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Inflammatory bowel disease (IBD) is a group of disorders that cause chronic

inflammation in the intestines, with the primary types including ulcerative colitis

and Crohn’s disease. The link between autophagy, a catabolic mechanism in

which cells clear protein aggregates and damaged organelles, and intestinal

health has been widely studied. Experimental animal studies and human clinical

studies have revealed that autophagy is pivotal for intestinal homeostasis

maintenance, gut ecology regulation and other aspects. However, few articles

have summarized and discussed the pathways by which autophagy improves or

exacerbates IBD. Here, we review how autophagy alleviates IBD through the

specific genes (e.g., ATG16L1, IRGM, NOD2 and LRRK2), crosstalk of multiple

phenotypes with autophagy (e.g., Interaction of autophagy with endoplasmic

reticulum stress, intestinal antimicrobial defense and apoptosis) and autophagy-

associated signaling pathways. Moreover, we briefly discuss the role of

autophagy in colorectal cancer and current status of autophagy-based drug

research for IBD. It should be emphasized that autophagy has cell-specific and

environment-specific effects on the gut. One of the problems of IBD research is

to understand how autophagy plays a role in intestinal tract under specific

environmental factors. A better understanding of the mechanism of autophagy

in the occurrence and progression of IBD will provide references for the

development of therapeutic drugs and diseasemanagement for IBD in the future.

KEYWORDS

signaling pathway, inflammatory bowel disease, autophagy, autophagy-associated
gene, endoplasmic reticulum stress, intestinal microflora
1 Introduction

The inflammatory bowel diseases (IBD) are described as complex, recurrent inflammatory

conditions which are manifested as Crohn’s disease (CD) and ulcerative colitis (UC). The

common clinical symptoms of IBD include severe diarrhea, abdominal pain, and weight loss,

among others. If left untreated, the condition can lead to serious complications or the
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development of colorectal cancer (CRC). The pathogenesis of

inflammatory bowel diseases (IBD) is multifactorial and complex,

including an unfavorable environment, susceptibility gene variants,

abnormal intestinal microbiota, and a mucosal immune and

inflammatory response genetically susceptible to the host microbiota

(1, 2), but its specific pathogenesis is still not fully elucidated.

Autophagy is a conserved intracellular degradation pathway that

helpsmaintain intracellular homeostasis during stress ormalnutrition.

Autophagy is prevalent across cells and interacts with other essential

cellular homeostatic processes.However, in the intestinalmucosa, cell-

type-specific differences in autophagic function may exist (3). A

growing number of studies suggest that autophagy may mediate the

pathophysiological process of IBD. For example, autophagy regulates

the clearance of invading pathogens. When bacteria infect host cells,

cytoplasmic vesicles engulf the pathogens to form autophagic vesicles,

thereby limiting the pathogens’ access to nutrients. Enhanced

autophagy promotes the integration of autophagic vesicles and

lysosomes for the degradation of pathogenic microorganisms (4–6).

Autophagy maintains cell survival by protecting cells from bacterial

toxins, such as intestinal epithelial cells (IECs) and macrophages (7).

Autophagy also mediates the functions of innate and adaptive

immunity, such as antigen delivery by dendritic cells, inflammatory

factor secretion by macrophages, and antimicrobial peptide

production by Paneth cells (8, 9). In contrast, autophagy inhibition

leads to inflammation and increases the susceptibility to CD (10–12).

In summary, impaired autophagy can cause intestinal cell dysfunction,

dysbiosis of intestinal microbial and uncontrolled immune response,

leading to intestinal inflammation (13–16).

Based on the important impact of autophagy on the gut, in this

review, we will discuss how autophagy affects intestinal cells and gut

function. We will also discuss how autophagy plays a role in the

development of IBD via various pathways, including the genes, cell

signaling pathways, ERS, andmicroorganisms involved.Meanwhile, a

brief summary of the current research status of IBD therapeutic agents
Abbreviations: ERS, endoplasmic reticulum stress; IBD, inflammatory bowel

disease; CD, Crohn’s disease; UC, ulcerative colitis; CRC, colorectal cancer; CMA,

chaperone mediated autophagy; ULK1, unc-51-like autophagy-activated kinase 1;

ATG13, autophagy-associated gene 13; ER, endoplasmic reticulum; BECN1,

Beclin 1; MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3

alpha; PE, phosphatidylethanolamine; ATG16L1, autophagy-related 16-like 1

gene; LRRK2, leucine-rich repeat kinase 2; NOD2, nucleotide-binding

oligomerization domain-containing protein 2; T300A, Thr 300-to-Ala; caspase

3, Cysteine aspartate protease 3; IL-22, Interleukin22; IECs, intestinal epithelial

cells; mTOR, mammalian target of rapamycin; AMPK, Adenosine 5’-

monophosphate (AMP)-activated protein kinase; NaHS, Sodium hydrosulfide;

LPS, lipopolysaccharide; DSS, dextran sulfate sodium; NLRP3, NOD-like

receptor thermal protein domain associated protein 3; mtROS, mitochondrial

reactive oxygen species; Nrf2, nuclear transcription factor E2-related factor 2;

HO-1, Heme Oxygenase-1; TNBS, trinitro-benzene-sulfonic acid; IKK, IkB

kinase; STAT3, Signal sensors and activator of transcription 3; TNF-a, tumor

necrosis factor a; UPR, unfolded protein response; IRE1, Inositol requires

enzyme 1; PERK, protein kinase R-like ER kinase; ATF6, Activation of

transcription factor 6; REDD1, DNA damage response 1; CHOP, C/EBP

homologous protein; DAPK1, death-associated protein kinase 1; ASK1,

apoptosis signaling regulatory kinase-1.
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targeting autophagy is presented. These will further explain the

pathogenesis of IBD and provide novel ideas for the development

and use of drugs for IBD treatment in the future.
2 Autophagy and the
underlying mechanism

In eukaryotic cells, autophagy is an important protein

degradation system and a tightly regulated catabolic and organelle

renewal process (17). In this process, the cells’ own cytoplasmic

proteins and organelles are encapsulated into the vesicles. The

vesicles then fuse with lysosomes to form autophagic lysosomes

that degrade their encapsulated contents. There are three types of

autophagy: macroautophagy, microautophagy, and chaperone-

mediated autophagy (CMA) (18).

Macroautophagy is a process inwhich the endoplasmic reticulum,

Golgi apparatus, or cytoplasmicmembrane surround thematerial tobe

degraded into bimodal binding vesicles called autophagosomes. The

autophagosome then fuse with lysosomes and degrade the contents.

Microphagy implies that the lysosomal membrane directly wraps the

long-lived proteins, among other components, and degrades them

within the lysosome. CMA is a process of selective protein degradation

through a lysosome-dependent mechanism. In this process,

intracytoplasmic proteins bind to molecular chaperones and are

translocated into the lysosomal compartment and subsequently

digested by lysosomal enzymes (19).

Macroautophagy can be roughly divided into four stages

(Figure 1): initiation of autophagy, formation of isolation

membranes and autophagosomes, fusion of autophagosomes with

lysosomes, and cleavage of autophagosomes. Autophagy is initiated

by the unc-51-like autophagy-activated kinase 1 (ULK1) complex,

which phosphorylates its downstream autophagy proteins

FIP200 and autophagy-associated gene 13 (ATG13) (21–23). The

transmembrane binding of ATG9 provides the double membrane

for the formation of phagosomes, primarily from the endoplasmic

reticulum (ER), through the Beclin 1 (BECN1)-phosphatidylinositol-

3-kinase (PtdIns3K) complex to produce phosphatidylinositol-3-

phosphate (PtdIns3P), which then recruits the WIPI complex

(ATG2-ATG18 in yeast). This is followed by phagocytic membrane

elongation (24, 25). With the formation of the ATG12 conjugation

system (comprising the ATG5-ATG12-ATG16L1 complex, which

requires ATG7 and ATG10 activity to form), microtubule-associated

protein 1 light chain 3 alpha (MAP1LC3A/LC3) binds to

phosphatidylethanolamine (PE) via ATG7 and ATG3, leading to the

maturation of autophagosomes (26–28).
3 Autophagy is closely associated
with IBD

3.1 Absence or mutations in specific genes
of autophagy pathway interfere in IBD

At the genetic level, the autophagy-related 16-like 1 gene

(ATG16L1) and immunity-related GTP-ase family M gene
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(IRGM) as risk factors for CD brought autophagy into focus in IBD

(29–32). Subsequent studies have shown that mutations in the

autophagy-related genes ULK1, leucine-rich repeat kinase 2 gene

(LRRK2), and nucleotide-binding and oligomerisation domain 2

gene (NOD2) are strongly associated with the development of IBD

(33–35).

3.1.1 ATG16L1
ATG16L1 is a particularly important autophagy gene. In a

German study, a genome-wide association scan of nonsynonymous

SNPs identifies a susceptibility variant for Crohn disease in ATG16L1

(29). However, studies in several Asian countries, including Japan,

Korea andChina, did not show an association betweenATG16L1 gene

variants and CD (36–38). In the analytical study of correlation with

phenotype, ATG16L1 mutations were associated with intestinal

luminal stricture and perianal infiltration, and the number of risk

alleles was positively associated with the risk and severity of CD

development (39).

Cysteine aspartate proteases (caspase) are a group of proteases

present in the cytoplasm that are closely related to cell growth,

differentiation and especially apoptosis. Thr 300-to-Ala (T300A)

polymorphism in ATG16L1 has been found to be a serve as a critical

susceptibility factor for CD. It can promote caspase 3-dependent

degradation during cellular stress, leading to protein instability (40).

In a proapoptotic context, cleaved forms of caspase 3 are

retransplanted to degrade BECN1, which hinders the initiation of

autophagy (41). ATG16L1T300A expression is associated with an

increased risk of CD in response to the reduction of bacterial

capture rates and impaired bacterial processing through

autophagy. The ATG16L1 coding variant was found to be

impaired in the capture of internalized Salmonella in

autophagosomes in human IECs (42). Interleukin 22 (IL-22)

directly acts on IECs and contributes to the intestinal immune
Frontiers in Immunology 03
response to pathogen infection (43, 44) and epithelial wound

healing (45). However, under certain conditions, IL-22 may cause

tissue damage (46). A recent study showed that IL-22 signaling in

IEC is regulated by gene ATG16L1 and drives intestinal

inflammation in an autophagy-dependent manner (47). ATG16L1

regulation of autophagy is also cell-specific. For example, under

inflammatory conditions, ATG16L1 deletion in myeloid cells exerts

limited effect on IBD, whereas ATG16L1 deletion in ICE will

increases IEC apoptosis, aggravates chronic inflammation.

However, IECs can be maintained without autophagy as long as

intestinal homeostasis is maintained (48).

3.1.2 IRGM
IRGM is thought to be a shared susceptibility gene for both CD

and UC (49). However, it plays a more prominent role in the

pathogenesis of CD, and its role in UC seems to be controversial.

Because, data from several studies showed a strong association

between IRGM variants and CD susceptibility (31, 50, 51), while

there was no significant association between susceptibility to UC

(50, 52, 53). Further, in a study of the effect of IRGM variants on

IBD susceptibility, it was shown that the association signal of IRGM

with CD was considerably weaker compared to ATG16L1 (50, 54).

IRGM exerts resistance to intracellular infection through

various mechanisms, including regulation of phagosome

processing, cell motility, and autophagy. Protein IRGM has no

homologs among the ATG genes in yeast, which makes it difficult to

assign to it an autophagy-specific function; instead, IRGM has been

considered to affect autophagy indirectly (55, 56). IRGM interacts

with ULK1 and BECN1 and promotes their co-assembly, thereby

regulating the formation of the autophagy initiation complex.

Meanwhile, it physically pairs with autophagy protein NOD2 and

ATG16L1 to exert antibacterial and anti-inflammatory effects (57).

IRGM polymorphisms (rs13361189, rs4958847, and rs11741861)
FIGURE 1

Autophagy process. Extracellular stimuli or recognition of substances that induce the formation of autophagosomes. Macroautophagy starts with
inhibitory signals acting on mTOR (20). The ULK1 complex is an important upstream initiator that induces the activation of nucleation complexes
such as PtdIns3K and BECN1, which in turn binds to autophagosomes and induces the prolongation of phagocytic membranes (21–23). Binding of
LC3 to autophagosomes and control of autophagosome maturation and extension (24, 25). After vesicle formation, autophagosomes fuse with
lysosomes to form autophagic lysosomes, releasing the contents (26–28). This is followed by the subsequent degradation of the contents occurs.
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are considered to increase the susceptibility to CD and UC (51, 58).

IRGM1 expression deficiency significantly increases the

susceptibility to chemically-induced colitis in part by improving

the accessibility of commensal bacteria to intestinal tissues (59, 60).

For example, altered IRGM expression are predicted to be

associated with CD, affecting the autophagic control of

Salmonella typhimurium (32). The loss of tight IRGM expression

regulation disrupts replication in CD-associated adherent-invasive

Escherichia coli controlled through autophagy (61).

3.1.3 NOD2
Genetic polymorphism in NOD2 was the first found to be

associated with the risk of CD development and confers the

strongest genetic risk (62–64). Around 40–50% of CD patients

carry at least one mutation in the NOD2/CARD15 gene (65, 66).

However it has heterogeneity and many studies have shown that

NOD2 variants play no role in CD in East Asian populations (67–

69). In a systematic review and meta-analysis on the association

between identified NOD2 mutations and the prognosis of complex

CD, it was shown that every NOD2 mutation was associated with a

58% increased risk of surgery (70)

The most common IBD-associated polymorphisms in NOD2

are the amino acid mutations R702W, G908R, and L1007fs. These

mutations occur in the C-terminal leucine-rich repeat structural

domain responsible for detecting cytoplasmic MDP and have been

shown to cause defects in the perception of this bacterial-derived

molecule (71, 72). Protein NOD2 directly intersects with autophagy

and induces protein ATG16L1 to recruit bacteria to the entry site,

where it triggers bacterial autophagy (73, 74). In CD-associated

NOD2 shift-mutant pure cells, mutant NOD2 fails to recruit

ATG16L1 to the plasma membrane, thereby limiting the

autophagic response triggered by intracellular bacterial infection

(73). The defective autophagic clearance of such NOD2-associated

intracellular bacteria, such as S. typhimurium, adherent invasive E.

coli, and Shigella fowleri, can be reversed by the pharmacological

induction of autophagy with the autophagy activator rapamycin

(73–75). In addition, CD4+ T cell-dependent immunity to bacterial

antigens requires effective antigen presentation for the activation of

NOD2-mediated autophagy in dendritic cells (74).

3.1.4 LRRK2
Initially, gene LRRK2mutations were investigated in association

with the onset of Parkinson’s. Subsequent studies revealed that

functional LRRK2 variants also increase the genetic risk of CD (35,

76). LRRK2 protein kinase is a complex enzyme with kinase and

guanosine triphosphatase activities. LRRK2 missense mutations

cause overactive LRRK2 protein kinase. The inhibition of LRRK2

protein kinase activity was shown to lead to autophagy stimulation

in an atypical manner, a pathway that is independent of the

mammalian target of rapamycin (mTOR) and ULK1 but

dependent on the activation of BECN1-containing class III PI3

kinases (77). LRRK2-deficient mice exhibit high susceptibility to

experimental colitis through modulation of the innate immune

response (78). In contrast, recent studies have shown that

upregulation of LRRK2 expression promotes intestinal
Frontiers in Immunology 04
inflammatory responses (79–81). Because LRRK2 protein kinase

is able to bind to K48 and induce its ubiquitination, and it also

induces degradation of the autophagy initiator Beclin-1 and

phosphorylation of Beclin-1 (81), which is a Beclin-1 inactivation

mechanism (82). However, this only indicates the susceptibility to

intestinal inflammation after exposure to inflammatory stress (81).
3.2 Crosstalk of multiple phenotypes with
autophagy is involved in IBD

3.2.1 Endoplasmic reticulum stress interacts with
autophagy and is associated with IBD

Endoplasmic reticulum stress (ERS) is the response that

activates signaling pathways such as the unfolded protein

response (UPR), endoplasmic reticulum overload response, and

the caspase-12-mediated apoptotic pathway. These responses can

respond to misfolded and unfolded protein aggregation in the

lumen of the endoplasmic reticulum and disturbed calcium ion

homeostasis. UPR has been found to be initiated by three ER

transmembrane sensors, including inositol-requiring enzyme 1

(IRE1), protein kinase R-like ER kinase (PERK) and activation of

transcription factor 6 (ATF6). Some of the mediators released by

ERS can directly induce autophagic vesicle formation and initiate

autophagy (83). Findings from recent studies have also confirmed

that ERS induces autophagy through multiple pathways, such as the

UPR pathway and Akt signaling (84). The induction of autophagy

and suppression of inflammation occurs through the inhibition of

the PI3K/Akt/mTOR pathway (85, 86).

In the course of IBD, on one hand, ERS regulates autophagy. ER

degradation is associated with increased ATF6 activity in the

colonic mucosa of patients with UC (87). ERS activates

autophagy through the ATF6 -mediated upregulation of death-

associated protein kinase 1 (DAPK1) and mediates mAtg9

translocation (88). In IECs this process enhances autophagy for

killing bacteria (89). ATF6a acts as an intermediate signaling

molecule that regulates its upstream signaling factors and

downstream molecules XBP1 and Atg16L1. It is involved in the

interaction between ERS and IECs autophagy in IBD (90). In

addition, UPR and autophagy also intersect in the PERK-EIF2a-
ATF4 pathway (87, 91, 92), where ATF4 induces the expression of

the pro-apoptotic cytokine CHOP and increases the transcription

of the autophagy gene ATG5 (93). It also induces the expression of

DNA damage response 1 (REDD1) during ERS (94), and REDD1

expression in intestinal neutrophils activates autophagy by

inhibiting mTOR phosphorylation, which is closely related to the

severity of UC (95). Finally, ERS stimulates the IRE1/TRAF2/

apoptosis signaling regulatory kinase-1/JNK and IRE1/XBP1

signaling axes to release Beclin1 to increase autophagy (96, 97).

On the other hand, autophagy regulates ERS, as evidenced by the

fact that the impairment of autophagy promotes endoplasmic

reticulum stress. The inhibition of trigger receptor-1 expression

on myeloid cells reduces ERS in mice with colitis by restoring

macroautophagy and CMA (98). In mice with inactivated IKKa
kinase, loss of IKKa function resulted in the reduced stability of
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ATG16L1, which induced UPR and significantly impaired intestinal

epithelial regeneration in mice with acute colitis model (99).

Similarly, Atg16L1 knockout mice exhibit more severe colonic

inflammation owing to deficient autophagy, resulting in the

insufficient degradation of ER to nucleus signaling 1, allowing its

excessive accumulation and activation (100).

Appropriate ERS can maintain homeostasis in the intestine, but

excess ERS can induce IEC apoptosis and intestinal mucosal barrier

dysfunction, and inducing pro-inflammatory cytokine production.

Autophagy can also alleviate IBD in several ways; ERS can activate

autophagy, but excessive autophagy exacerbates apoptosis and

promotes the development of IBD. Therefore, it will be

meaningful to explore how the interaction between ERS and

autophagy influences the development of IBD, which will help to

further explore the pathogenesis of IBD.

3.2.2 Intestinal antimicrobial defense interacts
with autophagy and is associated with IBD

Antimicrobial defense is known to be closely related to the

expression of autophagy genes (101, 102). Intracellular pathogens

attempt to disrupt cell membranes to establish replication niches,

cross cell membranes into different compartments, or simply avoid

degradation. Autophagy and related pathways can limit such

processes to complete the life cycle (103). For extracellular

pathogens, autophagy limits infection-induced damage by

supporting the activity of specific cell types or inhibiting the

production of pro-inflammatory cytokines (103). A network to

elucidate the interaction between mucosal bacteria and host

autophagic signaling through human intestinal mucosal biopsies

showed that patients with CD exhibited greater autophagy and

associated signaling cascades than patients with UC. Patients with

UC exhibited more severe dysbiosis and a functional phenotype of

intestinal mucosal colonizing bacteria (104, 105). Moreover, the

populations of the dominant and low-abundance bacteria were

positively and negatively correlated with the expression of host

autophagy genes, respectively (104). Gene ATG7 conditional

knockout mice of IEC exhibited more abundant bacterial invasion

and a significant decline in antibacterial or antiparasitic peptide

expression in the colonic epithelium (106). Similarly, ATG5-

deficient mice showed a decrease in inflammation-controlling

bacteria and an increase in the number of pro-inflammatory

bacteria (107).

An increased amount of IgA-coated bacteria, which were

confirmed as IBD-promoting microbes (108), in the feces of mice

with myeloid cell-specific Atg16l1 deficiency and in CD patients

carrying the ATG16L1T300A variant (109). The interactive effects

of altered ATG16L1 expression on bacteria in IECs and

macrophages are widely recognized. Mice with dendritic cell

ATG16L1 deletion showed increased susceptibility to infection in

DSS-induced colitis (110) but not to S. typhimurium (111).

However, ATG16L1 regulates IECs autophagy and is necessary for

the clearance and control of S. typhimurium transmission in studies

of autophagy gene-specific deletion in IECs (111, 112). Also, CD-

associated adherent-invasive E. coli persist in autophagy-deficient

IECs. However, it has been shown that autophagy deficiency in
Frontiers in Immunology 05
ATG16L1 hypomorphic mice alleviates bacterial burden and

protects the mouse intestine from severe inflammatory damage

(113, 114). Some intestinal bacteria deliver immunomodulatory

molecules to immune cells through secretory outer membrane

vesicles. Chu and his colleagues (115) showed that outer

membrane vesicles require expression of the IBD-related genes

ATG16L1 and NOD2 to activate the atypical autophagic pathway.

However only in Bacteroides fragilis infection, dendritic cells lacking

ATG16L1 fail to induce regulatory T cells to exert a suppressive

effect on mucosal inflammation. This also describes genetically how

the interaction between autophagy and microbes synergistically

promotes beneficial immune responses.

In addition, autophagy can also affect intestinal antimicrobial

defense by influencing the formation of secretory granules. The

alternative autophagy-based secretion pathway in the atypical

secretion of lysozyme is known as secretory autophagy (116). The

disruption of secretory autophagy in mouse Paneth cells results in

the increased risk of CD in humans when ATG16L1 is mutated

(116). In summary, autophagy plays an overall positive role in

intestinal bacterial defense, but it has a high degree of cell-type

specificity and infection-type specificity in their interactions with

the intestinal microbiota

Conversely, host cell autophagy was also influenced by the

composition of the intestinal microbiota; e.g., fecal microbiota

transplantation increased levels of autophagy-related proteins in

the intestinal mucosa of piglets (117). Likewise, bacterial

metabolites exert a critical effects on energy homeostasis and

autophagy in IECs. For example, colonic cells in germ-free mice

are in a state of energy deprivation. In this state, colonic IEC

autophagy is enhanced, and when butyrate is added to germ-free

colonic cells, it compensates for the deficiency in mitochondrial

respiration and limits autophagy (118).

3.2.3 Autophagy-regulated apoptosis is
associated with intestinal barrier function in IBD

The strict regulation of autophagy and apoptosis plays a critical

role in maintaining tissue homeostasis. Autophagy maintains cell

survival in the presence of multiple cellular stressors by degrading

long-lived proteins and damaged organelles, while apoptosis

eliminates damaged and mutated cells. Autophagy has been

shown to exert an inhibitory effect on apoptosis in liver disease

(119) and neurological disorders (120). Pott and his colleagues (48)

found that mice with IBD selectively deficient in ATG16L1 in IECs

showed increased TNF-induced apoptosis, which exacerbated

intestinal pathology. However myeloid ATG16L1 deficiency a

exerted limited effect on disease. Autophagy protein ATG16L1 in

the intestinal epithelium is critical for preventing Paneth cell loss

and excessive cell death in an animal model of virus-induced IBD

(121). The above findings suggest that the IEC autophagic process

can control inflammation-induced apoptosis to maintain intestinal

barrier integrity, thereby limiting chronic intestinal inflammation.

Alpinetin was shown to enhance intestinal barrier function by

driving autophagy to inhibit IEC apoptosis (122). The

intracellular protein High Mobility Group Box 1 regulates

apoptosis and attenuates inflammation-associated cell injury by
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protecting the autophagy proteins BECN1 and ATG5 from calpain-

mediated cleavage during inflammation (123).
3.3 Autophagy-related signaling pathways
are associated with intestinal homeostasis
in IBD

3.3.1 mTOR
mTOR is an atypical serine/threonine kinase that interacts with

specific junction proteins to form two different macromolecular

complexes, mTORC1 and mTORC2. mTORC2 primarily controls

the cytoskeleton and motility, whereas mTORC1 primarily controls

important cellular processes, including autophagy. Autophagy is

negatively regulated by upstream mTOR, and the pharmacological

effects of mTOR inhibitors and autophagy stimulators significantly

improve experimental colitis and oxidative stress in vivo (124).

3.3.1.1 AMPK/mTOR signaling pathways

Adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK), a key molecule in the regulation of biological energy

metabolism, is an AMP-dependent protein kinase. Sodium

hydrosulfide (NaHS) activates hepatic autophagy through the

AMPK/mTOR pathway and improves non-alcoholic fatty liver

disease (125). In colonic tissues, NaHS restored impaired cellular

autophagy caused by lipopolysaccharide (LPS) stimulation in rats in

vitro and in vivo while improving the signs of UC (126). Xiong and

his colleagues (127) found that Sinensetin inhibits apoptosis and

alleviates intestinal barrier dysfunction in colitis by promoting

autophagy of epithelial cells, but this effect could be reversed by

AMPK knockdown. Further, data from Arab (128) showed that

dapagliflozin activates the AMPK/mTOR pathway by increasing

pAMPK (Thr172)/total AMPK levels and decreasing the p-mTOR

(Ser2448)/total mTOR ratio. This is consistent with the action of

metformin (an activator of the autophagy machinery) through an

AMPK-dependent signaling pathway for limiting dextran sulfate

sodium (DSS)-induced damage to the intestinal barrier (129).

Similarly, nicotine ameliorates the severity of DSS-induced colitis

in a mouse model of UC by modulating AMPK/mTOR pathway-

med ia t ed au tophagy and regu l a t ing apop to s i s and

proliferation (130).

3.3.1.2 mTOR/NLRP3 signaling pathways

NOD-like receptor thermal protein domain associated protein 3

(NLRP3), a component of inflammatory vesicles, is responsible for

the activation of caspase-1 and subsequent pro-IL-1b and pro-IL-18
maturation. It has long been shown that single-nucleotide

polymorphisms in the NLRP3 gene are associated with

susceptibility to CD (131). There is a reciprocal regulatory

relationship between NLRP3 expression and autophagy, with

activation of autophagy limiting NLRP3 activity and thereby

moderating inflammation (132).

Jesus (133) showed the following: 1) NLRP3 is a novel binding

partner for mTOR; 2) NLRP3 plays a key role in the structural

blockade of autophagy by promoting mTOR phosphorylation; 3)
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hypoxia attenuates the colonic inflammatory response by

downregulating the binding of mTOR and NLRP3 and activating

autophagy. A study by Mai et al. demonstrated that palmatine

ameliorated intestinal inflammation by reducing mitochondrial

reactive oxygen species (mtROS) production and inhibiting

NLRP3 inflammatory vesicles through mitochondrial autophagy

(134). Thus, promoting mitochondrial autophagy may be a method

to terminate the hyperinflammatory response by inactivating

NLRP3 inflammatory vesicles. Andrographolide prevents

inflammation-associated colon cancer through the mitochondrial

autophagy-mediated inhibition of NLRP3 inflammatory vesicles

(135). Similarly, the inhibition of NRLP3 inflammatory vesicles may

be an effective mechanism to promote autophagy activation to

improve colitis. Ginsenosides, which are anti-inflammatory

molecules, were reported to inactivate NLRP3 inflammatory

vesicles, thereby inducing mitochondrial autophagy to improve

DSS-induced experimental colitis (136).

3.3.1.3 AKT/mTOR signaling pathways

AKT, also known as protein kinase B, is a serine/threonine-

specific protein kinase that plays a key role in various cell growth

processes. The activation of AKT/mTOR signaling pathway

negatively regulates autophagy, and AKT/mTOR signaling

participates in pathogenesis of IBD through the regulation of

autophagy (137, 138). For example, heat shock transcription

factor 2, which promotes autophagy in IECs by inhibiting the

PI3K/AKT/mTOR signaling pathway, plays a protective role in

UC (139). The overexpression of ring finger protein 8 reduces AKT

and mTOR phosphorylation, increases autophagy, and improves

intestinal inflammation in UC mice (140). Xianglian pill was also

shown to promotes cellular autophagy and attenuates DSS-induced

acute colitis in mice by blocking the activation of the PI3K/Akt/

mTOR signaling pathway (141).

3.3.2 NF-kB signaling pathways
NF-kB is a transcription factor that activates the transcription

of pro-inflammatory factor genes and plays a critical role in the

cellular inflammatory response and immune response. The atypical

stimulation of NF-kB upregulates of the expression of two

activators of selective autophagy, BAG3 and HspB8, thereby

regulating the autophagic process (142). Neural-precursor-cell-

expressed developmentally down-regulated 4 is a ubiquitin ligase

that regulates Beclin-1 stability. NF-kB causes Beclin-1 division to

inhibit autophagy through the upregulation of Neural-precursor-

cell-expressed developmentally down-regulated 4 (143). Similarly,

autophagy inhibits NF-kB activation by inhibiting the NF-kB
upstream regulator IkB kinase (IKK) (144) or by recruiting

phosphorylated IKK to the autophagic vesicle compartment (145).

In addition, ATG16L1 negatively regulates the pro-inflammatory

cytokine response through the downregulation of NF-kB expression

(146). Autophagy deficiency owing to ATG16L1T300A

polymorphism in macrophages promotes the NF-kB-dependent
cytokine response and puts CD at an increased risk of disease

(147). Ginseng polysaccharides exert beneficial effects, such as

regulating intestinal microbiota, protecting the intestinal mucosal
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barrier, and promoting autophagy. Toll-like receptors (TLR) are key

receptors for pathogen recognition and immune activation and are

widely present in various immune cells and epithelial cells. Ginseng

polysaccharides were demonstrated to improve DSS-induced

intestinal inflammation by inhibiting the TLR4-NF-kB pathway

and activating mTOR-dependent autophagy (148).

3.3.3 Nrf2/OH-1 signaling pathways
Nuclear transcription factor E2-related factor 2 (Nrf2) is a key

transcription factor in the cellular antioxidant response. The

pathway involving heme oxygenase-1 (HO-1) is a key signaling

pathway that regulates endogenous oxidative stress. Reportedly, p62

SQSTM1 is a target gene of Nrf2 (149), and the Keap1/Nrf2

pathway is strongly associated with autophagy through the

autophagic adapter p62 SQSTM1 protein (150). The activation of

the Nrf2/HO-1 pathway effectively controlled colonic tissue damage

in a trinitro-benzene-sulfonic acid (TNBS)- and DSS-induced

colitis model (151, 152). Arab (128) showed that dapagliflozin

activates autophagy at least in part by activating the Nrf2/OH-1

pathway to reduce the severity of drug-induced colitis in rats.

3.3.4 Other signaling pathways
The hypoxia-inducible factor-l-dependent induction of Wnt1

disrupts autophagy in epithelial cells, suggesting a role of the Wnt

signaling pathway in impaired autophagy in the mucosal epithelial

cells of patients with IBD (153). Signal sensors and activator of

transcription 3 (STAT3) is a key molecular pathway that can be

activated by various pathogens and participates in complex immune

disorders (154, 155). Zhang (156) showed that the deletion of High

Mobility Group Box 1 protein in the intestine leads to the abnormal

regulation of STAT3, which inhibits autophagy. The author also

showed that the inhibition of STAT3 restores the autophagic

response in bacteria-infected cells, suggesting that STAT3

activation should occur upstream of autophagy regulation. In in

vivo and in vitro models of neonatal necrotizing small bowel colitis,

TNF-a may induce autophagy through the extracellular signal

regulated kinase 1/2 pathway, regulate the apoptosis of neonatal

necrotizing small bowel colitis cells IEC-6, and promote disease

progression (157). In ATG5-silenced IECs, the MAPK/ERK kinase

pathway is activated, which is associated with elevated levels of

inflammatory cytokines (158).
4 The role of autophagy in CRC

IBD is at risk of developing into CRC. Based on the key role of

autophagy in IBD, the role of autophagy in CRC has also gained

attention in recent studies. Autophagy is now emerging as a potent

regulator of tumorigenesis by protecting cells from metabolic stress

and oxidative damage. However, recent data show that autophagy

may promote tumour growth and progression in some conditions

(159, 160). Thus, the role of autophagy in tumorigenesis is

equally complex.

The role of UVRAG as a tumor suppressor gene has been

described among other autophagy-related genes (161). UVRAG
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regulates BECN1 expression, suggesting that the interaction

between UVRAG and BECN1 may be a condition for the tumor

suppressive effect. In colon cancer cell lines carrying UVRAG

(c.709delA) deletion, reduced UVRAG levels were observed to

correlate with impaired autophagy induction (161, 162).

Nonsynonymous s ing le-nuc leot ide polymorphism in

ATG16L1T300A was associated with improved overall survival and

increased basal production of type I interferon in human CRC

(163). In addition, a study analyzing gene ATG5 mutation and

expression in gastrointestinal tumors showed that ATG5 protein

was well expressed in normal colonic mucosal epithelial cells but

was absent in 23% of CRC (164).

In addition to its direct anti-tumor effects, autophagy inhibits

CRC by weakening the inflammatory response in the tumor

microenvironment and increase the processing and presentation

of tumor-associated antigens. This improves anti-tumor immunity.

Some chemotherapeutic agents with immunogenic properties have

been shown to exhibit immunogenic anti-tumor properties by

inducing autophagic cell death (165). Bacillus Calmette - Guerin

has been shown to induce autophagic cell death through TLR2 and

TLR4 signaling and to radiosensitize colorectal cell lines. In vivo

experiments have further demonstrated that Bacillus Calmette -

Guerin -mediated radiosensitization is an autophagy-dependent

phenomenon (166). In contrast, preoperative hydroxychloroquine

treatment improved the therapeutic response to 5-fluorouracil and

radiotherapy in patients with advanced CRC. However, chloroquine

can inhibit autophagy by blocking the fusion of autophagosomes

and lysosomes, sensitizing HT-29 CRC cells to chemotherapy and

irradiation (167). In addition, when autophagy genes (e.g., ATG5 or

BECN1) were knocked out, cell death and ROS production were

enhanced by the oxaliplatin treatment of Caco-2 cells (168, 169).

Thus, during CRC, autophagy can both promote tumor survival

and lead to tumor cell death, depending on tumor type, CRC stage,

and metabolic environment.
5 Pharmacological studies on
autophagy in the treatment of IBD

In terms of drug research, the therapeutic targets of IBD are

primarily elements related to the maintenance of homeostasis in the

intestine, and autophagy has emerged as a new potential therapeutic

option for it. Wang and his collaborators (170) then assessed the

therapeutic effects of 37 Food And Drug Administration -approved

autophagy activators using an embryonic anthracycline-induced

cardiotoxicity zebrafish model. They identified spironolactone,

pravastatin, and minoxidil as top-ranking drugs for reversing the

decline in cardiac function in anthracycline-induced cardiotoxicity

and proved that spironolactone and rapamycin activated autophagy

in an ATG7-dependent fashion (170). In intestinal diseases,

glutamine has been widely used for damage repair in the

intestinal mucosa, and reportedly, glutamine can promote IEC

autophagy through the mTOR and p38 MAPK signaling

pathways, thereby inhibiting stress-induced apoptosis (171).

Anakinra, a human IL-1 receptor antagonist produced by genetic
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recombination technology, has been used in rheumatoid arthritis.

Studies have demonstrated that anakinra can restore autophagy

levels and reduce il-1-mediated inflammatory responses in patients

with chronic granulomatosis, thereby protecting against TNBS-

induced colitis, reducing the severity of chronic granulomatosis

and promoting recovery from rectal abscesses (15). Sirolimus and

everolimus are two rapamycin analogs that have been used

clinically. In a retrospective study of refractory IBD that did not

respond to conventional treatment in children, 45% of patients with

UC and 100% of patients with CD showed clinical remission with

sirolimus (172). Meanwhile, treatment with everolimus (an

autophagy inducer) also improved CD-like ileitis in IL-10-

deficient mice (173). However, whether the rapamycin analogs in

the above cases act through autophagy and possibly

immunosuppression remains unclear. Furthermore, it is

interesting to note that epidemiological studies have shown that

smoking is beneficial in UC (174) that the ameliorative effect of

nicotine on intestinal inflammation may contribute to this (175–

177). Gao and his colleagues (130) confirmed that nicotine

ameliorates the severity of DSS-induced colitis in a mouse model

of UC by regulating AMPK/mTOR pathway-mediated autophagy

and inhibiting apoptosis and proliferation.

However, few of the current abundant of activators or inhibitors

have strictly selected one autophagic pathway and one target.

Therefore, some of the research has turned towards identifying

small m Chu and his colleagues olecules and peptides to precisely

modulate autophagy in pathological processes. For example, P140 is

a peptide that selectively targets the autophagic process, particularly

CMA. P140 effectively affects the processing of endogenous antigens

as well as downstream deleterious pro-inflammatory events by

interfering with the over-activated autophagic process (178).

Importantly, the normal immune system is not affected by this

(179) and P140 has been shown to be safe in clinical trials involving

patients with systemic lupus erythematosus (180, 181). Preliminary

data from current studies also favor P140 as a valuable tool for the

treatment of IBDs (182). Spermidine is a natural polyamine that has

been shown to improve the weight loss and colonic damage seen in

mice with DSS-induced IBD (183). Liu’s study suggests that the

improvement of IBD by spermidine is partly due to its activation of

macrophage autophagy, allowing it to acquire anti-inflammatory

properties (184).

Similarly, some herbal extracts or active ingredients have been

shown to ameliorate intestinal inflammation by inducing autophagy;

e.g., andrographolide inhibits NLRP3 inflammatory vesicles by

enhancing autophagy (135), and tretinoin enhances autophagy by

inhibiting the PI3K/AKT/mTOR signaling pathway (138).

Autophagy, owing to its fundamental role in maintaining

homeostasis in the intestine, can be an attractive therapeutic

target. Although some progress has been made in the study of

drugs that induce autophagy through different mechanisms, the

treatment of IBD by autophagy modulation is still in its preliminary

stages. It is challenging because of the low pharmacological

specificity of its targets, the lack of specificity for specific cell

classes, and the autophagy-independent effects. Therefore,

extensive experimental studies and large-scale clinical trials are

necessary to explore and confirm the results.
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6 Discussion

Autophagy affects the intestine via multi-pathway and cell-

specific and environment-specific mechanisms. The microbial-

autophagy-IBD interaction has been described previously, but the

diet-autophagy-IBD interaction is poorly understood. Currently,

the effects of vitamin D in diet-autophagy-IBD interaction have

been studied. The deficiency of this vitamin has been recognized as

an important pathological basis for IBD (185). The vitamin D

receptor enhances autophagy through Beclin-1 (186), reduces

necroptosis (187), and promotes the release of the tight junction

protein Claudin-2 to slow intestinal inflammation (188). In

addition, anthocyanins belong to a subclass of dietary flavonoids

(polyphenolic compounds) that are important in preventing the

onset and progression of intestinal inflammation (189) and can

accelerate autophagy by regulating the PI3K/AKT/mTOR signaling

pathway (190). Haihua and his colleagues further demonstrated

that proanthocyanidins may alleviate DSS-induced UC by inducing

autophagy (191). Therefore, there are many gaps in our

understanding of the diet-autophagy-IBD relationship. These gaps

need to be filled with evidence from more experimental and

clinical studies.

To date, the number of studies on microautophagy and CMA is

insufficient in IBD, and it is yet to be confirmed whether autophagy

governs the age and gender in IBD onset. In genetics, the

development and application of genetic testing will be particularly

important in predicting the occurrence, type, and prognosis of IBD

as well as the guidance and utility of drugs, especially for patients

with refractory IBD. However, these aspects are still in the

preliminary stage of research.

Overall, the current findings indicate that the absence of

autophagy favors the exacerbation rather than the induction of

intestinal inflammation. However, the inhibition of autophagy can

ameliorate intestinal inflammation under certain conditions, such

as after appendectomy (192). Therefore, a generalized review of the

specific pathways involved in autophagic mechanisms of action in

IBD is necessary to further explore the interactions between the

environment, infection, and genetics. This will help us to

understand how and by what mechanisms autophagy affects the

gut and interacts with other cellular processes under specific

conditions. These findings may be useful in developing

individualized therapeutic regimens.
7 Conclusion

Great strides have been made in our understanding of

autophagy within intestinal cells both in a healthy and diseased

context. A growing number of autophagic genes and proteins have

been shown to be closely associated with intestinal inflammatory

processes. Autophagy genes or proteins reduce susceptibility to

intestinal injury and maintain intestinal homeostasis by providing

endoplasmic reticulum stress protection, phagocytosing pathogen

invasion, reducing pathogen attachment, and regulating apoptosis

(Figure 2). In the study of autophagy-related signaling pathways
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and IBD, autophagy protects the intestinal mucosal barrier mainly

by regulating cytokines and modulating apoptosis (Figure 2). In

addition, as the anti-tumor effects of some chemotherapeutic drugs

have been found to be associated with autophagy, the application of

autophagy in cancer has received increasing attention. A better

understanding of the molecular mechanisms of crosstalk between

apoptosis and autophagy may be the key in identifying novel

appl icat ions of combinatoria l t reatment to CRC. In

pharmacological studies, although some autophagy inducers

applied in the clinic have been found to be effective in certain

diseases, the studies are still at preclinical stage, and more evidence

is needed based on clinical tests.

Autophagy is highly cell-specific and environment-specific.

Therefore, strict selection of autophagic pathways or targets

without affecting other biological processes is the key to

autophagy-based therapeutic strategies for IBD. In the future,

additional efforts are needed to validate the suitability of

autophagy as a therapeutic target for IBD and to determine

whether it is effective and feasible. These efforts should perhaps

be devoted to the identification of small molecules or peptides for
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the precise modulation of the autophagic process and to gradually

transfer experimental findings to clinical studies.
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FIGURE 2

Role of autophagy in IBD. (A) NOD2 recruits ATG16L1 to the plasma membrane at the bacterial entry site, initiating autophagy. Association of IRGM
with NOD2 promotes IRGM ubiquitination and the assembly of the core autophagy machinery, promoting xenophagy and intracellular bacterial
clearance (135). This process is important for maintenance of intestinal mucosal barrier (48, 121). (B) Autophagy inhibits the secretion of
inflammatory cytokines to prevent loss of Paneth cells and exaggerated cell death. (C) The UPR is activated in response to ERS and consists of three
pathways: ATF6, PERK, and IRE1. These three stress-related proteins bind to GRP78 when the cell is in a steady state. Under ERS, GRP78 separates
from these three receptors and activates the ATF6, PERK, and IRE1 pathways. 1) ATF6 is cleaved in the Golgi apparatus, binds to specific DNA,
regulates the pro-apoptotic cytokine CHOP, mediates mAtg9 transport, and activates autophagy; it also activates autophagy by upregulating DAPK1
(88, 89). 2) PERK activates eIF2a through autophosphorylation, thereby activating ATF4, which induces the expression of CHOP and the upregulation
of autophagy genes. ATF4 also induces the expression of REDD1 and inhibits mTOR phosphorylation to activate autophagy (87, 91–93). 3) IRE1
splices XBP1 into its active form and can bind to TRAF2 to activate JNK, thereby upregulating Beclin-1 and promoting autophagy. Autophagy and
ERS are mutually regulated (96, 97). ERS can promote autophagy, and when ERS is overactive, activated autophagy can inhibit ERS, thereby
reduction of IECs apoptosis, down-regulation of proinflammatory cytokines, protection of intestinal mucosal barrier. (D) In this section, the red line
represents the Pro-autophagy pathway pathway and the blue line represents the inhibition of autophagy pathway. Autophagy is primarily regulated
by the following pathways:1) mTOR is a key negative regulator of autophagy. The AMPK/mTOR pathway positively regulates autophagy (125); The
NLRP3/mTOR and AKT/mTOR pathways negatively regulate autophagy (133, 137), whereas the upregulation of autophagy also inhibits NLRP3
inflammatory vesicle activation (132). 2) Nrf2-OH pathway positively regulates autophagy (150).3) The NF-kB pathway negatively regulates autophagy
and vice versa (142, 144, 145). Autophagy-related signaling pathways benefit protection of intestinal mucosal barrier and down-regulation of
proinflammatory cytokines, protection.
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