
2.4 Radiomics and other predictive
biomarkers of immunotherapy

Studies have also explored the prediction of other predictive

biomarkers of immunotherapy. Recent studies have evaluated

whether radiomics can identify mismatch repair (MMR)/

microsatellite instability (MSI) status. These explorations focused

on gastrointestinal malignancies based on CT, MRI, and positron

emission tomography-computed tomography (PET/CT) images

(19, 23–25, 39–43) (Table 1).

CAO et al. evaluated whether CT-based radiomics can predict

MSI status in 502 patients with colorectal cancer (CRC) based on

preoperative contrast-enhanced CT images. They further combined

the clinical characteristics with radiomics and then developed a

nomogram to predict the MSI status. The predictive performance of

the radiomics-clinical nomogram was superior to radiomics only

and clinical only (24). Such findings are consistent with another

study (25). Combining clinical and pathological features with

radiomics may add specificity to the prediction model and

contribute to personalized clinical decision-making. The MRI-

based MSI prediction model was similarly developed, with an

AUC of 0.868 (26). Jiang et al. immunoscored gastric cancer

patients based on the immunohistochemical expression of CD3,

CD8, CD45 and CD66b and classified the immunoscores using CT-

based radiomics model. The radiomics model accurately classified

patients with high immunoscore and low immunoscore with an

AUC of 0.786 and had the potential to select patients who would

benefit from chemotherapy (27).
3 Radiomics and response to
immunotherapy

The efficacy of immunotherapy has been proven in large-scale,

randomized clinical trials and clinical practice (29, 44–51).

However, immunotherapy is only partially effective, emphasizing

the need for finding noninvasive and accurate predictive

biomarkers to target immunotherapy to the appropriate patients

(52, 53).

Predictive biomarkers of immunotherapy, including PD-L1 and

TMB status, are acquired via biopsy, which is invasive, difficult to

perform dynamically, and restricted to a small sample of

pathological specimens.

Radiomics offers a noninvasive whole-body evaluation of

tissue biomarkers. Heterogeneity within the tumor may harbor

prognostic information that can be captured and transferred into

radiomics features by radiomics analysis. Considerable evidence

suggests that radiomics could predict immunotherapy
Frontiers in Immunology 06
efficacy by recognizing radiomics features associated with

response (Table 2).

Trebeschi et al. developed a model able to predict the response

to immunotherapy. They suggested that greater heterogeneous and

nonuniform lesions were associated with a better response in

NSCLC, possibly with infiltration and inflammation of the tumor,

while the sample size of the melanoma cohort was too small to

identify optimal imaging biomarkers (54).

Skewness, representing the heterogeneity of a segmented lesion,

was a significant independent predictor of OS and PFS, with a

higher skewness value linked with poorer survival (55). Similarly,

Velcheti analyzed the CT features of 50 NSCLC patients who

underwent nivolumab, and they found that vessel tortuosity was

an independent predictor of nivolumab’s efficacy (56).

Radiomics features from 18F-FDG PET/CT scans also showed

the ability to predict the response to immunotherapy. Several

texture features (PET_SRLGE, KLD_SZE) were associated with

durable clinical benefits, demonstrating that patients with more

heterogeneous tumors might benefit more from immunotherapy.

Notably, the prospective cohort validated the model with an AUC of

0.81 (57). However, these results are somewhat inconsistent with

the results from prior studies, which indicated that more

heterogeneous tumors with CT textures are associated with worse

response rates to chemotherapy or radiation.

Other retrospective studies have explored the potential of

radiomics in evaluating survival and responses to immunotherapy

in different cancer types, including melanoma (58, 66),

gastrointestinal malignancies (59, 67), metastatic renal cell

carcinoma (mRCC) (60), treatment-refractory adult solid tumors

(61), metastatic urothelial carcinoma (62), and NSCLC (11, 65, 68).

The predictive performance of the radiomics model (consisting of

small run emphasis and difference entropy) developed by Valentinuzzi

et al. was superior to that of PD-L1 and iRECIST, with an AUC of 0.90.

Specifically, small run emphasis has the highest predictive performance

to discriminate survival, with higher small run emphasis possibly

having OS survival from pembrolizumab treatment (63). These

results reflected that patients with more homogeneous tumors might

benefit from immunotherapy, consistent with a previous study

conducted by Polverari et al., where nonresponders exhibited higher

tumor heterogeneity at pretreatment CT images (reflected by higher

kurtosis and skewness) than responders (11). A study conducted by

Mu et al. showed the opposite result. They found that heterogeneous

tumors might be more likely to achieve durable clinical responses (57).

These studies have demonstrated that radiomics has the

potential to predict the response to immunotherapy and could

facilitate clinical decision-making. Despite its great potential, the

application of radiomics in clinical immunotherapy is still in its

infancy. Reproducibility and standardization are major problems.

Studies have already explored the standardized workflow of

radiomics (70–74).
4 Atypical response

In the widespread use of immunotherapy in cancer treatment,

unconventional characteristics of response, so-called atypical
frontiersin.org
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TABLE 2 Summary of Key Studies on the Role of radiomics in predicting the response to immunotherapy.

ature type Results
(response)

Result(survival) Type of vali-
dation

odel AUC=0.88 ±
0.08

HR(OS) :1.64, P =
0.0011, C-Index =
0.72

Independent
validation with
multi-center data

AUC=0.76 1-year survival
difference: 24%

Independent
validation with
single-center data

s (Skewness at
le)

– HR(PFS)=4.55, p=
0.0089;
HR(OS)=6.017, p=
0.016

Independent
validation with
single-center data

vessel tortuosity AUC=0.79 – Independent
validation with
single-center data

re AUC=0.81 – Independent
validation with
multi-center data

gram AUC=0.86 C-indices (PFS)
=0.74
C-indices (OS)=0.83

Independent
validation with
single-center data

s (Laplacian of
tures)

– HR(OS)=0.68, P=
0.001

Independent
validation with
single-center data

AUC, 0.806 OS: 6.2 vs.13.8
month; p<0.001

Independent
validation with
single-center data

AUC=0.91 – Independent
validation with
single-center data

OR =10.2,
p=0.012

HR(OS)=0.39, P=
0.005; HR(PFS)
=0.47, P= 0.013

Phase I clinical
trial

(heterogeneous
peripheral
ttern)

AUC, 0.87 PFS (p= 0.044); OS
(p=0.035)

Independent
validation with
single-center data
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Imaging
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Machine learning
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Imaging f

Khorrami
(16)

NSCLC Nivolumab/
pembrolizumab/
atezolizumab

Predict TILs,
response and OS

139 CT LDA classifier Delta-radiomics

Trebeschi
2019 (54)

NSCLC,
melanoma

Anti-PD1 Predict response
and OS

465 CT Random forest classifier Radiomics mode

Durot (55) Metastatic
melanoma

Pembrolizumab Predict OS and
PFS

31 CT Regression Radiomics featur
coarse texture sc

VELCHETI
(56)

locally advanced
NSCLC

Nivolumab Predict response 50 CT SVM classifier Delta-radiomics
metrics)

Mu (10) NSCLC ICIs(Mixed) Predict response 161 PET/CT Deep learning (small-
residual-convolutional-
network model)

Deep learning sc

MU (57) NSCLC ICIs Predict durable
clinical benefit,
PFS and OS

194 PET/CT LASSO regression Radiomics nomo

BHATIA
(58)

Melanoma brain
metastases

ICIs Predict survival 88 MRI Regression Radiomics featur
Gaussian edge fe

Ji (59) Malignant
Tumors of the
Digestive System

ICIs Predict response
and OS

87 CT LASSO Regression Radiomics mode

Khene ZE
(60)

Metastatic renal
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Nivolumab Predict response 48 CT Logistic regression Radiomics mode

Korpics MC
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Multi-site SBRT
and
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TABLE 2 Continued

Machine learning
algorithm

Imaging feature type Results
(response)

Result(survival) Type of vali-
dation

Regression MTV, TLG and radiomics features
(volume and heterogeneity)

MTV (p =
0.027); TLG
(p = 0.022)

PFS(p=0.002); OS
(p=0.049)

Independent
validation with
single-center data

Regression Radiomics model (Small Run
Emphasis is the most dominant
feature)

– AUC= 0.90 Independent
validation with
single-center data

SVM Delta-radiomics model AUC= 0.882 – Independent
validation with
single-center data

Kaplan Meier analysis Delta-radiomics model – OS (26:5months,
P=0.002)

Independent
validation with
multi-center data

Random forests Radiomics model – AUC= 0.92 Independent
validation with
multi-center data

SVM and logistic
regression

Radiomics nomogram AUC= 0.778 – Independent
validation with
single-center data

Relative Variation
method

Delta-Radiomics P value <0.05 – –

LASSO Regression Radiomics-based nomogram AUC=0.847 – Independent
validation with
multi-center data
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Reference Tumor type ICI Application NO.
of

cases

Imaging
modality

Polverari
(11)

NSCLC ICIs Predict response 57 18F-FDG
PET/CT

Valentinuzzi
(63)

NSCLC Pembrolizumab Predict survival 30 PET/CT

Wang (64) Metastatic
melanoma

Pembrolizumab
or ipilimumab

Predict Response 50 CT

Nardone
(65)

NSCLC Nivolumab Predict Response 59 CT

Dercle (66) Melanoma ICIs OS 1374 CT

Liang (67) Gastric cancer PD-1 inhibitors Predict Response 87 CT

Barabino
(68)

NSCLC ICIs Predict Response 33 CT

Yu (69) Solid cancers ICIs Predict Response 152 Pretreatment
CT
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response, have been observed through imaging (Figure 2) (75–77).

Atypical patterns of response, including pseudoprogression and

hyperprogression, have been demonstrated in clinical trials of ICIs

and have prompted the development of immune-related response

criteria (78–80). In this part, we summarize how radiomics can

support cl inical decis ion-making in light of atypical

responses (Table 3).
4.1 Pseudoprogression

Pseudoprogression is defined as an initial radiographic increase

in tumor size or the appearance of new lesions, followed by a

response (76, 87, 88). This radiologic effect is due to inflammatory

cell infiltration around tumor cells, with an apparent increase in

size, and can be confused with tumor cell proliferation (79, 87, 89).

To discern pseudoprogression, immune-related response criteria

were developed, which suggest further radiological evaluation after

four to eight weeks rather than declaring PD immediately (90). A

switch to next-line treatment might be delayed while waiting for the

confirmatory follow-up evaluation. It is crucial to distinguish

pseudoprogression from true disease progression in a timely

manner, as it is highly relevant in daily clinical decision-making

processes. Therefore, early detection of pseudoprogression is of

vital importance.

Texture features extracted from radiological images have been

identified to distinguish inflammatory infiltration from tumor cell

proliferation. Basler et al. evaluated the capability of PET/CT-based

radiomics features, lesion volume, and routine blood markers to

differentiate pseudoprogression from true progression at the third

month. Of the seven models constructed based on blood, volume,

and radiomics, the blood-radiomics model has the best predictive

performance, achieving the highest AUC (0.82), and it is a

promising biomarker for the early di fferentiat ion of

pseudoprogression in the third month (81). In a single-center
Frontiers in Immunology 09
retrospective study, Ji et al. used four radiomics models

constructed using contrast-enhanced CT of 87 patients with lung

cancer treated with ICIs; of these, model three and model four had

AUCs of 0.736 and 0.760, respectively, and were both accurate in

predicting responses in two of three pseudoprogression patients

(59). Similarly, He et al. used a radiomics approach to identify

pseudoprogression from true progression. They extracted

intratumoral and peritumoral radiomics features from baseline

chest CT scans of 135 patients and built a predictive model. The

model had an AUC of 0.96 in the validation set (82). These findings

suggest that radiomics can predict pseudoprogression in the course

of immunotherapy and may supplement immune-related response

evaluation criteria.
4.2 Hyperprogression

Hyperprogression is an atypical response to ICIs with

paradoxical tumor growth acceleration soon after immunotherapy

initiation (91–94). It has been described in numerous cancer types

with an incidence of 6%–29% (95, 96). It has been associated with

high metastatic burden, significantly shortened survival, and poorer

performance status (95, 97–100), thus limiting the potential for

administration of other therapies. Identifying high-risk groups is

vital, yet there are no predictive biomarkers with apparent effects to

identify the risk of hyperprogression (96, 98). As a noninvasive

method, radiomics has been explored for the risk stratification of

hyperprogression in patients undergoing immunotherapy.

To evaluate the accuracy of a pretreatment CT-based radiomics

model in predicting hyperprogression in NSCLC patients treated with

ICIs, Vaidya et al. found that peritumoural texture and vasculature

patterns in the baseline CT scans positively correlate with

hyperprogression. These features had higher expression in

hyperprogression than in responders or nonresponders, suggesting

that patients with more heterogeneous tumors are more likely to derive
FIGURE 2

Atypical patterns in patients undergoing immunotherapy. (A) Hyperprogression is an atypical response to ICIs with a paradoxical acceleration of
tumor growth soon after the initiation of immunotherapy. (B) Dissociated Response is defined as a reduction at baseline or increase < 20% in target
lesions compared with a nadir in the presence of the new lesion. (C) Pseudoprogression is defined as an initial radiographic increase in tumor size or
the appearance of new lesions, followed by a response.
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TABLE 3 Summary of Key Studies on the Role of radiomics in predicting atypical responses and irAEs.

achine
arning
orithm

Prediction model Results Type of
validation

algorithm Radiomics model AUC= 0.76 Independent
validation with
single-center data

sion Blood/radiomics-model AUC= 0.82 Independent
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single-center data

regression Radiomics model AUC= 0.919 Independent
validation with muli-
center data

algorithm Radiomics model
(maximum gray has the
great significance)

AUC= 0.877 Independent
validation with
single-center data

earning EGFR-DLS p= 0.037 Independent
validation with muli-
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m forest
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Peritumoral texture and
vasculature patterns

AUC= 0.96 Independent
validation with
single-center data

c regression Clinical-radiomic model AUC=0.865 Independent
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Imaging
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M
le
alg

pseudoprogression

JI (59) Malignant Tumors
of the Digestive
System

ICIs Predict Response 87 3 CT LASSO

Basler (81) Metastatic
melanoma

ICIs Differentiate
pseudoprogression from
true progression

112 patients
with 716
metastases

30 lesions FDG-PET/CT, lesion
and routine blood
markers

Regres

He (82) Solid tumors ICIs Discriminating
pseudoprogression from
true progression

135 34 Pretreatment CT LASSO

Hyperprogression

JI (59) Malignant Tumors
of the Digestive
System

ICIs Predict hyperprogression 87 7 CT LASSO

MU (10) NSCLC ICIs Predict hyperprogression 616 – PET/CT Deep l

Vaidya (83) NSCLC ICIs Predict hyperprogression 109 19 CT Rando
classifi

Tunali (84) NSCLC ICIs Predicate rapid disease
progression

228 15 CT Logisti

He (82) Solid tumors ICIs Discriminating
hyperprogression from
true progression

135 43 Pretreatment CT LASSO

Gabryś (85) Metastatic
melanoma

ICIs Predict hyperprogression 56 8 PET/CT Logisti
model

irAEs

Colen (86) Advanced cancers ICIs Predicate immune-related
pneumonitis

32 2 CT Unsup
anoma
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durable clinical benefits (83). Consistent with a previous study, a

complex model including three radiomics features extracted from the

tumor border and several clinical variables was able to predict

hyperprogression with an accuracy of 82.28% (84). Other radiomics

features, such as the maximum gray value, are intimately linked to the

determination of hyperprogression (59). Deep learning models built by

Mu et al. have also been reported as possible predictive biomarkers of

hyperprogression in NSCLC patients undergoing ICIs. A total of

33.33% of patients with higher EGFR-deep learning scores developed

hyperprogression, and deep learning scores were associated with

shorter PFS among patients undergoing ICIs (10). Similarly, He et al.

developed a prediction model using a CT-based radiomics approach

which had an accuracy of 0.933 in identifying hyperprogression from

true progression (82). PET/CT-based radiomics has also been

attempted for predicting hyperprogression. Gabryś et al. developed a

predictive model using PET/CT of patients with metastatic melanoma.

CT-based radiological features were shown to be better predictors of

hyperprogression than PET-based features (85).

Given the poor prognosis of hyperprogression, it is of great

importance for high-risk populations to be screened before

initiating immunotherapy. The remarkably accelerated

development of radiomics in immunotherapy suggests that

radiomics could be used to stratify the risk of hyperprogression.

These findings warrant further exploration.
5 Radiomics and irAEs

IrAEs associated with immunotherapy, resulting from

activating an immune response against healthy tissues, may

involve almost every organ and system (101, 102). Timely

diagnosis and prompt management depending on its severity,

with a proper suspension of ICIs or corticosteroid treatment, is

vital. If left untreated, irAEs could develop into life-threatening

complications. Therefore, early diagnosis and monitoring of irAEs

are crucial for radiologists.

Medical imaging, including CT, ultrasonography, magnetic

resonance imaging, X-rays, and PET/CT, was used to detect

irAEs. In a retrospective study with a small sample size, Mekki

et al. found that 74% (19) of irAE patients (55) showed

abnormalities on medical imaging and could be diagnosed by

radiologists. The rates of enterocolitis, hypophysitis, thyroiditis,

hepatitis, arthralgia or arthritis, lung/mediastinum side effects, and

pancreas range from 28% to 100% (103).

The detection of irAEs generally depends on blood test

indicators, clinical manifestations, and imaging characteristics.

However, radiomics can help in the identification of early

invisible signs of irAEs in medical imaging. Colen et al. utilized

a radiomics approach to predict the risk for immune-related

pneumonitis. They extracted 1860 radiomics features from

baseline chest CT scans of 32 patients treated with ICIs, of

whom two developed immune-related pneumonitis. Selective

radiomics features were utilized to develop the predictive model

of the subsequent development of pneumonitis. This model

correctly identified the two patients who developed immune-
Frontiers in Immunology 11
related pneumonitis (86). Despite the noninvasive and

impersonal nature of radiomics, studies relevant to the early

detection of irAEs are rarely reported (Table 3).
6 Discussion

With the rapid development and application of artificial

intelligence in medicine, radiomics may become a valuable tool in

clinical decision-making. Here, we focus on the exciting and innovative

space of radiomics to solve the problems in immunotherapy and

discuss how radiomics serves as a means to support the precision

design of immunotherapy, especially in pseudoprogression

and hyperprogression.

Radiomics represents a potential noninvasive and feasible

strategy in clinical decision-making that can ensure timely access

to results and minimize the bias caused by localized tissue sampling

from heterogeneous tumors. In addition, radiomics can potentially

be applied to daily clinical practice to monitor responses and side

reactions to ICIs.

These advantages provide convenience for clinical diagnosis

and treatment, such as noninvasive biopsy, differentiating

pseudoprogression from true progression, risk stratification for

hyperprogression, immune-related response assessment, and so

on. Current studies have indicated that the potential of radiomics

in immunotherapy is substantial.

While the results of recent radiomics research are promising,

they remain insufficient for its widespread application in daily

clinical practice, and radiomics cannot replace biopsy or iRECIST

in clinical application at this stage. Limitations and challenges in

terms of practical application are not neglectable, and

reproducibility presents the most significant challenge.

The heterogeneity of articles exploring radiomics features is an

important issue that limits the generalization of the role of

radiomics in daily clinical practice, as different imaging modalities

are studied (CT, MRI, PET/CT) in different clinical settings (several

different neoplasms at various stages of disease) with different “a

priori” expected responsivities to immunotherapy. Due to the

complexity of radiomics, few studies can be wholly reproduced,

thus inhibiting the widespread use of radiomics in clinical

practice (104).

Reproducibility remains a huge obstacle in the pace of clinical

application Guidelines were established to standardize protocol and

analysis of radiomics research (70, 105). The radiomics quality score

(RQS) (106) and Individual Prognosis or Diagnosis (TRIPOD) (107)

were developed to bridge this gap. Moreover, ongoing single and

multicenter prospective randomized clinical trials are needed to

improve and validate reliability and reproducibility (Table 4).

Integration and analysis of radiomics features with genomics,

proteomics, and other omics data would provide additional

information in precision medicine by uncovering microlevel features

(105, 108).

Radiomics provides a window of opportunity for precision

medicine of immunotherapy by analyzing microscopic medical

imaging in a noninvasive, efficient, economical, and rapid fashion.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1088874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1088874
In the foreseeable future, we envision that radiomics will be widely

applied to clinical decision-making and will serve as the impetus

for the next major breakthroughs in precision medicine. However,

at this stage, there are still significant challenges in the process of

clinical translation and application, and further refinements

are warranted.
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94. Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti
X, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent
and/or metastatic head and neck squamous cell carcinoma. Ann Oncol (2017) 28
(7):1605–11. doi: 10.1093/annonc/mdx178

95. Champiat S, Ferrara R, Massard C, Besse B, Marabelle A, Soria JC, et al.
Hyperprogressive disease: Recognizing a novel pattern to improve patient
management. Nat Rev Clin Oncol (2018) 15(12):748–62. doi: 10.1038/s41571-018-
0111-2

96. Champiat S, Besse B, Marabelle A. Hyperprogression during immunotherapy:
do we really want to know? Ann Oncol (2019) 30(7):1028–31. doi: 10.1093/annonc/
mdz184

97. Kim Y, Kim CH, Lee HY, Lee SH, Kim HS, Lee S, et al. Comprehensive clinical
and genetic characterization of hyperprogression based on volumetry in advanced non-
small cell lung cancer treated with immune checkpoint inhibitor. J Thorac Oncol (2019)
14(9):1608–18. doi: 10.1016/j.jtho.2019.05.033

98. Petrova MP, Donev IS, Radanova MA, Eneva MI, Dimitrova EG, Valchev GN,
et al. Sarcopenia and high NLR are associated with the development of
hyperprogressive disease after second-line pembrolizumab in patients with non-
small-cell lung cancer. Clin Exp Immunol (2020) 202(3):353–62. doi: 10.1111/cei.13505

99. Kim SR, Chun SH, Kim JR, Kim SY, Seo JY, Jung CK, et al. The implications of
clinical risk factors, CAR index, and compositional changes of immune cells on
Frontiers in Immunology 15
hyperprogressive disease in non-small cell lung cancer patients receiving
immunotherapy. BMC Cancer (2021) 21(1):19. doi: 10.1186/s12885-020-07727-y

100. Frelaut M, Le Tourneau C, Borcoman E. Hyperprogression under
immunotherapy. Int J Mol Sci (2019) 20(11). doi: 10.3390/ijms20112674

101. Reynolds KL, Arora S, Elayavilli RK, Louv WC, Schaller TH, Khandelwal A,
et al. Immune-related adverse events associated with immune checkpoint inhibitors: A
call to action for collecting and sharing clinical trial and real-world data. J Immunother
Cancer (2021) 9(7). doi: 10.1136/jitc-2021-002896

102. Jing Y, Liu J, Ye Y, Pan L, Deng H, Wang Y, et al. Multi-omics prediction of
immune-related adverse events during checkpoint immunotherapy. Nat Commun
(2020) 11(1):4946. doi: 10.1038/s41467-020-18742-9

103. Mekki A, Dercle L, Lichtenstein P, Marabelle A, Michot JM, Lambotte O, et al.
Detection of immune-related adverse events by medical imaging in patients treated
with anti-programmed cell death 1. Eur J Cancer (2018) 96:91–104. doi: 10.1016/
j.ejca.2018.03.006

104. Flavell RR, Evans MJ, Villanueva-Meyer JE, Yom SS. Understanding response
to immunotherapy using standard of care and experimental imaging approaches. Int J
Radiat Oncol Biol Phys (2020) 108(1):242–57. doi: 10.1016/j.ijrobp.2020.06.025

105. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the
TRIPOD statement. Bmj (2015) 350:g7594. doi: 10.1161/CIRCULATIONAHA.114.014508

106. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting more information from medical images
using advanced feature analysis. Eur J Cancer (2012) 48(4):441–6. doi: 10.1016/
j.ejca.2011.11.036

107. Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. A collaborative enterprise
for multi-stakeholder participation in the advancement of quantitative imaging.
Radiology (2011) 258(3):906–14. doi: 10.1148/radiol.10100799

108. Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep learning
radiomic nomogram can predict the number of lymph node metastasis in locally
advanced gastric cancer: An international multicenter study. Ann Oncol (2020) 31
(7):912–20. doi: 10.1016/j.annonc.2020.04.003
frontiersin.org

https://doi.org/10.1001/jamaoncol.2020.1634
https://doi.org/10.1001/jamaoncol.2020.1634
https://doi.org/10.1001/jamaoncol.2018.3676
https://doi.org/10.1093/annonc/mdz123
https://doi.org/10.1093/annonc/mdx178
https://doi.org/10.1038/s41571-018-0111-2
https://doi.org/10.1038/s41571-018-0111-2
https://doi.org/10.1093/annonc/mdz184
https://doi.org/10.1093/annonc/mdz184
https://doi.org/10.1016/j.jtho.2019.05.033
https://doi.org/10.1111/cei.13505
https://doi.org/10.1186/s12885-020-07727-y
https://doi.org/10.3390/ijms20112674
https://doi.org/10.1136/jitc-2021-002896
https://doi.org/10.1038/s41467-020-18742-9
https://doi.org/10.1016/j.ejca.2018.03.006
https://doi.org/10.1016/j.ejca.2018.03.006
https://doi.org/10.1016/j.ijrobp.2020.06.025
https://doi.org/10.1161/CIRCULATIONAHA.114.014508
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.3389/fimmu.2023.1088874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1088874
Glossary

ICIs Immune checkpoint inhibitors

PD-L1 Programmed cell death ligand 1

ir-RECIST Immune-related Response Evaluation Criteria in Solid Tumors

TILs Tumor infiltrating lymphocytes

AI Artificial intelligence

NSCLC Non-small cell lung cancer

HCC Hepato-cellular carcinomas

MRI Magnetic resonance imaging

IHC Immunohistochemistry

RNA Ribonucleic acid

AUC Area under ROC curve

OS Overall survival

Treg Regulatory T cells

TAMs Tumor associated macrophages

TMB Tumor mutational burden

TMBRB TMB radiomics biomarker

PFS Progression free survival

ECOG Eastern Cooperative Oncology Group

MMR Mismatch repair

MSI Microsatellite instability

PET/CT Positron emission tomography computed tomography

CRC Colorectal cancer

mRCC Metastatic Renal-Cell Carcinoma

PD Progressive disease

irAEs Immune-related adverse events
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