
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hong-Fei Zhang,
Southern Medical University, China

REVIEWED BY

Zhe Gong,
Hospital of Zhengzhou University, China
Pengfei Wang,
Weihai Municipal Hospital, China

*CORRESPONDENCE

Sheng Qiu

qius2001@126.com

Yuntao Li

lyta722@live.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Multiple Sclerosis
and Neuroimmunology,
a section of the journal
Frontiers in Immunology

RECEIVED 02 November 2022

ACCEPTED 02 January 2023
PUBLISHED 30 January 2023

CITATION

Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H,
Zhang S, Qiu S and Li Y (2023) Immune
regulation based on sex differences in
ischemic stroke pathology.
Front. Immunol. 14:1087815.
doi: 10.3389/fimmu.2023.1087815

COPYRIGHT

© 2023 Niu, Li, Zhang, Su, Wang, Liu, Zhang,
Qiu and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 30 January 2023

DOI 10.3389/fimmu.2023.1087815
Immune regulation based
on sex differences in
ischemic stroke pathology

Pingping Niu1,2†, Liqin Li1,2†, Yonggang Zhang1,2, Zhongzhou Su1,2,
Binghao Wang1,2, He Liu2, Shehong Zhang2, Sheng Qiu1,2*

and Yuntao Li1,2*

1Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine
(Huzhou Central Hospital), Huzhou, China, 2Huzhou Key Laboratory of Basic Research and Clinical
Translation for Neuro Modulation, Huzhou, China
Ischemic stroke is one of the world’s leading causes of death and disability. It has

been established that gender differences in stroke outcomes prevail, and the

immune response after stroke is an important factor affecting patient outcomes.

However, gender disparities lead to different immunemetabolic tendencies closely

related to immune regulation after stroke. The present review provides a

comprehensive overview of the role and mechanism of immune regulation

based on sex differences in ischemic stroke pathology.
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1 Introduction

Stroke is well-established as the second most common cause of death worldwide (1), with

significantly different outcomes between males and females (2). In this respect, current

evidence suggests that females have a worse prognosis after a stroke than males, despite males

having a larger incidence of stroke overall (3, 4). Generally, females are more prone to death

from stroke than males (5).

An inflammatory response in the central nervous system is known as neurological

inflammation. Several CNS cells, such as glial cells, endothelial cells and even immune cells in

the periphery, release mediators such as cytokines, chemokines, reactive oxygen species, and

secondary messengers, which play important roles in regulating CNS function. However, the

immune response, a combination of innate and adaptive immune responses, is involved in

normal brain growth and certain pathological conditions, including dementia and stroke (6).

Inflammation caused by stroke contributes to the poor prognosis of ischemic stroke by

causing neurological injury (7).

The heterogeneity in immune responses to invading and autoantigens is linked to gender

differences in autoimmune illnesses, infectious disease susceptibility, vaccine efficacy and age-

associated diseases, including Alzheimer’s (8, 9). It has been reported that the immune

response to both foreign antigens and autoantigens is stronger in females. Current evidence
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suggests that females are more prone to autoimmune diseases than

males (10). Compared to males, females have a higher lifetime risk of

stroke, mostly during the older postmenopausal period (11). Overall,

the immune systems of men and females may be fundamentally

different, which may explain this discrepancy.
2 Gender differences in immunity

The immune reaction in males and females is affected by the

biological differences between the sexes, which determine how

immune cells react to their respective environments, as shown in

Figure 1. Due to their higher sensitivity to antigens, robust

immune response, ability to successfully fight off infections,

propensity to produce inflammation, and higher prevalence of

autoimmune diseases, females are more susceptible than males to

autoimmune disorders (12). An increasing body of evidence

suggests that females have more toll-like receptors and a higher

abundance and function of monocytes, macrophages, and

dendritic cells than males (13). The adaptive immune system

and the Th1 response are also more active in females than in

males (14). Furthermore, sex hormones influence the maturation

and maintenance of the immune system. Gender disparities in

immunological response have been associated with the

three major gonadal hormones-estrogen, progesterone, and

androgen. Estrogen receptors are expressed in T lymphocytes, B

lymphocytes, natural killer (NK) cells, macrophages, and

neutrophils (11, 15).
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2.1 Sex hormone

Current evidence indicates that estrogen plays a role in neutrophil

apoptosis, chemotaxis and the development of neutrophil

extracellular traps (NETs) (16). Female neutrophils suppress

cellular apoptosis more effectively than their male counterparts

(17). The combination of estrogen and progesterone inhibits

cytochrome C-mediated spontaneous apoptosis (17). Estrogen can

also increase CCR5 expression, stimulating T cell homing (18).

Estrogen has been shown to decrease oxidative metabolism (19),

increase the production of anti-inflammatory annexin A1, block

neutrophil activation (20), and decrease the release of

proinflammatory cytokines such as tumor necrosis factor-a (TNF-

a), Interleukin-1b (IL-1b) and IL-6 secreted by neutrophils and

macrophages (21–24), which finally suppresses nuclear factor

kappa-B (NF-kB) activity (25). Estrogen can decrease the

expression of pro-inflammatory cytokines and chemokines, such as

IL-6, IFN-g, IL-12, CXCL8 and CCL2, up-regulate the expression of

inhibitory molecules PD-L1 and PD-L2, and regulate the expression

of cytokines IL-10 and TGF-b, resulting in T helper 1 (Th1) cell

activation fluctuates and bias the response towards a T helper 2(Th2)

phenotype (26–28). The antiviral immune response relies on

plasmacytoid dendritic cells (pDC), and estrogen plays an

important role in maintaining pDC homeostasis (29).

High doses of estrogen reportedly yield an immunoregulatory

effect, boosting the humoral immune response to control the

inflammatory response and promoting Th2 polarization and IL-4

secretion (30–32). In other words, a small amount of estrogen can
FIGURE 1

Sex difference in immunity. Estrogen, progesterone and testosterone regulate immune tendency by regulating immune cell function and cytokine release.
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cause naive T cells to develop into effector Th1 cells and produce the

proinflammatory cytokine IFN-g (33). Antibody production is

correlated with estrogen dosage (34). Estrogen can promote the

activity of B cells by downregulating the expression of CD80 and

increasing the total amount of IgG antibodies in B cells to improve the

survival rate of B cells (35).

The activation of NK cells, macrophages and dendritic cells in

mice is inhibited by progesterone. Progesterone has been shown to

limit the synthesis of chemokines such as macrophage inflammatory

protein-1a (MIP-1a), macrophage inflammatory protein-1b, (MIP-

1b) and RANTES by CD8+ T cells in addition to reducing the

production of cytokines (36). Many immune cells, such as T cells

and NK cells, have progesterone receptors on their surface (37).

Progesterone, like estrogen, yields an anti-inflammatory effect by

modulating the activity of microglia and astrocytes and raising the

secretion of Tregs while lowering the activity of CD8+ T cells, T helper

cells 17(Th17) and Th1 cells (38–40). In animal stroke models,

progesterone has been shown to decrease infarct volume, improve

neurological damage and lengthen survival time (41, 42). Reducing

oxidative damage, apoptosis, blood-brain barrier breakdown, and

hemorrhagic transformation (43)are some benefits of progesterone,

which also controls gamma-aminobutyric acid type A (GABAA)

receptors and antagonizes excitatory toxicity (42, 44).

Combination therapy with estrogen and progesterone in a middle

cerebral artery occlusion (MCAO) model has been shown to protect

female rats against brain injury by decreasing the expression of

cortical Iba1 and CD3, as well as by inhibiting the expression of IL-

6 and chemokines (CCL2, CCL5) (45). It is widely acknowledged that

the peptide hormone oxytocin promotes breastfeeding and delivery.

In addition to the mammary gland and the uterus, oxytocin receptors

are widely distributed throughout the brain and immune system (46).

Females often have higher oxytocin secretion rates than males (47).

Ischemic stroke patients may benefit from oxytocin’s neuroprotective

properties (48), most likely due to the hormone’s mediation of

neuroimmune and anti-inflammatory properties (46).

Testosterone and dihydrotestosterone, two types of androgens,

modulate the immune system by favoring the development of a Th1

response and activating CD8+ T cells while enhancing the NK cell

response, elevating TNF-a, and decreasing IL-10 (49–51). When

testosterone is present in vitro, the ratio of Th1:Th2 cells in male

peripheral blood shifts toward more Th1 cells (52). Testosterone’s

ability to bind to androgen receptors in the brain allows it to direct

genetic transcription or regulate intracellular signaling pathways,

affecting apoptosis, blood-brain barrier integrity, cerebral blood

flow, and neuroinflammation (53, 54). Estrogens may mediate these

protective effects of androgens because many androgens are

aromatized into estrogens (55). When it comes to the

immunological response, androgens play a key role in controlling

both the innate and adaptive arms of the immune system. It is well

established that androgens have immunosuppressive effects, acting on

numerous arms of the immune system to dampen their activity.

Androgens inhibit the immune system by acting on several immune

system components (56). Androgens have also been reported to yield

immunomodulatory effects. For instance, testicular-ablated males

demonstrated higher surface expression of toll-like receptor 4

(TLR4) and greater vulnerability to lipopolysaccharide (LPS)-

induced shock (57).
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2.2 Chromosome

X chromosomal variations account for most of the variance in

innate immune response across sexes (58). Both innate and adaptive

immunological genes (such as TLR7, IRAK1, IL2RG, FOXP3, and

CD40L) (58) are located on the X chromosome. The second X

chromosome’s genes are normally muted; however, as people age,

some of these genes can avoid being inactivated (XCI). On the X

chromosome, 15% of the genes can avoid XCI (59), and their

expression is higher in females (60, 61), leading to varying

immunological responses (62). TLR7, TLR8 (63, 64) and the

transcription factor FoxP3 in regulatory t helper cells have been

linked to the innate immune response against viral infection, and

females tend to have higher expression levels of these receptors than

males (65). Moreover, several microRNAs on the X chromosome

affect the immune system (66).

The promoters of several innate immune genes contain hormone-

responsive regions (30, 67), including TLR7, MyD88, IRF7, and

TLR3. Protein interactions between hormone receptors and other

transcription factors that bind to DNA, such as NF-kB, specific
protein 1 (Sp1), CCAAT/enhancer binding protein b(C/EBPb) and
activator protein 1 (AP-1) (31, 68), regulate gene expression and play

a role in the production of proinflammatory molecules by innate

immune cells. The estrogen receptor’s association with NF-kB and C/

EBP b has been reported to reduce IL-6 production, indicating that

sex hormones like testosterone and estrogen are crucial for innate

immune responses. The Sry gene on the Y chromosome drives the

growth of the testis and the generation of testosterone during the

embryonic stage, demonstrating that sex chromosomes are not fully

independent (58). There are counteracting effects on the immune

response from chromosome complement and sex hormones (69). A

study found that the immune response to autoantigens was enhanced

in ovariectomized XYSry- (mice lacking Sry expression on the Y

chromosome) mice compared to ovariectomized XX mice,

demonstrating the usefulness of the male sex chromosome

complement. However, testosterone injection dampened the

immunological response, suggesting a compensatory effect between

the male chromosomal complement and testosterone (69).
2.3 Sex differences in immune cells

2.3.1 Macrophage
A dichotomy has been proposed for macrophage activation:

classic vs. alternative, also M1 and M2, respectively. Like helper T

cells, immunological stimulation favors the M1 polarization of male

macrophages and the M2 polarization of female macrophages (70,

71). he immunological response elicited in males and females varies in

intensity and nature. Macrophages are reportedly polarized toward

M1 under the influence of IFN-g and LPS and toward M2 under the

influence of IL-4 or IL-13 and engaged in symbiotic relationships with

other cell types to increase diversity (72, 73). These cell types include

fibroblasts, mesenchymal stem cells, endothelial cells, T cells, B cells

and NK cells. In this respect, mice infected with coxsackievirus B3

exhibited sex-specific differences in macrophage polarization and

myocarditis severity (74). Female macrophages are associated with

M2 phenotypes, while M1 activation markers are more prevalent in
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infected male macrophages (74). Macrophage polarization appears

gender-specific in viral myocarditis, with M1macrophages potentially

damaging the host and M2 macrophages protecting against infection.

In addition, the M2 phenotype macrophage has been associated to the

increased susceptibility of female mice to asthma compared to male

mice (75, 76). It has been shown that macrophage abundance and

TLR2, TLR3 and TLR4 expression are higher, and phagocytosis is

increased in females compared to males (77).

2.3.2 Lymphocyte
T-cell activation in the immunological response exhibits clear

sexual dimorphism. The ‘classical’ Th1 and ‘surrogate’ Th2 activation

states are two of the many possible activation states of helper T cells.

Th1 cell activity and secretion of related cytokines, such as IFN-g and
Interleukin-2(IL-2), are more prevalent in males, while ‘surrogate’

Th2 cell activity and the secretion of IL-4 and IL-10 are more

common in females (52, 78). Mice have been found to exhibit

similar sex-dependent effects, with males displaying more active

Th1 responses and females displaying more active Th2 cell activity

(79). Another example is the anti-inflammatory cytokine IL-10, which

controls the release of T cells and Th2 cells and is associated with

gender. An elevated IL-10 level is associated with a poor prognosis

and immunosuppression in females, whereas this relationship is less

clear in males. Stroke patients who produce high levels of IL-10 may

be more susceptible to infection (80, 81). Lower levels of IL-10

production by cytotoxic T cells after stroke have been documented

in males compared to females (82).

Reduced abundance of B cells throughout the body due to age and

gender is associated with a loss of neurotrophic signals produced by B

cells, an increase in the deleterious effects of B cell antibody

production, and a decline in mental acuity (83). Besides, the protein

B cell maturation antigen (BCMA) controls the division of B cells and

the development of plasma cells (84). Moreover, demyelination,

infiltration by inflammatory T cells and macrophages, and the

severity of neuroinflammation are reportedly worse in males who

lack BCMA than in females (85). Conclusions drawn from these

studies suggest that the immunogenicity of the neuroinflammatory

milieu is strongly influenced by gender in terms of the mechanisms

governing the proliferation, survival, and differentiation of B cells.

Although the overall abundance of B cells increased dramatically in

women after stroke, the number of regulatory B cells decreased in the

spleen compared to males (86). This discrepancy may be attributed to

differences in migration to the brain. After experimental autoimmune

encephalomyelitis, estrogen was found to increase the abundance of

regulatory B cells in the female brain (87).
3 Immune regulation after stroke

The pathogenesis of the ischemic brain is mediated by the

immune response following a stroke. The neuronal cell death

cascade begins with the release of inflammatory signals from

immune cells triggered by brain damage. Glial cells and infiltrating

leukocytes, including neutrophils, monocytes, and lymphocytes, make

up the bulk of the immune system. The regulation of neuronal
Frontiers in Immunology 04
damage and wound healing after an ischemic stroke depends on

glial cell activation and the production of proinflammatory and anti-

inflammatory signals. White blood cells that have entered the damage

site release inflammatory mediators, which worsen brain injury.
3.1 Immune cell

3.1.1 Microglia/macrophage
Microglia are macrophage-like cells in the CNS (88), making up

around 5% - 12% of all brain cells (89). When the brain is injured,

such as during a stroke, the first line of defense is microglia and

activated macrophages, which release cytokines to entice even more

immune cells to the injury site (90, 91). Microglia, when activated, can

either promote inflammation by becoming M1-like or suppress it by

becoming M2. Following an ischemic stroke, M1-like microglia

release proinflammatory cytokines such as IL-1b, IL-6, and TNF-a,
as well as nitric oxide synthase (92, 93), activating nuclear NF-kB and

causing subsequent brain injury (94–96). Inhibiting immunity,

releasing anti-inflammatory substances like IL-4 and IL-10, clearing

away cell debris and misfolded proteins, encouraging extracellular

matrix and tissue repair, and releasing neurotrophic factors account

for the efficacy of M2-like substances in reducing inflammation (88,

92). These findings suggest that M1 and M2 microglia phenotypes

contribute to the inflammatory response after a stroke (97).

Depending on the activation signals they receive, microglia can

either promote injury or repair (98, 99). Different M2 subsets, such as

M2a, M2b, M2c, and M2d, each have respective physiological features

and biological roles (100). Strong anti-inflammatory and weak

phagocytic capabilities, the ability to attract Th2 cells and drive

tissue repair, etc., are all hallmarks of M2a induced by IL-4/IL-13

and mannose-CD206 receptors (100, 101). Those with an M2b

phenotype exhibit increased expression of CD206, TGF-b, and
CD163 and are involved in the immunological memory response

and can both trigger inflammation and quell it. The M2c phenotype,

associated with tissue remodeling, is triggered by glucocorticoids, IL-

10 or apoptotic cells (100–102).

Although both M1 proinflammatory and M2 anti-inflammatory

microglia undergo physical changes, their molecular signaling routes

and activities evolve differently (93). Current evidence suggests that

the early stages of ischemic stroke are characterized by predominant

M2 polarization of microglia. The M1 type becomes more prevalent

after a few days, particularly in the peri-infarct area (93), ultimately

leading to blood-brain barrier breakdown and infiltration of

peripheral immune cells (103). These multifaceted impacts of

microglia/macrophages raise doubts about the efficacy of simply

suppressing microglia/macrophages as a stroke treatment. Instead,

rebalancing the ratio of good to negative responses by microglia/

macrophages may be more effective.

3.1.2 Dendritic cells and B cells
Dendritic cells are professional antigen-presenting cells that

express major histocompatibility complex(MHC) II and are

essential for bridging the gap between the innate and adaptive arms

of the immune system (104). By presenting antigens, dendritic cells
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can stimulate T cell-mediated immunological responses. Resting

dendritic cells have been documented close to the blood-brain

barrier (105). Dendritic cells influence the migration and

maturation of neighboring dendritic cells as time passes after a

stroke. Most of these cells enter the ischemic area through the bone

marrow (106).

Antigen presentation and antibody synthesis are functions of B

cells, which are effector cells. The cerebrospinal fluid of human stroke

survivors contains immunoglobulin (107, 108). Reducing the

abundance of B cells in the body causes an increase in infarct size,

which is associated with a poor prognosis and a high overall death rate

(109). It has been found that while the early infiltration of B

lymphocytes after a stroke may have a short-term favorable effect

by increasing immunosuppression and the synthesis of neurotrophic

factors, the long-term effects are detrimental due to an increase in

autoantibodies (110). Importantly, after an ischemic stroke, IL-10-

producing regulatory B cells play a protective effect (111).

3.1.3 Monocytes
As incompletely differentiated cells, monocytes have potent

phagocytosis abilities and the ability to mount an appropriate

immune response based on their surroundings (112, 113). They can

be classified into proinflammatory and anti-inflammatory fractions

based on the expression of surface-specific markers. Chemotactic

protein-1 (MCP-1, CCL2) and its receptor CCR2 are involved in the

inflammatory response (114), and proinflammatory monocytes

constitute the primary monocyte subgroups following brain injury

(115),CCR2 is expressed high on proinflammatory monocytes while

CX3CR1 is expressed low or not at all. As monocytes penetrate the

damaged brain, they must express CCR2 in order to differentiate into

macrophages. In stable environments, anti-inflammatory monocytes

check blood arteries and engage in in situ phagocytosis (116), but they

do not express CCR2. There are two main subpopulations of

monocytes in rodents, distinguished by their expression of

chemokine receptors and Ly-6C (Gr1). The inflammatory response

is facilitated by the short half-life and active absorption of Ly6C high

proinflammatory factor by the inflammatory tissue. It has been found

that Ly6Clow has a long anti-inflammatory half-life and aids in

vascular homeostasis (117, 118).

Blood-derived mononuclear cells undergo phenotypic and

functional changes in response to the varying inflammatory

conditions present during an acute ischemic stroke. The function of

monocytes shifts from being proinflammatory M1 type cells to

becoming anti-inflammatory M2 type cells on day 3 post-stroke

(119). Through the activation of inflammasomes, M1 monocytes

release reactive oxygen species (ROS), cytokines, and chemokines,

and disrupt the tight connections between endothelial cells that

protects the brain’s blood-brain barrier. Receptor P2X4 (P2X4R)

activation enhances M1 proinflammatory phenotype polarization

(120). When blood-derived mononuclear cells and other innate

immune receptors collaborate, secondary inflammatory damage to

the blood-brain barrier is exacerbated (121), since blood-derived

mononuclear cells upregulate the triggering receptor expressed in

bone marrow cells. Importantly, M2 macrophages are generated from

monocytes and may shield the blood-brain barrier potentially

preventing ischemia injury to the brain by vascular remodeling,

physical attachment, and reduced inflammation (122, 123).
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3.1.4 Neutrophils
There is a favorable relationship between infarct size, stroke

severity, and long-term prognosis after an ischemic stroke (124, 125).

Neutrophils are white blood cells that rush to an area of illness or

damage, where they consume dead cells and release inflammatory

signals to draw in additional leukocytes (126). Ischemia-induced

neutrophils release ROS, proteases (MMPs, protease 3, elastase),

lipocalin-2(LCN-2), and NETs, all of which contribute to the

breakdown of the blood-brain barrier. Connexins (primarily

cadherin/b-catenin complex, occludin, ZO-1, and claudin-5) are

degraded by high permeability-associated signaling pathways (e.g.

MLCK, PKC, MAPK, and Rho GTPass) when there is an excess of

ROS such as superoxide anion, peroxynitrite, and hydrogen peroxide

(127). When it comes to the immunological response to ischemic brain

injury, neutrophil adherence is a crucial first step (128). Immune cells

are transported to the site of ischemic brain injury via the vascular wall,

where they attach to adhesion molecules such as ICAM-1, MAC-1

(CD11b/CD18) and selectin (128). Within a few hours after a stroke,

ICAM-1 expression rises in the proximal endothelial tissue of the brain

damage, peaking at around 12–48 hours (129). In experimental stroke,

infarct size and brain leukocyte infiltration have been found to be

decreased in adhesion molecule deficient animals when ICAM-1 was

blocked (130, 131). CD11b/CD18, also known as MAC-1, is expressed

on the plasma membrane of neutrophils and binds to the intercellular

adhesion molecule 1 (ICAM-1) on endothelial cells. Reduced infarct

size, survival, and neutrophil infiltration into the ischemic brain are all

observed in MAC-1-deficient transgenic mice after an ischemic stroke

(132). P-selectin and E-selectin contribute to initial neutrophil

recruitment (133), L-selectin induces recruitment of unstimulated

neutrophils to activated endothelial regions (134), and selectin itself

is a calcium-dependent transmembrane glycoprotein that is responsible

for transporting neutrophils after cerebral ischemia (133). P- and E-

selectin upregulation is positively linked with post-ischemic

inflammatory response enhancement and injury severity in all

experimental stroke models (135, 136).
3.1.5 Lymphocyte
T-lymphocyte activation plays a role in both innate and adaptive

immunity, with the ability to promote or suppress inflammation (137).

It has been established that 30% of T-lymphocytes are cytotoxic T cells

(CD8+T cells), which destroy infected cells by cytotoxic processes, while

40% are helper T cells (CD4+T cells), which release cytokines to

modulate adaptive and innate immune responses (138, 139). Acute

cerebral ischemia causes neuroinflammation, activated and infiltrated

microglia/macrophages may stimulate activated CD4+T cells to develop

into Th1 or Th2 cells, generate proinflammatory or anti-inflammatory

cytokines, and either harm or protect the brain (138). Proinflammatory

cytokines such as IL-2, IL-12, and IFN-g are released by Th1 cells,

which may exacerbate brain injury. Anti-inflammatory cytokines such

as IL-4, Interleukin-5(IL-5), IL-10, and IL-13 may be secreted by Th2

cells, which may have a neuroprotective effect on the wounded brain

(140). The earliest T cells found after a stroke are CD8+T cells, which

detected within hours of a stroke (141). Neuronal death and

exacerbated brain injury are caused by CD8+ T lymphocytes after

they come into contact with other cells and become antigen-

dependently activated, releasing perforin/granzyme (142).
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To mount an immune response to an inflammatory setting,

certain naive T cells can independently generate ROS and

inflammatory cytokines (143). Naive CD4+ T cells differentiate into

specific T helper cells (Th), namely Th1, Th2, Th17 and induced T

regulatory cells (iTregs) (144). Maintaining immunological

homeostasis and suppressing effector T cells are the functions of

naturally induced Tregs (nTregs) found in the thymus and the iTregs

(145). By recognizing autoantigens and foreign antigens, iTregs can

suppress an overactive immune response. The post-stroke

neuroinflammatory response is mitigated by Foxp3+Tregs (146).

Toll-like receptors (TLRs) and T cell receptors (TCRs) are two

examples of immunological receptors that T cells express,

accounting for their immune features (147). The proinflammatory

cytokine IL-17, secreted by T cells, works in tandem with IL-23 to

entice monocytes and neutrophils to the site of inflammation (148).
3.2 Cytokines

3.2.1 TNF-a
As one of the early cytokines in the inflammatory response to

ischemic brain injury (149), TNF-a, is released and generated by

monocytes, T cells, mast cells, macrophages, neutrophils,

keratinocytes, and fibroblasts (88). Pericerebral cells are stem cells

that line the surface of capillaries that TNF-a stimulates to enhance

IL-6 production via activation of NF-kB (150, 151). Transmembrane

(tmTNF-a) regulates local inflammation by cell-to-cell interaction,

and soluble bioactive (sTNF-a) is created by tumor necrosis factor-

converting enzyme (TACE) (88). sTNF-a acts systemically and

locally in the central nervous system, promoting phagocytosis and

cytotoxic activity of macrophages and enhancing the production of

IL-6 and IL-1, mediated by binding of TNF-a to the receptors TNFR-

1 and TNFR-2. Although TNFR1 mediates sTNF-a, TNFR-2 and

TNFR-1 mediate tmTNF-a (149) . The neurotoxic and

neuroprotective actions of TNF-a in the ischemic brain highlight

the central role of TNF-a in the neuroimmune genesis of stroke

(152–154).

3.2.2 IL-6
Microglia, astrocytes, leukocytes, and endothelial cells reportedly

contribute to the brain injury response by releasing IL-6. There is an

increasing consensus that this multi-functional proinflammatory

cytokine increases leukocyte migration, regulates the production of

chemokines and the expression of adhesion molecules, and activates

acute phase proteins (150, 151, 155). IL-6 released after a stroke can

worsen cerebral vascular damage by activating NMDI-Rs and

upregulating ET-1 and JNK (156). IL-6 enhances local

inflammatory responses by activating and recruiting neutrophils

and monocytes and stimulating vascular endothelial cells to

produce adhesion molecules and other inflammatory mediators

(157). Although IL-6 is a proinflammatory cytokine, it plays a

crucial role in cerebral ischemia by acting as a carrier of the

inflammatory process during the early phase of stroke and as a

neurotrophic factor during the late development of cerebral

ischemia (158). Similar neurotrophic factors, including leukemia

inhibitory factor (LIF) and ciliary neurotrophic factors, share a

common receptor component, gp130 (159). Importantly, the
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severity of cerebral ischemia injury following an ischemic stroke

may be mitigated by administering these cytokines directly into

brain tissue following a stroke. Neurogenesis, angiogenesis, and

neuronal differentiation are all aided by IL-6 produced by

astrocytes, which also promotes Th1 polarization to Th2 and causes

an immunosuppressive microenvironment (160). Additionally, IL-6

aids CNS post-traumatic recovery via endothelial cell repair, which

may improve vascular reconstruction or angiogenesis following

ischemic stroke (161). IL-6 protects neurons from apoptosis,

enhances CNS neuron survival, and decreases N-methyl D-

aspartate (NMDA) -mediated excitatory toxic neuron injury (158).
3.2.3 IL-1
The proinflammatory cytokine IL-1 is synthesized by monocytes,

macrophages, and epithelial cells (149), and the IL-1 family comprises

IL-1a, IL- 1b, and IL-1RN (162). During the early stages of stroke, IL-

1 mediates harmful inflammatory processes, such as the upregulation

of IL-6, TNF-a, Matrix metallopeptidase 9 (MMP-9), and

chemokines in astrocytes, inhibition of neurogenesis (163). IL-1

may also act on the vascular endothelium to encourage the

recruitment of white blood cells (164). However, during the

subacute and chronic phases of stroke, IL-1 may bring some

benefits. It is widely thought that IL-1 may aid recovery from an

ischemic stroke since it encourages scar formation from glial cells and

boosts angiogenesis (165).

IL-1b is a cytokine that helps keep the immune system in check,

and it can increase inflammation influencing nearly all the cytotypes

(88). IL-1b is widely acknowledged to promote microglial activation.

Indeed, microglia are pivotal in the neuroinflammatory response as

effector cells. By producing potentially neurotoxic molecules like

TNF-a and iNOS, they exacerbate the inflammatory response and

cause secondary brain injury. The IL-1b-mediated phosphorylation

and ubiquitination of inhibitor of NF-kB-a (IkB-a) by IRAK activates

IkB kinase via the IRAK pathway, which promotes nuclear NF-kB
expression and the transcription of target genes, including IL-8 and

TNF-a (166). To further exacerbate injury caused by ischemia, IL-1b
modulates the PI3K/AKT pathway, promotes IL-6 and other

cytokines, and operates synergistically in the ischemic region (167).

Growing evidence suggests that phosphorylation of JAK2/STAT3 is

stimulated when IL-6 and other proinflammatory cytokines are

upregulated (168, 169). Once within the nucleus, phosphorylated

STAT3 (P-STAT3) upregulates the IL-1b, IL-6, and TNF-a genes by

binding to certain DNA sequence features in the promoter region of

the target gene (169). When brain cells are injured, it can be extremely

challenging to repair the damage caused by the vicious cycle of

inflammation that results.
3.2.4 IL-10
IL-10 is an anti-inflammatory protein released mostly by

monocytes but can also be secreted by other cell types, including

Th2 lymphocytes (170). By reducing the body’s inflammatory

response, IL-10 reduces the risk of stroke. By activating PI3K and

STAT3, IL-10 inhibits the synthesis and activity of Th1 cells (171),

reducing the expression and activity of proinflammatory cytokines

such as IFN-g, IL-1b, and TNF-a (172). Ischemic stroke is protected

against thanks to IL-10 treatment’s ability to effectively down-regulate
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the upregulated proinflammatory signals in acute ischemic lesions

(173). A study reported that transduction of the IL-10 gene prior to

cerebral artery ischemia protected rat brains from ischemic and

reperfused injuries by boosting heme oxygenase expression (174).

Inhibiting NF-kB has been reported as another anti-inflammatory

function of IL-10 (175). In a mouse model of focal cerebral ischemia

(MCAO), transgenic mice overexpressing IL-32A showed decreased

ischemic neuronal cell death and increased secretion of anti-

neuroinflammatory factors (IL-10) by decreasing the release of

neuroinflammatory factors (IL-6, IL-1b, TNF-a), thereby reducing

astrocyte activation, indicating a cross-talk between IL-32 A and these

other cytokines (176). Importantly, taking myelin oligodendrocyte

glycoprotein (MOG) through the nose triggers Il-10 secretion from

CD4+ T cells, which helps reduce stroke-related disability. The

neuroprotective effect of oligodendrocyte glycoprotein treatment in

MCAOmice (177, 178) may be due to IL-10 released by CD4+ T cells.

Secondary infarct growth via the nitric oxide route may be facilitated

by an increase in IL-10, which reduces the amount of CD11b+

cells (177).

3.2.5 IL-4
The strong anti-inflammatory properties of IL-4 play an

important role in determining the prognosis of stroke. By causing

naive T cells to differentiate into Th2 cells that secrete anti-

inflammatory cytokines, including IL-4, IL-10, and IL13, IL-4

inhibits the activity of Th1 inflammatory effector cells (179). T-cell

differentiation and non-specific B-cell transformation are two

immunological responses that IL-4 controls (180). Microglia/

macrophage M2 polarization is promoted by IL-4, the most notable

M2 macrophage polarization promoter. IL-4 is widely thought to be

crucial during the acute stage of stroke (181), with dramatically

increased serum levels hours after stroke onset (182). A lack of IL-4

causes brain damage and neurological impairment 24 hours after

transient MCAO (183). Long-term healing after an ischemic stroke

and microglia/macrophage M2 polarization depend heavily on IL-4.

After cerebral ischemia, IL-4-deficient mice showed increased

populations of M1-polarized microglia/macrophages and greater

infarct sizes that caused neurological damage. Importantly, IL-4

recovery could reverse these effects (184). The neuroprotective

effects of IL-4 are mediated by activating IL-4/STAT6 signal

transduction and suppressing proinflammatory cytokines.

Consistently, more proinflammatory cytokines, such as IL-1b and

TNF-a, were produced by IL-4 knockout mice (185).

3.2.6 Il-17
IL-23 in the brain following ischemic stroke is produced mostly

by CD172a+/IRF4+ 2 dendritic cells (CDC2s), which regulate IL-17

expression in gd T cells (186). Antigen-stimulated dendritic cells and

macrophages boost Th17 cell growth during persistent inflammation

by releasing interleukin-23 (186). The IL-17 produced by Th17 cells

accounts for a robust inflammatory response by inducing the

expression of many inflammatory cytokines. Dendritic cells migrate

to the perivascular infarct area after a stroke, and cDC2s cells

stimulate gd T cells to release IL-17, which recruits neutrophils to

the ischemic side of the brain (187). The synergistic effects of

Vgamma4 T cell-derived IL-17A and IL-1b/IL-23 in the infarct
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hemisphere exacerbate the inflammatory cascade and ischemic

tissue damage (188).
4 Sex differences in immune
regulation after stroke

Stroke treatment outcomes may vary by gender due to differences

in how men and women react to inflammation throughout their lives

(189, 190). The cellular and molecular mechanisms of sex hormones

are distinct, summarized in Figure 2. Local and systemic

inflammation, including the activation of glial and myeloid cells,

occurs following cerebral ischemia, mostly due to the innate immune

system (191, 192). Many proinflammatory genes are upregulated in

response to the damage, including TNF-a, monocyte chemoattractant

protein-1 (MCP-1), and IL-6 (193, 194).
4.1 Immune cells

In the infarct boundary zone of a stroke, microglia are the first to

respond to neuronal injury as part of the innate immune response

(195). The number of macrophages was lower in females and M2

phenotype microglia were higher in females, therefore showing

reduced inflammation (54). Anti-inflammatory IL-4 and CD206 are

more highly expressed in the ischemic brain of female microglia, and

female microglia are more responsive to IL-4 and IL-10 (86, 196).

Male microglia are more active and have a more proinflammatory

phenotype (11, 54, 197) because they express higher amounts of Iba1,

TLR2, and TLR4. Higher amounts of TNF-a, IL-1b, CXCL10, and
KDM5C/6A are produced by microglia in older women, indicating a

proinflammatory effect (54, 198). Experimental stroke in young male

mice causes greater inflammation in the microglia (82, 199). In

contrast to young male MCAO mice, female MCAO mice showed

lower expression of microglial IL-1b and macrophage inflammatory

protein-1a (200). Age-related variations in the hippocampus,

amygdala, and cortex account for the gender gap in CCL4, CCL20

and CD206 (19). Mice of the male gender showed greater expression

of genes encoding IL-1b, TNF-a, and CXCL10, among other

inflammatory proteins. It has been established that genes involved

in T-cell activity, adhesion molecules, cellular communication, MHC,

co-stimulatory signals, cell death, and inflammatory cytokines are

more highly expressed in the experimental post-stroke ischemic

brains of young male mice than in females (199).

Astrocytes often play a more important role when ischemia lasts

for several days. Sex hormone receptors have been documented in

both male and female astrocytes. The gonadotropin hormone is

responsible for the sex difference of astrocytes in ischemic stroke

(201). Steroid hormones, including estradiol, progesterone, and

testosterone, are largely produced by astrocytes in the brain and

spinal cord (202). Both estrogen and progesterone prevent astrocyte

activation (203, 204). Amphoteric astrocytes have a distinct reaction

to gonadal hormones on top of the already observed differences in

hormone levels between the sexes. Estrogen or an estrogen receptor

(ER) agonist can trigger a positive feedback mechanism in female

astrocytes, leading to increased ERs and progesterone expression
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(205, 206). Higher activity of estradiol-producing P450 and aromatase

enzymes in female astrocytes may explain why they are more resistant

to oxygen and glucose deprivation(OGD) and H2O2-induced

oxidative stress than male astrocytes (207, 208). Stroke can cause

neuroinflammation, and astrocytes play a role in this process, which is

influenced by individual sexual hormone levels (209).

Inhibition of OGD and ROS release in astrocytes are directly

induced by estrogen therapy (210), which polarizes astrocytes to an

anti-inflammatory A2 phenotype (202). The expression of N-myc

downstream regulatory gene 2 (Ndrg2) in astrocytes is increased by

estrogen and suppresses astrocyte differentiation during ischemic

stroke (211).

Peripheral leukocytes are activated after an ischemic stroke and

move to the injury site, where they further cause neurological injury

(13). An increasing body of evidence suggests that elimination of the

spleen improves stroke prognosis in young male mouse models,

where ischemia injury triggers the release of inflammatory immune

cells into the periphery (13, 212, 213). Current evidence suggests an

elevation in blood macrophages after a stroke, which is associated

with spleen atrophy (214). The peripheral immune response to stroke

is engendered at the level of the spleen and blood. Young male mice

show a greater increase in CD4+T cells and expression of the VLA-4

adhesion molecule in the spleen than female mice do following an

experimental stroke (82). A study found a significant reduction in

macrophages/monocytes and activated T cells in men and a reduction

in ischemic injury after splenectomy before MCAO, but these effects
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were not observed in women (199). Furthermore, splenectomy

reduced infarct size and activated microglia in the brain in men but

did not affect stroke prognosis in women (199).
4.2 Inflammatory cytokines

There are gender disparities in the levels of cytokines in the brain.

In contrast to IL-2, which exclusively harms male nerves (215), IL-13

alleviates experimental autoimmune encephalitis symptoms in

females (216), showing significant functional implications

associated with gender differences in the neuroimmune system. T

regulatory cells and Th2 CD4+ T cells produce IL-10, the

inflammatory signal after stroke; however, there are gender

variations in the production of these cells. The prognosis of

ischemic stroke patients can be affected by post-stroke

immunosuppression due to elevated IL-10 levels (80). IL-1b and

MIP-1a expression were lower in microglia grown from young female

MCAO mice than in male MCAO mice (217). Stroke prognosis is

significantly affected by IL-4’s potent anti-inflammatory effect.

Neurons produce IL-4 after an ischemic stroke and the expression

of IL-4 receptors (IL-4Rs) on microglia increases in response (218).

IL-4 is reportedly crucial for the neuroprotection of young female

mice following stroke. Cerebral infarction is exacerbated, and the

number of inflammatory cells in the brain is elevated in female mice

who lack IL-4 (183). The neuroprotective benefits of IL-4 in females
FIGURE 2

Sex difference involved in immune regulation after stroke. Different chromosomes host the expression of specific genes that can influence immune function.
Microglia were more prone to the M1 phenotype in males and M2 phenotype in females, however their production of cytokines is also affected by age.
Astrocytes in females have a more anti-inflammatory phenotype. Significant sex differences exist in the in lymphocytes and the cytokines they release.
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are mirrored by the reduced abundance of M2 microglia in the brain

of IL-4 knockout mice (183).

X-chromosome genes implicated in the signaling of natural killer

cells, TNFR1 signaling and axon guidance, transforming growth

factor signaling, and IL17 signaling (tissue inhibitor of matrix

metalloproteinase-1) have been reported to be differentially

expressed in females. Genes related to development, cell trafficking,

and cellular mobility experienced male-specific changes in expression,

suggestive of a more potent inflammatory response in men (126). The

X chromosome’s genetic manifestations in ischemic stroke exhibit

significant gender heterogeneity. In this regard, it has been found that

TIMP1, DDX3X, IKBKG, PRKX, GLA, MAOA/B, and MAGE gene

families ’ post-translational modifications, small-molecule

biochemistry, and cell-cell signal transduction functions are only

controlled in females (219). Only males possess the genes EFNB1,

CYSLTR1, IGBP1, and TLR-7, which are involved in cell

proliferation, differentiation, transport, and apoptosis (219). The

XCI escape genes kdm5c and kdm6a, which demethylate H3K4me3

and H3K27me3, respectively, and epigenetically modify the

expression of interferon regulatory factor (IRF4/5) (198), are

responsible for changes in the proinflammatory activity of female

microglia. Some genes on Y chromosomes have been reported to be

differentially expressed between male stroke victims and men in

general, including VAMP7, CSF2RA, SPRY3, DHRSX, PLCXD1,

EIF1AY, and DDX3Y. The immune system, RNA metabolism,

vesicular fusion, and angiogenesis are all regulated by processes

related to the differential expression of Y chromosomal genes (220).
4.3 The protective effect
of estrogen on the brain

Female hormones may play an important role in neuroprotection

after ischemia (221, 222). In this respect, estrogen, which is generated in

the brain and acts as a neuroprotective agent after stroke and an

efficient anti-inflammatory agent (223), is a sex steroid hormone and a

neurosteroid hormone (126). The neuroprotective effects of estrogen

are mediated by its ability to dampen the immunological response that

develops in the wake of brain damage caused by ischemia. Studies have

demonstrated that estrogen therapy can inhibit the synthesis and

secretion of proinflammatory cytokines in vitro and in vivo (25, 224).

By acting as an inflammatory mediator, IL-1b is injected before

estrogen is delivered to the body to precipitate the death of ischemia

cells. Reduced levels of IL-1b in the rat brain’s cortex improve

neurological impairment by decreasing the infarct size and blocking

neutrophil infiltration into injured tissue caused by ischemia (225).

It is well-established that estrogen reduces apoptosis and oxidative

stress in the brain (226), decreases NF-kB activity and the expression of

IkB, iNOS, and TNF associated with ischemic neuroprotection (227–

230), activates anti-apoptotic PI3K/AKT andMAPK/Erk pathways and

inhibits the pro-apoptotic JNK pathway (231–233), protecting neurons

from damage. Brain endothelium COX-2 induction and Il-1-mediated

astrocyte activation are suppressed by estrogen (234, 235). The

transcription of neurotrophic factors (IGF-1, BDNF, GDNF, and

VEGF) is regulated by estrogen, reducing neuroinflammation.

Importantly, estrogen also enhances the transcription of STAT3 and

PPAR, inhibiting NF-kB transcriptional activity (236–240).
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Low concentrations of TNF aid in promoting injury repair, while

high concentrations are neurotoxic (241, 242). Estrogen regulates the

production of the proinflammatory cytokine TNF, which acts on

receptors of many cell types, including neurons, glial cells, and

endothelial cells (243). One such inflammatory protein that

estrogen regulates is nuclear NF-kB, which modulates inflammatory

signaling pathways in cells, including neurons (244). After ischemia,

NF-kB regulates the upregulation of inflammatory mediators,

including IL-1, IL-6, IL-8, iNOS, ICAM 1, VCAM and E-selectin,

and then leads to neutrophil infiltration and adhesion molecule

induction. Estrogen treatment can inhibit the activation of NF-kB,
reduce the activation of NF-kB-mediated delayed cell death in

ischemia-reperfusion injury, alleviate inflammation and apoptosis,

and protect neurons (225).
5 Conclusion

The role of sex differences in the incidence and prognosis of

ischemic stroke is significant, and the immune regulation based on

sex difference is one of the important reasons. However, the

importance of gender factors varies at different ages, which is due

to sex hormone levels, underlying disease differences and other

factors. There is growing evidence that some risk factors, like

hypertension and atrial fibrillation, tend to occur more frequently

in older women, while others, like diabetes and smoking,

disproportionately affect women. The disparity in stroke prevalence

and outcome may also be influenced by sex-specific risk factors, such

as the use of oral contraceptives and menopause. Evidence suggests

that females are more likely than males to exhibit non-traditional

acute stroke symptoms, making it more challenging for clinicians to

correctly diagnose a stroke and potentially delaying the

administration of thrombolytic intervention.

More regrettably, there is still no gender-specific stroke treatment,

even though gender differences are a valuable risk factor in many

studies. Research on immune regulation based on sex difference

presents great difficulties because it is difficult to simulate human

ischemic stroke state in vitro as well as in animal models, leading to a

slow progress in the study of mechanisms in this area. We expect

more detailed studies to support the development of gender-specific

stroke treatment options, including immunotherapy agents and

specific inflammatory markers.
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