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More people with a history of prior infection are receiving SARS-CoV-2 vaccines.

Understanding the level of protection granted by ‘hybrid immunity’, the combined

response of infection- and vaccine-induced immunity, may impact vaccination

strategies through tailored dosing. A total of 36 infected (‘prior infection’) and 33

SARS-CoV-2 ‘naïve’ individuals participated. Participants provided sera six months

after completing a round of BNT162b2 vaccination, to be processed for anti-spike

antibody measurements and the receptor binding domain-ACE2 binding inhibition

assays. The relationships between antibody titer, groups and age were explored.

Anti-spike antibody titers at 6 months post-vaccination were significantly higher,

reaching 13- to 17-fold, in the ‘prior infection’ group. Semi-log regression models

showed that participants with ‘prior infection’ demonstrated higher antibody titer

compared with the ‘naïve’ even after adjusting for age. The enhancement in

antibody titer attributable to positive infection history increased from 8.9- to

9.4- fold at age 30 to 19- to 32-fold at age 60. Sera from the ‘prior infection’

group showed higher inhibition capacity against all six analyzed strains, including

the Omicron variant. Prior COVID-19 led to establishing enhanced humoral

immunity at 6 months after vaccination. Antibody fold-difference attributed to

positive COVID-19 history increased with age, possibly because older individuals

are prone to symptomatic infection accompanied by potentiated immune

responses. While still pending any modifications of dosing recommendations (i.e.

reduced doses for individuals with prior infection), our observation adds to the

series of real-world data demonstrating the enhanced and more durable immune

response evoked by booster vaccinations following prior infection.
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Introduction

As the cumulative incidence of COVID-19 increases worldwide,

more people with a history of prior infection are now receiving SARS-

CoV-2 vaccines. With the infection-induced and vaccine-induced

immune responses having different viral neutralizing characteristics

(1), the acquisition of such a combined immune response is drawing

attention as ‘hybrid immunity’. Understanding the role of the

combined response of infection- and vaccine-induced immunity in

the immune protection of an individual against COVID-19 infection,

or in the inhibition of SARS-CoV-2 community transmission, may

impact future vaccination strategies through tailored dosing.

With immunopotentiation through repeat vaccinations becoming

a pivotal strategy, a consensus ought to be reached on the target

population, optimal interval, and dosing regimen for the repeated

boosters. To accomplish this, it is becoming increasingly important to

understand the longitudinal evolution of the antibody response and

the resulting ‘residual immunity’ following vaccination dose(s). The

impact of prior infection on the acquisition of protective immunity in

vaccinated individuals has been actively studied since the

introduction of the SARS-CoV-2 vaccines (2). However, possibly

due partly to adherence challenges, many studies have focused on the

differences in the early-phase post-vaccine response between naïve

and previously infected individuals (3, 4), whereas fewer studies have

described this in the mid- to long-term.

We previously carried out a SARS-CoV-2 seroprevalence survey

targeting healthcare workers (HCWs) from a tertiary care hospital in

Japan. This revealed a nosocomial cluster infection accumulating to a

15.5% overall seroprevalence among the personnel (5, 6). Through

longitudinal follow-up and further serological description of the

cohort of HCWs (7), we took advantage of the opportunity to

investigate a uniformly conditioned population endowed with the

combined response of infection- and vaccine-induced immunity:

those infected through a nosocomial cluster infection, and later

administered the BNT162b2 vaccine through the nation’s mass

vaccination campaign following similar intervals after the infection.

The impact of prior COVID-19 on an individual’s long-term residual

antibody titer following vaccination was analyzed.
Materials and methods

Participants and serum sampling

The participants in this study were HCWs at the St. Marianna

University, Yokohama Seibu Hospital, Kanagawa, Japan, where we

previously conducted an anti-SARS-CoV-2 seroprevalence survey in

June 2020 (5). In the previous study, 64 COVID-19-affected HCWs

and 350 non-infected individuals were identified following an

outbreak having occurred in the hospital during April–May 2020. It

was reasonably concluded that all participants had been infected

through the cluster infection, given that the SARS-CoV-2

seroprevalence in Japan stayed as low as 0.1% until June 2020 and

the close monitoring of symptoms and appropriate testing of the

HCWs would have identified any potential symptomatic SARS-CoV-

2 infection. From the cohort, 36 individuals who had tested positive

(‘prior infection’) and 33 individuals who had tested negative (‘naïve’)
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on Roche Elecsys anti-SARS-CoV-2 (Roche Diagnostics, Rotkreuz,

Switzerland) antibody testing agreed to participate in this follow-up

study. The ‘naïve’ individuals were further confirmed to have negative

anti-nucleocapsid serology upon study entry. Those categorized as the

‘prior infection’ group, as HCWs, were kept under continuous health

monitoring and were confirmed to have had no signs or symptoms

indicative of COVID-19 re-infection since completion of the previous

survey until their enrollment in this present study.

Participants received two doses of the BNT162b2 vaccine at the

standard three-week interval during April–May 2021, and provided

their sera six months after completion of their second BNT162b2 dose

(two exceptional cases; each were vaccinated in June and July 2021,

and thus provided their sera four and five months after completion).

The donated sera were processed for anti-spike antibody titer

measurements and receptor binding domain (RBD)-ACE2 binding

inhibition assays (Supplementary Figure 1).

The study was approved by the Osaka Metropolitan University

Institutional Ethics Committee [#2020-003]. Written consent for

participation was obtained from every participant.
Assessment of anti-spike and anti-
nucleocapsid humoral immunity

The anti-spike antibody titer was measured using two fully

automated, commercially available immunoassay platforms. The

chemiluminescence immunoassay, Abbott SARS-CoV-2IgG II

Quant (Abbott Laboratories, IL, USA), was designed to detect

serum IgG antibodies targeting the spike protein of SARS-CoV-2.

The electrochemiluminescence (ECL) immunoassay, Roche Elecsys

anti-SARS-CoV-2 S (Roche Diagnostics, Rotkreuz, Switzerland), was

designed to detect serum total antibodies targeting the spike protein.

Sera were also tested for the presence of anti-nucleocapsid antibodies

using the ECL immunoassay, Roche Elecsys anti-SARS-CoV-2

(Roche Diagnostics, Rotkreuz, Switzerland). The dual-antigen

binding assay detecting total antibodies targeting the nucleocapsid

protein was selected for its high sensitivity (8). The assays were

performed according to the manufacturers’ instructions.
Evaluation of the RBD-ACE2
binding inhibition capacity of anti-SARS-
CoV-2 antibodies

1:10 diluted serum samples were tested with the Meso Scale

Discovery RBD-ACE2 binding inhibition assay, an ECL-labeled

competition immunoassay. The V-PLEX SARS-CoV-2 Panel 22

(ACE2) Kit (K15562U) (Meso Scale Diagnostics LLC, MD, USA),

containing spots coated with Wuhan, Alpha, Beta, Delta, Gamma, and

Omicron RBD antigens, evaluated the capacity of serum anti-SARS-

CoV-2 antibodies to inhibit the RBD-ACE2 binding. The ECL signal,

negatively proportional to the concentration of inhibitory antibodies in

the sample, was read on the MESO QuickPlex SQ 120MM instrument

(Meso Scale Diagnostics LLC). RBD-ACE2 binding inhibition capacity

was calculated from the following formula and was expressed as

‘Inhibition rate (%Inhibition)’: %Inhibition = {1 – (ECL signal of

sample)/(ECL signal of blank)} × 100 [%].
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Statistical analysis

Participants’ demographics were described as numbers (and/or

percentages) for categorical variables and as means ± standard

deviation for continuous variables, and were compared between

‘naïve’ and ‘prior infection’ groups by the chi-square test or the

Mann-Whitney’s U test. The antibody titer was expressed as

geometric mean titer (GMT) [95% confidence interval] and

compared between groups by the t-test on a logarithmic scale. The

relationships between antibody titer, groups (‘naïve’ and ‘prior

infection’) and age were explored using semi-log regression models.

The age-specific titer ratios were calculated from fitted titer estimates

based on t-distribution. The dimorphism of age effect on the log-

transformed post-vaccination antibody titer was examined by

comparing the interaction terms between groups and age (i.e. the

slopes of the semi-log regression lines) with the F-test in ANCOVA.

The distributions of %Inhibition in ‘naïve’ and ‘prior infection’

groups were expressed as medians [interquartile ranges] and

compared by the Mann-Whitney’s U test. P-values less than 0.05

were considered statistically significant.
Results

A total of 69 participants (33 categorized as the ‘naïve’ group and 36

as the ‘prior infection’ group) were included in the analysis

(Supplementary Figure 1). The cohort had a sex ratio of 87% female

(88% in ‘naïve’ vs. 86% in ‘prior infection’; P = 0.83) and amean age of 42

± 12 years (47 ± 9 years in ‘naïve’ vs. 37 ± 12 years in ‘prior infection’; P =

0.0005) (Supplementary Table). Participants self-reported no pre-existing

medical conditions known to critically affect antibody response towards

any vaccine (i.e. diabetes mellitus, malignant disease, chronic kidney

disease). Within the ‘prior infection’ group, the previous COVID-19

diagnosis was often a mild-to-moderate illness, except for a single case of

severe disease. Anti-nucleocapsid antibodies remained negative in all

‘naïve’ throughout and remained above the positivity threshold in all of

those with ‘prior infection’ except one who had sero-reverted at 6 months

post-vaccination.
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Compared with the ‘naïve’ group, anti-spike antibody GMT at 6

months post-vaccination were significantly higher in the ‘prior infection’

group (Figure 1) (Abbott Architect anti-spike IgG titer 710 [537–939] vs.

9123 [6982–11921] AU/mL; P < 0.0001, Roche Elecsys anti-spike total

antibody titer 480 [345–669] vs. 8168 [5945–11222] U/mL; P < 0.0001).

For each immunoassay, there was an approximate 13- and 17-fold

change, respectively, in the GMT ratio between groups.

Age was positively associated with post-vaccination antibody titer

in the ‘prior infection’ group (Spearman’s correlation coefficients: 0.38

(P = 0.022) and 0.52 (P = 0.001) for Abbott and Roche titers,

respectively), whereas no such positive correlation was apparent in

the ‘naïve’ group (Spearman’s correlation coefficients: -0.20 (P =

0.275) and -0.25 (P = 0.162) for Abbott and Roche titers,

respectively). Therefore, the impact of age on the differences in

post-vaccination antibody titers was compared between the groups.

Evaluated from semi-log regression models (Figure 2), the dimorphic

effect of age on the log-transformed post-vaccination antibody titer

was significant (P = 0.049 and 0.007, for Abbott and Roche titers,

respectively; F-test in ANCOVA). Interpolation from the regression

models showed that the fold change in the ratio offitted titer estimates

increased from 8.9-fold at age 30 years to 19-fold at age 60 years for

the Abbott IgG titer, and 9.4-fold at age 30 years to 32-fold at age 60

years for the Roche total antibody titer (Table 1).

In the RBD-ACE2 binding inhibition assay (Figure 3), sera of

participants from the ‘prior infection’ group showed higher inhibition

capacity against all six strains, including the wild type (81.1 [61.1–

91.5] vs. 99.8 [99.7–99.9] %; P < 0.0001), and the Alpha (68.1 [54.4–

84.8] vs. 99.8 [99.6–99.8] %; P < 0.0001), Beta (38.4 [6.9–55.1] vs. 99.2

[97.0–99.5] %; P < 0.0001), Gamma (51.1 [38.1–68.7] vs. 99.6 [98.4–

99.8] %; P < 0.0001), Delta (78.2 [57.8–83.9] vs. 99.8 [99.7–99.9] %; P

< 0.0001), and Omicron variants (0.0 [0.0–18.3] vs. 74.1 [39.4–84.9]

%; P < 0.0001).
Discussion

The present study showed that prior infection was predictive of

enhanced and durable residual immunity against SARS-CoV-2 at 6
A B

FIGURE 1

Anti-spike antibody titers after BNT162b2 vaccination. Anti-spike antibody titers were measured at 6 months post-vaccination by the (A) Abbott Architect
anti-spike IgG assay and the (B) Roche Elecsys anti-spike total antibody assay. For comparison, antibody titers of the naïve individuals (blue) and those
with a prior infection (pink) are plotted. Solid lines indicate the geometric means of titers.
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months after vaccination. Participants with ‘prior infection’

demonstrated higher antibody titer compared with the ‘naïve’

individual, even after adjusting for age. Interestingly, the magnitude

of the difference in the antibody titer between the two groups

seemingly increased with older age. The superiority of ‘prior

infection’ maximized at age 60 years, showing 19- and 32-fold

higher Abbott and Roche antibody titers, respectively.

The IgG response following SARS-CoV-2 BNT162b2 vaccination

(i) peaks rapidly within the first 2 months from the initial dose and

then (ii) enters a subsequent stage of gradual decay (9). The initial

studies reporting the effect of prior infection on BNT162b2 post-

vaccination antibody titers had often targeted the peak response. At 2

months and 3 months after the initial dose, 3.7-fold and 2.7-fold

increases, respectively, were observed in vaccinees with prior COVID-

19 infection compared with the naïve group (3, 4). While potentiation

of the peak response to BNT162b2 vaccination by ‘prior infection’ has

been well supported by abundant real-world data, the stage of IgG

decay has been less addressed. Recently, a modeling study of post-

vaccination ‘waning immunity’ showed that the anti-SARS-CoV-2

IgG levels of vaccinees with prior infection decreased at a slower rate

compared to the non-previously infected (10). Another study also

suggested a slower decay of antibody titers in the prior infection
Frontiers in Immunology 04
group, resulting in a further exaggerated fold change in titer during

the decay phase of antibodies (11). The here observed unexpectedly

large 13- to 17-fold change in antibody titers, attributed to prior

infection status, is thus fully interpretable considering the biphasic

kinetics of the post-vaccination immune evolution.

Interestingly, age had dimorphic effects on post-vaccination

immune evolution depending on prior infection status. Older age

was associated with a higher level of IgG in previously infected

individuals, whereas no such positive correlation was apparent in

the naïve group. Older age has been repeatedly observed as a risk

factor of attenuated post-vaccination antibody titer in the previously

naïve population (9). To the contrary, increasing age has been

associated with stronger antibody responses in convalescent plasma

donors (12, 13). This can be explained by the fact that older

individuals are more prone to symptomatic, and possibly more

severe, SARS-CoV-2 infection, which in turn is often accompanied

by a potentiated circulating IgG response (5). Our study, analyzing

the combined effect of infection- and vaccine-induced antibody

responses in the ‘prior infection’ group, has also demonstrated an

accentuation of difference in the antibody titer with increasing age.

Altogether, it seems that the age effect on prior infection is reflected

more strongly in the combined immune status of ‘infection- plus
TABLE 1 Age-specific differences in anti-spike antibody titers attributable to prior infection status.

Age, y Titer estimate ratioa (Abbott) [95% CIb] P-value Titer estimate ratioa (Roche) [95% CIb] P-value

Overall 12.8 [8.7–18.9] < 0.001 17.0 [10.8–26.9] < 0.001

30 8.9 [4.7–16.8] < 0.001 9.4 [4.6–19.5] < 0.001

40 11.5 [6.2–21.3] < 0.001 14.1 [7.0–28.6] < 0.001

50 14.8 [7.6–29.2] < 0.001 21.1 [9.7–45.7] < 0.001

60 19.1 [8.7–42.3] < 0.001 31.5 [12.7–78.0] < 0.001

aRatio (‘prior infection’ to ‘naïve’) of titers fitted from semi-log regression lines.
bconfidence interval.
fron
A B

FIGURE 2

Age-dependent increase in the between-group (‘prior infection’ vs. ‘naïve’) differences in post-vaccination anti-spike antibody titer. Anti-spike antibody
titers measured by the (A) Abbott Architect anti-spike IgG assay and the (B) Roche Elecsys anti-spike total antibody assay are plotted for the naïve
individuals (blue) and those with a prior infection (pink). The impact of age on the log-transformed anti-spike antibody titer is fitted with semi-log
regression models. Dashed (naïve) and solid (prior infection) lines represent the predicted anti-spike antibody titer calculated by the model, with their
95% confidence intervals represented as shadowed areas. The participants with severe COVID-19 disease (n=1), and sero-reversion of anti-nucleocapsid
antibody at the time of serum analysis (n=1), are individually marked in square and triangular symbols, respectively.
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vaccine-induced immunity’. To support this idea, the present cohort

of vaccinees with prior infection showed a strong positive correlation

between the peak anti-spike antibody response following their

COVID-19 diagnosis (at 2 months’ convalescence) and the residual

antibody titer at 6 months post-vaccination (Pearson’s correlation

coefficient: 0.71 (P < 0.0001) and 0.77 (P < 0.0001) for Abbott and

Roche titers, respectively).

Immunopotentiation through repeated boosters is an affordable

strategy only when the risk-benefit balance is optimized and deemed

favorable. For the influenza vaccine, prior-year vaccination has shown

to have negative effects on the current year’s vaccine effectiveness

(14). Further, a frequent vaccination history was associated with 41%

and 27% decreases in vaccine effectiveness against type A influenza

and type B influenza, respectively (15). This phenomenon has been

explained as ‘antibody feedback’ (also known as the ‘original antigenic

sin’ or ‘immune imprinting’) (16). Potential ‘antibody feedback’ has

also been suggested with the SARS-CoV-2 vaccines (17). An extended

3-month interval regimen has resulted in, on average, 3.5-fold higher

IgG titers (18). A longer interval between prior infection and boosting

of the immune response with a vaccine has been associated with more

enhanced and durable immune responses (19). As shown in the

present study, the evolution of post-vaccine immune responses differ

among those having experienced prior infection compared with the

naïve. Thus, non-stratified strategies for repeated boosters may lead to

unexpected harms or attenuated performance through the ‘antibody

feedback’ mechanism. Further, although limited in evidence and

awaiting additional validation data, a study has suggested only a

modest dose-dependent (one or two doses) increment on COVID-19

risk reduction for booster vaccinations following prior infection (20).

From the risk-benefit balance perspective, when and whom to target
Frontiers in Immunology 05
with the repeated booster vaccinations remains a crucial question to

future vaccination campaigns.

The limitation of the study is the limited number of individuals

evaluated. The observed immune response may not represent that of

the overall population. The immune response of individuals from

older age categories and at utmost risk of severe disease would have

been highly intriguing, although not covered in the present study. The

extreme elderly and multi-morbid population have been shown to

exhibit aberrant immune responses (21, 22).

Despite these limitations, this study provides relevant information

in a context where hybrid immunity is becoming increasingly

prevalent. The benefits of boosting the infection-acquired immunity

by vaccination has been shown ‘clinically’ to enhance the degree and

duration of protection (protection rate persistently above 90% for 18

months or longer) (19). The present study, in turn with robust indices

of protective antibody response, further enriches the evidence for and

provides an immunological basis to this highest and most durable

protection achieved by those vaccinated on top of a primary infection.

While still pending any modifications of dosing recommendations

(i.e. reduced doses for individuals with prior infection), our

observation adds to the series of real-world data demonstrating the

enhanced and more durable immune response evoked by booster

vaccinations following prior infection.
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FIGURE 3

RBD-ACE2 binding inhibition capacity of serum antibodies after BNT162b2 vaccination. Inhibition capacity against the wild type and the variant (Alpha,
Beta, Gamma, Delta, and Omicron) SARS-CoV-2 spike antigen was assessed at 6 months post-vaccination. For comparison, inhibition rates of the
naïve individuals (blue) and those with a prior infection (pink) are plotted. The bars (error bars) indicate medians (interquartile ranges). %Inhibition,
inhibition rate.
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