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The m6A methylation landscape,
molecular characterization
and clinical relevance in
prostate adenocarcinoma

Chao Li1†, Dongyi Peng1†, Yu Gan2, Lei Zhou1, Weibin Hou1,
Bingzhi Wang1, Peng Yuan1, Wei Xiong1 and Long Wang1*

1Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China,
2Department of Urology, Xiangya Hospital, Central South University, Changsha, China
Background: Despite the recent progress of therapeutic strategies in treating

prostate cancer (PCa), the majority of patients still eventually relapse,

experiencing dismal outcomes. Therefore, it is of utmost importance to

identify novel viable targets to increase the effectiveness of treatment. The

present study aimed to investigate the potential relationship between N6-

methyladenosine (m6A) RNA modification and PCa development and

determine its clinical relevance.

Methods: Through systematic analysis of the TCGA database and other datasets,

we analyzed the gene expression correlation and mutation profiles of m6A-

related genes between PCa and normal tissues. Patient samples were divided

into high- and low-risk groups based on the results of Least Absolute Shrinkage

and Selection Operator (LASSO) Cox analysis. Subsequently, differences in

biological processes and genomic characteristics of the two risk groups were

determined, followed by functional enrichment analysis and gene set

enrichment (GSEA) analysis. Next, we constructed the protein-protein

interaction (PPI) network of differentially expressed genes between patients in

high- and low-risk groups, along with the mRNA-miRNA-lncRNA network. The

correlation analysis of tumor-infiltrating immune cells was further conducted to

reveal the differences in immune characteristics between the two groups.

Results: A variety of m6A-related genes were identified to be differentially

expressed in PCa tissues as compared with normal tissues. In addition, the PPI

network contained 278 interaction relationships and 34 m6A-related genes, and

the mRNA-miRNA-lncRNA network contained 17 relationships, including 91

miRNAs. Finally, the immune characteristics analysis showed that compared

with the low-risk group, the levels of M1 and M2 macrophages in the high-risk
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group significantly increased, while the levels of mast cells resting and T cells

CD4 memory resting significantly decreased.

Conclusions: This study provides novel findings that can further the

understanding of the role of m6A methylation during the progression of PCa,

which may facilitate the invention of targeted therapeutic drugs.
KEYWORDS

prostate adenocarcinoma, RNAN6-methyladenosine, prognosis, molecular characterization,
immune infiltration
Introduction

According to the statistics of the American Cancer Society,

prostate cancer (PCa) is the second leading cause of cancer-related

death in men in the United States, with an estimated 288,300 new

cases and 34,700 deaths per year, accounting for 28.5% and 10.8% of

all cancers, respectively (1). With the substantial increase in the

aging population in China, the incidence of PCa has also increased

year by year, and PCa has become the most common urogenital

tumor in elderly men (2). Despite recent advances in surgical and

drug treatments, the mortality rates of patients with recurrent or

metastatic PCa remain close to 100% (1). Therefore, in-depth study

of molecular markers related to treatment and prognosis of PCa and

searching for more effective therapeutic targets are of significant

importance for the clinical benefit of PCa patients.

To date, more than 150 RNA post-transcriptional modifications

have been identified in eukaryotes (3). N6-methyladenosine (m6A) is

the most common RNA modification in mammalian cells that has

important roles in different biological processes (4, 5). Abnormalities

in regulatory mechanisms of m6A have been identified as involved in

a variety of human diseases including cancer (6). m6A, as the

methylation at the sixth N position of adenylate in RNA, is the

most common modification of RNA in eukaryotes, accounting for

about 80% of RNA methylation modifications, and each mRNA

contains 3 to 5 m6A residues on average (3). This process is

dynamically and reversibly regulated by methyl transfer-related

proteins (METTL3, METTL14, and WTAP, etc.) and demethylases

(FTO, ALKBH3, and ALKBH5, etc.), and affects various steps of

mRNA metabolism reader, including mRNA processing, nuclear

export, translation and degradation, by binding to the m6A (7).

Several studies have established the model for m6A risk-related

prognosis to evaluate the treatment effect and prognosis of

metastatic PCa, finding that in patients with metastatic PCa, a

higher m6A risk score indicates a worse prognosis, which is

significantly associated with biological functions such as DNA

mismatch repair. Therefore, patients with high m6A risk scores

may be a more suitable population for DNA repair-targeted drug

therapy (8, 9). In addition, several studies have reported the potential

tumor-promoting or tumor-suppressing effects of m6A methylation-

related factors such asMETTL3, METTL14 and FTO in PCa (10–14).

However, there is still a lack of integrative analysis of the expression
02
of m6A RNA methylation regulator, clinicopathological features,

malignant progression, and prognosis in PCa.

In this study, we used published sequencing data to investigate

the possible role of m6A methylation in the progression of PCa, and

to establish relevant clinical prediction model to analyze the

predictive power of prognosis in PCa.
Materials and methods

Data acquirement and processing

The gene expression data of gene sequencing of patients with

prostate adenocarcinoma (PRAD) was downloaded from the TCGA

GDC (https://portal.gdc.cancer.gov/). The clinical characteristics of

the corresponding patients, including age, gender, and survival

prognosis, were also downloaded. After deleting the PRAD

patients with missing clinical information, 481 tumor tissues and

51 normal tissues were ultimately included in the analysis. The

somatic mutation data of PRAD patients were downloaded and

maftools package of R software was used to visualize the somatic

mutation (15). The tumor mutation burden (TMB) of each patient

was collected. Besides, datasets including GSE46602 and GSE69223

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) (16, 17). Moreover,

GSE46602 contains 36 tumor tissues and 14 normal tissues, and

GSE69223 contains 15 tumor tissues and 15 normal tissues. Both

datasets came from the GPL570 sequencing platform, where the

species origin was Homo sapiens.
Construction of a risk model for PCa

To analyze the expression of m6A-related genes in PRAD, we

first analyzed the differential expression and gene expression

correlation of m6A-related genes in PRAD and normal tissues.

The risk genes associated with PCa prognosis were obtained

through univariate cox regression analysis of the expression and

survival of PRAD patients from TCGA. The risk genes associated

with PCa prognosis were subsequently incorporated into the model,

and the Least Absolute Shrinkage and Selection Operator (LASSO)
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was used to reduce the data dimensionality and obtain prognostic-

related signature genes. The normalized values of expression of each

gene were weighted by the penalty coefficient by LASSO Cox

analysis, a risk score formula was established, and the patients

were divided into high-risk group and low-risk group according to

median value of the risk score, as follows:

riskScore  =  o
i
Coefficient (risk genei)*mRNA Expression (risk gene
Differentially expressed genes analysis

To analyze the effect of risk score on DEGs analysis of PRAD,

the R package “DESeq2” was used to perform DEGs analysis on

samples in high-risk and low-risk groups of the dataset from

TCGA-PRAD to screen for significant differential genes (18). The

absolute value of log2 fold change (logFC) > 1.5 and Padj< 0.05 were

set as the thresholds of differential genes. Genes with logFC > 1.5

and Padj< 0.05 were up-regulated DEGs, and genes with logFC<

-1.5 and Padj< 0.05 were down-regulated DEGs (19).
Genomic characteristics and biological
characteristics of patients in high-risk
group and low-risk group

Following the development of tumor genomics, the Mutation

Annotation Format (MAF) has become widely accepted and used to

store detected somatic variants. In order to evaluate the variation of

gene copy number variation in risk-grouping, the GISTIC2.0 in the

Genepattern (https://cloud.genepattern.org/) analysis platform was

used to analyze the copy number variation in the risk groups of

TCGA database (20).

In this study, the MSIpred method was used to analyze the

relationship between risk-grouping and TMB or microsatellite

instability (MSI), respectively (21). In addition, in order to

investigate the variation of biological process of samples in high-

risk group compared with that in low-risk group, we performed gene

set variation analysis using the R package “GSVA” based on the gene

expression profiling dataset of PRAD patients from TCGA (22).

The reference gene set “h.all.v7.4.symbols.gmt” was downloaded

from the MSigDB database to calculate the enrichment score of each

sample in each pathway in the dataset (23), and evaluate the

relationship between the enrichment score and the risk score. P<

0.05 was considered statistically significant.
Functional enrichment analysis and gene
set enrichment analysis

GO analysis is a method commonly used for large-scale

functional enrichment studies, including biological process (BP),

molecular function (MF) and cellular component (CC) (24). KEGG

is a widely used database for storing data about genomes, biological

pathways, diseases, and drugs (25). GO annotation analysis and
Frontiers in Immunology 03
KEGG pathway enrichment analysis of differentially expressed

genes were performed using the clusterProfiler package of R and

a cutoff value of FDR< 0.05 was considered statistically

significant (26).

To investigate differences in biological processes between two

groups, based on the gene expression profiling dataset of PRAD

patients, gene set enrichment analysis was performed using GSEA,

which is a computational method to analyze the potential existence

of significant differences in a specific gene set between two

biological states (27). Also, GSEA is often used to estimate

changes in pathway and biological process activity in samples of

expression dataset. The “c2.cp.kegg.v7.4.symbols.gmt” gene set and

the “c5.go.v7.2.symbols.gmt” gene set were downloaded from the

MSigDB database for GSEA analysis. P< 0.05 was considered

statistically significant.
Identification and correlation analysis of
tumor infiltrating immune cells

CIBERSORT is an algorithm that deconvolves the expression

matrix of immune cell subtypes based on the principle of linear

support vector regression, which utilizes RNA-Seq data to estimate

the abundance of immune cells in tissues (28). The CIBERSORT in R

software was used to estimate the abundance of 22 kinds of immune

cells in high-risk and low-risk groups in the dataset, and boxplots were

performed to visualize the immune cell composition of disease samples

and normal samples. The Wilcoxon test calculated differences in the

proportion of immune cells between disease samples and normal

samples, and P< 0.05 was considered statistically significant. The

dataset on the interaction of PRAD cell lines with drugs was

obtained from the GDSC database (29), and the R package

oncoPredict was used for drug sensitivity analysis of the expression

data of patients in the high-risk group and the low-risk group from

TCGA-PRAD so as to compare the sensitivity differences in anti-tumor

drugs between patients in high-risk group and low-risk group (30).
Construction of protein-protein interaction
network and key gene-miRNA network

The PPI network includes interactions of individual protein

with each other that participate in all aspects of life processes such

as biological signal transmission, gene expression regulation, energy

and material metabolism, and cell cycle regulation. Therefore,

systematic analysis of the interaction of a large number of

proteins in biological systems is useful for elucidating the working

principle of proteins in biological systems, understanding the

mechanism of biological signals and energy metabolism under

special physiological conditions such as diseases, as well as the

functional connections between proteins.

The STRING database is used for searching for interactions

between known protein and predicted protein (31). In this study, we

used the STRING database and selected genes with a combined

score > 400 to construct a protein-protein interaction network

related to DEGs. Besides, Cytoscape (v3.7.2) was used to visualize
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the PPI network model. Genes in the PPI network were functionally

annotated using clueGO (32, 33).

In order to analyze the relationship between key genes and

miRNAs in the post-transcriptional stage, miRNAs related to

differentially expressed genes from the miRNet database were

obtained to construct an mRNA-miRNA regulatory network (34).

The mRNA-miRNA regulatory network was visualized using

Cytoscape software. lncRNA is a class of RNA molecules with

transcripts longer than 200 nt, which are generally considered to not

encode proteins, but participate in the regulation of protein-coding

genes in the form of RNA in epigenetic regulation, transcriptional

regulation and post-transcriptional regulation (35).

To analyze the relationship among DEGs and miRNAs and

lncRNAs in the post-transcriptional stage, we obtained miRNAs

and lncRNAs related to DEGs from the miRNet database to

construct an mRNA-miRNA-lncRNA regulatory network (34),

which was visualized by the Cytoscape software.
Construction of clinical prediction model
based on risk model

To demonstrate the individualized assessment of prognosis of

patients by risk scores combined with clinicopathologic

characteristics, univariate and multivariate Cox analyses were

subsequently performed to analyze the predictive power of risk

scores combined with clinicopathologic characteristics of patients

for overall survival (OS). Subsequently, the risk score model with

clinicopathologic characteristics was selected to construct a clinical

predictive nomogram. To quantify discriminative performance, a

calibration curve was generated to assess the performance of the

nomogram by comparing the predicted value of the nomogram

with the observed actual survival.
Cell culture

Human prostate normal cell line RWPE-1, PCa cell line 22Rv1

and PC3 were purchased from American type culture collection

(ATCC). All cells were cultured in RPMI-1640 cell culture medium

containing 10% FBS in a 5% CO2 humidified atmosphere at 37°C.

When used in experiments, these cell lines were cultured within 20

passages, and regular routine testing was employed to confirm them

as negative for mycoplasma.
Real-time-qPCR analysis

In order to detect the mRNA levels of each m6A-related factor,

total RNA was extracted from cells using the RNAsimple Total

RNA Kit (TIANGEN), after which the obtained RNA was reverse

transcribed into cDNA using the RevertAid First Strand cDNA

Synthesis Kit (ThermoFisher). Each cDNA sample was amplified

using SuperReal PreMix Plus SYBR Green Supermix (TIANGEN)

in the LightCycler 480 Real-Time PCR System (Roche) following

the manufacturer’s instructions. Primers used for RT-qPCR analysis
Frontiers in Immunology 04
are shown in Supplementary Table 1. Relative RNA levels were

calculated using the 2-DDCt method, and normalized to b-actin as an

internal control.
Western blot

To denature proteins, cell lysates were added to 5× loading

buffer (Beijing TDY Biotech) and heated to 95°C for 5 min. Protein

samples were separated by SDS-PAGE electrophoresis, transferred

semi-dry onto NC membranes (Millipore), and blocked in Tris-

buffered saline-Tween 20 (TBST) containing 5% nonfat milk for

30 min, after which the immunoblotting was performed by

incubating with the primary antibody for 10 min at room

temperature, and then overnight at 4°C. After being subjected to

5 washes, the membranes were incubated with goat anti-mouse/

rabbit IgG (H+L)-HRP secondary antibody (Beijing TDY Biotech,

1:10000 dilution) for 40 min and were subsequently exposed to light

using western ECL Substrate (Millipore). The relative expression

levels of each protein were assessed using ImageJ software. Primary

antibodies used in this study are listed in Supplementary Table 2.
Statistical analysis

All data processing and analysis were performed by R software

(version 4.1.1). The student’s t-test was used to estimate the

statistical significance of normally distributed variables for

the comparison of measurement data between two groups. The

Wilcoxon rank-sum test was used to calculate the statistical

significance of non-normally distributed variables between

two groups. The Chi-square test or Fisher’s exact test was used to

compare and analyze the statistical significance of categorical

data between two groups. Correlation coefficients between

different genes were calculated by Pearson correlation

analysis. The Kaplan-Meier survival curve was used to show the

difference in survival, and the log-rank test was used to evaluate the

significant difference in survival between the two groups. All

statistical P values were two-sided, and P< 0.05 was considered

statistically significant.
Results

Expression and mutation of m6A-related
genes in PRAD patients

The baseline data of patients with PRAD are shown in

Supplementary Table 3. To analyze the expression levels of m6A-

related genes in PRAD patients, we analyzed genomic mutations

and mRNA expression, respectively. First, a comprehensive analysis

of expression profiles in PCa tissues and normal tissues from TCGA

data and GEO data was performed with de-batch effects (Figure 1).

Principal Component Analysis (PCA) showed significant

differences in m6A-related gene signatures between PRAD tissues

and normal tissues.
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Subsequently, the differential analysis showed that a variety of

m6A-related genes were significantly differentially expressed between

PCa tissues and normal tissues, including FTO, METTL14,

METTL16, ZC3H13, YTHDC1, YTHDF3, RBM15B, etc. (Figure 2).

Mutation analysis showed that most of the mutations were

missense mutations, and most of the mutation types were SNPs

(Figure 3A). There were 22 patients with PRAD and single

nucleotide mutations in m6A-related genes, among which the

ZC3HI3 had the highest mutation rate (Figure 3B). The

correlation analysis of the heat map showed a positive correlation

of m6A-related genes in PRAD tissues (Figure 3C).

The total number of mutations was obtained to calculate the

TMB of the high-risk group of PRAD patients and low-risk PRAD

patients. TMB was higher in PRAD patients in the high-risk group

(Figure 3D), suggesting that PRAD patients in the high-risk group

may be more likely to respond to immunotherapy. MSI is also an

important treatment for predicting the effect of immunotherapy.

Thus, we predicted the status distribution of MSI-H and MSI of

PRAD patients in the high-risk group and low-risk group based on

mutation data (Figure 3E). Our results showed that patients with
Frontiers in Immunology 05
MSI-H were all PRAD patients in the high-risk group and that MSI-

H samples may be more sensitive to immunotherapy and more

benefit from immunotherapeutic drugs.
Construction of risk model and
prognostic analysis

In order to analyze the impact of genes on the prognosis of PRAD

patient, 278 risk genes associated with PCa prognosis were identified

by univariate cox regression analysis, and enrolled in LASSO-Cox

analysis to select and obtain 18 genes with the best prognostic value

(Figures 4A, B). Subsequently, the correlation among the expression

levels of these genes was analyzed, which showed that the signature

genes were broadly represented (Figure 4C). At the same time, based

on penalty coefficients of important signature genes calculated by

LASSO-Cox analysis, the gene expression was multiplied by the

corresponding coefficients and added to establish a risk score.

Besides, the final risk score of each sample was calculated. Next,

patients were divided into high-risk group and low-risk group based
A B

D

E F

C

FIGURE 1

Dataset on PRAD after correction. Purple nodes indicate tumor samples, and green nodes indicate normal samples. (A, C, E) are the data before
correction, and (B, D, F) are the data after correction.
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on the mean value of PRAD patients’ risk scores. Kaplan-Meier

analysis showed that patients in high-risk group had relatively poor

OS (Log-rank P< 0.0001, Figure 4D). Moreover, a significant

correlation was found between the expression levels of m6A-related

genes and the risk score of patients (Figure 4E).

Next, we analyzed the differences in m6A-related gene

expression levels of patients between the high-risk group and

low-risk group, finding 27 m6A-related genes with significantly

differential expression between patients in high-risk group and low-

risk group (all P<0.05, Figure 5).
Differences in biological processes and
genomic characteristics of risk-groups

The mutation types of mutated genes in PRAD patients in the

high-risk group and low-risk group were analyzed, and more gene

mutations were found in PRAD patients in the high-risk group

(Figures 6A, B). Subsequently, we analyzed the high-frequency

mutation genes of patients in the two groups, finding that the gene

with the highest mutation frequency of patients in the high-risk

group was TP53 (Figure 6C), while the gene with the highest

mutation frequency among patients in the low-risk group was

SPOP (Figure 6D). The relationship between mutated genes of

patients in the two groups was compared, showing significant co-
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mutation between MACF1 and PCLO in PRAD patients in the high-

risk group (Figure 6E), and significant co-mutation between SPOP

and ASH1L in PRAD patients in the low-risk group (Figure 6F).

Finally, GISTIC 2.0 was used to identify genes with significant

amplification or deletion in the copy number variation data of

patients in two groups, respectively. The results showed more gene

copy number amplifications on chromosomes 2, 12, 13, 20, and 21

in PRAD patients in the high-risk group (Figures 6G, H).

To identify the underlying biological features of the different

risk models, we calculated the correlation between the enrichment

score and the risk score at the hallmark for each sample, and the

results showed that the risk score had a significant negative

association with DNA repair, MYC targets V1, G2M checkpoint,

unfolded protein response, MYC targets v2, E2F targets and

oxidative phosphorylation, and significant positive association

with an apical surface and myogenesis (all P<0.05, Figure 7).
Difference analysis between high-risk
group and low-risk group

As the level of risk has a significant impact on the survival rate of

patients, we conducted a differential analysis on the gene expression

of patients in the high-risk group and the low-risk group, taking the

genes with Padj< 0.01 and |logFC|> 1.5 as the differentially expressed
A

B

C

FIGURE 2

Overall expression of m6A-related genes in PRAD patients. Purple indicates the tumor sample, and green indicates the normal sample. Three images
indicate TCGA (A), GSE46602 (B), GSE69223 (C). *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant.
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genes. We identified 284 differentially expressed genes, including 207

up-regulated genes and 77 down-regulated genes (Figure 8A). At the

same time, the differentially expressed genes were divided into

differentially expressed mRNAs and differentially expressed

lncRNAs. There were 164 up-regulated miRNAs and 71 down-

regulated miRNAs (Figure 8B) identified, and 43 up-regulated

lncRNAs and 6 down-regulated lncRNAs (Figure 8C).

Subsequently, we analyzed the impact of differentially expressed

mRNAs between the high-risk group and low-risk group on

biologically relevant functions of patients. First, GO functional

annotation was performed on the differentially expressed genes

(Figure 9A; Supplementary Table 4), revealing that these

differentially expressed genes were mainly enriched in biological

processes including muscle filament sliding, actin-myosin filament

sliding, striated muscle cell development, myofibril assembly, thyroid

hormone metabolic process, cellular component assembly involved in
Frontiers in Immunology 07
morphogenesis and thyroid hormone generation (Figure 9B); in

cellular components including sarcomere, myofibril, contractile fiber,

muscle myosin complex, and myosin II complex (Figure 9C), and in

molecular functions including lipase inhibitor activity, endopeptidase

Inhibitor activity, peptidase inhibitor activity, microfilament motor

activity, endopeptidase regulator activity, enzyme inhibitor activity

(Figure 9D). At the same time, these differentially expressed genes

were enriched in KEGG pathways such as Thyroid hormone synthesis,

Chemical carcinogenesis-DNA adducts, Pancreatic secretion, Drug

metabolism-cytochrome P450 (Figure 9E; Supplementary Table 5).

The enrichment of the expression levels of differentially expressed

genes in pathways hsa00982, hsa04918, and hsa04972 is shown in

detail in Figures 9F–H.

Next, GSEA was performed on all gene expressions between the

high-risk group and the low-risk group, showing significant differences

in the following biological processes between groups (Supplementary
A B

D

E

C

FIGURE 3

Mutation status of m6A-related genes in PRAD patients. (A) Summary of PRAD patients mutation data from TCGA. (B) Mutation map of m6A-related
genes in PRAD patients from TCGA. Samples are ordered according to somatic nonsynonymous mutational burden and genes are ordered by
mutation frequency, with various colors indicating different mutation types. Subsection above legend shows mutational burden. (C) The expression
level correlation of m6A-related genes in the gene expression profile of PRAD patients from TCGA. The numbers in the figure and the annotation bar
on the right indicate the magnitude of the correlation. (D) Differences in TMB between PRAD patients in high-risk group and low-risk group.
(E) Differences in MSI status between PRAD patients in high-risk group and low-risk group.
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Table 6). Among them, biological processes such as centromere

complex assembly, mitotic sister chromatid segregation, DNA

replication independent nucleosome organization, kinetochore, and

axoneme assembly were inhibited, while biological processes such as

myofibril assembly, contractile fiber, muscle filament sliding,

sarcomere organization, and structural constituent of muscle were

activated (Figures 10A, B). Meanwhile, it was found that pathways

involved in hypertrophic cardiomyopathy, dilated cardiomyopathy,

arrhythmogenic right ventricular cardiomyopathy, glutathione

metabolism, cytokine-cytokine receptor interaction were activated,

while pathways involved in cell cycle, maturity onset diabetes of the
Frontiers in Immunology 08
young, aminoacyl tRNA biosynthesis, mismatch repair, ribosome were

inhibited (Figures 10C, D).
PPI network of differentially expressed
genes between patients in high-risk group
and low-risk group

In order to explore the mechanism affecting the difference between

high-risk and low-risk groups, the PPI network of differentially expressed

genes in a high-risk group and low-risk group was obtained from the
A B

D E

C

FIGURE 4

Construction of the risk scoring model. (A, B) LASSO Cox analysis identified 18 signature genes most associated with OS in the dataset of PRAD
patients from TCGA. (C) Expression correlation analysis of signature genes in PRAD. (D) Kaplan-Meier curve assessed the effect of risk score on
overall survival in PRAD patients, with patients with low risk in purple and patients with high risk in green. (E) The correlation analysis of m6A-related
genes and risk scores. The horizontal axis shows m6A-related genes, the vertical axis shows the size of correlation, and the node color indicates the
significance level. *P < 0.05, **P < 0.01, *** P < 0.001.
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String database, which was visualized by cytoscape (Figure 11A). The

network contained 170 genes, where INS was also closely linked with 32

differentially expressed genes, while both MYH6 andMYH7 were linked

with 18 differentially expressed genes. The functional interaction subnet

was extracted by MCODE (Figure 11B). The ACTA1, ACTC1, and

MYH4 in the subnet were all linked to multiple DEGs in PPI. To verify
Frontiers in Immunology 09
the functions of genes in the PPI, ClueGO functional enrichment analysis

was performed, which showed that genes in PPI were significantly

enriched in biological functions including ion transmembrane

transporter activity, phosphorylative, regulation of serine-type

endopeptidase activity mechanism, endopeptidase inhibitor activity,

and glucuronosyltransferase activity (Figure 11C).
FIGURE 5

Expression levels of m6A gene between patients in a high-risk group and low-risk group. Purple indicates patients with low-risk, and green indicates
patients with high-risk.
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The differentially expressed mRNA and differentially expressed

lncRNA were used to construct the mRNA-miRNA network and

lncRNA-miRNA network, respectively. The intersection of the

miRNAs in the two networks was taken to obtain the mRNA-

miRNA-lncRNA network associated with patients in the high-risk

group and the low-risk group (Figure 11D). The network contained

17 mRNA-miRNA-lncRNA relationships, including 91 miRNAs.

At the same time, the PPI network between m6A-related genes

was constructed (Figure 11E). The network contained 278 interaction

relationships and 34 m6A-related genes, among which METTL3,

YTHDF1, and YTHDF3 were the three nodes with the highest degree.
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Similarly, the mRNA-miRNA network of m6A-related genes was

constructed (Figure 11F), and the network contained 34 m6A-related

genes and 1121miRNAs. The top 5m6A-related genes were IGF2BP1

regulated by 241 miRNAs, HNRNPA2B1 regulated by 207 miRNAs,

YTHDF1 regulated by 155 miRNAs, PRRC2A regulated by 144

miRNAs, and YTHDF3 regulated by 143 miRNAs. The top 4 of

miRNAs that controlled multiple m6A-related genes simultaneously

were hsa-mir-1-3p controlling 24 m6A-related genes, hsa-let-7b-5p

controlling 20 m6A-related genes, hsa-mir-124-3p controlling 19

m6A-related genes, and hsa-mir-16-5p controlling 17 m6A-related

genes. Moreover, the heatmap of m6A-related genes, risk scores
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C

FIGURE 6

Correlation analysis of risk scores and genomic characteristics. (A, B) Summary data on mutation for patients with low-risk and patients with high-
risk. (C, D) Statistics of top 20 mutant genes in patients with high-risk and patients with low-risk. Samples are ordered according to somatic
nonsynonymous mutational burden and genes are ordered by mutation frequency, with various colors indicating different mutation types. The
subsection above the legend shows mutational burden. (E, F) Demonstration of synergy and mutational relationships between mutated genes in
patients with high-risk and patients with low-risk. (G, H) Identified genes with significant amplifications and deletions in patients with high-risk and
patients with low-risk. Q-value and change score of GISTIC2.0 (x-axis) versus genomic location (y-axis). Dashed lines indicated centromeres. The
green line represents the 0.25 Q-value cut-off point for determining significance. *P < 0.05.
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combined with clinicopathological characteristics was shown to

further explore the relationship among risk scores, m6A-related

genes and clinicopathological characteristics (Figure 11G).
Differences in immune characteristics and
drug sensitivity prediction of patients in
high-risk group and low-risk group

Next, the effect of risk score on the overall immune profile and

different infiltration levels of immune cell in PRAD patients was
Frontiers in Immunology 11
assessed, revealing that compared with the low-risk group, the levels

of M1 macrophages and M2 macrophages in the high-risk group

significantly increased, while the levels of mast cells resting and T

cells CD4 memory resting significantly decreased (P< 0.05,

Figure 12A). We further calculated the correlation between the

level of immune cell and the expression level of m6A-related gene

(Figure 12B), finding that resting memory CD4+ T cells and

regulatory T cells (Tregs) were strongly correlated with multiple

m6A-related genes (P< 0.05).

We also predicted the drug sensitivity of PRAD patients in the

high-risk group and low-risk group, finding that patients in the low-
A B
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G IH

C

FIGURE 7

Correlation analysis of risk score and Hallmark_DNA_repair (A), Hallmark_APICAL_surface (B), Hallmark_myc_targets_v1 (C), Hallmark_G2M_checkpoint (D),
Hallmark_unfolded_protein_response (E), Hallmark_myc_targets_v2 (F), Hallmark_myogenesis (G), Hallmark_E2F_targets (H), Hallmark_oxidative_phosphorylation
(I). The horizontal axis represents the risk score, and the vertical axis represents the enrichment score of the hallmark.
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A B C

FIGURE 8

Differentially expressed mRNAs (A), miRNAs (B), lncRNAs (C) between patients in a high-risk group and a low-risk group. The horizontal axis was
logFC; the vertical axis was -log10 (Adjust P-value). Red nodes represent up-regulated differentially expressed genes, blue nodes represent down-
regulated differentially expressed genes, and gray nodes represent genes that were not significantly differentially expressed.
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FIGURE 9

Enrichment analysis of differentially expressed genes between patients in a high-risk group and low-risk group. (A) GO functional enrichment
analysis, the vertical axis is gene ratio, the horizontal axis is GO terms, the node color indicates -log10 (p value), and the node size indicates the
number of genes contained in the current GO Term. (B) The first 5 items of BP are listed, the node’s size indicates the number of genes contained in
the current GO Term, and the different colors indicate different GO Term. (C) The first 5 items of CC are listed, the node size indicates the number
of genes contained in the current GO Term, and the different colors indicate different GO Term. (D) The first 5 items of MF are listed, the node size
indicates the number of genes contained in the current GO Term, and the different colors indicate different GO Term. (E) KEGG pathway enrichment
analysis, the horizontal axis was -log10 (p value), the vertical axis is the Pathway name, the node size indicates the number of genes enriched in the
pathway, and the node color indicated -log10 (p value). (F) KEGG pathway with significant enrichment. hsa00982: Drug metabolism - cytochrome
P450. (G) KEGG pathway with significant enrichment, hsa04972: Pancreatic secretion. (H) KEGG pathway with significant enrichment, hsa04918:
Thyroid hormone synthesis.
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risk group were more sensitive to PD0325901, trametinib,

GSK1059615, dasatinib, PARP_0108 and Z-LLNle-CHO, while

patients in the high-risk group were more sensitive to WZ3105,

WYE-125132, CD532, pevonedistat, and other drugs (Figure 12C).
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Subsequently, risk scores were combined with different

clinicopathological characteristics to construct a predictive

nomogram to predict OS in PRAD patients (Figure 13A).

Moreover, the calibration curves showed good agreement between
A B

DC

FIGURE 10

GSEA analysis of high-risk group and low-risk group. (A) GSEA-GO analysis of a dataset of PRAD patients from TCGA, the horizontal axis is the gene
ratio, the vertical axis is the GO terms, and the color represents -log10 (p value). (B) The first 5 items of the GSEA-GO analysis of the entire dataset
of PRAD patients from TCGA are shown. (C) GSEA-KEGG analysis of dataset of PRAD patients from TCGA, the horizontal axis is the gene ratio, the
vertical axis is the GO terms, the node size represents the number of genes enriched in GO terms, and the node color represents log10 (p value).
(D) The first 5 items of the GSEA-KEGG analysis of dataset of PRAD patients from TCGA.
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the 2-, 3-, and 5-year OS estimates by comparing the nomogram

and actual value of OS (Figures 13B–D). We also assessed the effect

of risk scores on the prognosis of PRAD patients. Dot plot of risk

score showed that all death samples belonged to the high-risk

group, and as the risk score increased, while the survival time of

the patients was shorter (Figure 13E). Univariate and multivariate

Cox analysis revealed that risk score was an independent risk factor

for predicting the prognosis of PRAD patients (Figures 13F, G;
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Supplementary Table 6). By analyzing the correlation between

m6A-related genes and risk scores or clinicopathological

characteristics, it was found that the patients in the high-risk

group were more in the middle and late stages. Patients in the

high-risk group were older, and the cancerous sites were mostly in

the central area with multiple points. m6A-related genes were

significantly differentially expressed between patients in high-risk

group and the low-risk group (Figure 13G). Besides, the time-ROC
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FIGURE 11

PPI network and mRNA-miRNA-lncRNA network of differentially expressed genes. (A) PPI network of differentially expressed genes. The node size
represents the degree of the node. (B) The first subnet in the PPI network of differentially expressed gene. The node size represents the score of
mcode. (C) Graph of enrichment analysis of PPI network of differentially expressed gene. (D) mRNA-miRNA-lncRNA network of differentially
expressed genes. Blue nodes represent miRNAs, red nodes represent differentially expressed lncRNAs, and yellow nodes represent differentially
expressed mRNAs. (E) PPI network of m6A-related gene. The node size indicates the degree of the node. (F) mRNA-miRNA network of m6A-related
gene. Blue nodes represent miRNAs, and red nodes represent m6A-related genes. (G) The heat map of m6A-related genes, risk scores combined
with clinicopathological characteristics.
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also showed that the predictive performance of the prognostic

model was 100% for one-year survival, 96.9% for three-year

survival, and 97.9% for five-year survival (Figure 13H).
Expression validation of m6A-related gene
in PCa cells

Based on the comprehensive analysis of TCGA data and GEO data

above, significant differences were found in expression of multiple
Frontiers in Immunology 15
m6A-related genes between PCa tissues and normal tissues, which were

further verified at the cellular level. By comparing the expression of

m6A-related genes in prostate normal cell line (RWPE-1) and 2 PCa

cell lines (22Rv1 and PC3), 8 significantly DEGs were screened out by

RT-qPCR, among which METTL3, ALKBH5 and hnRNPA2B1 were

highly expressed in PCa cells, while METTL5, YTHDF1, IGF2BP2,

IGF2BP3 and hnRNPCwere lowly expressed in PCa cells (Figure 14A).

Moreover, three m6A-related genes with the same expression trend as

RT-qPCR results were screened out by Western blot, including

METTL3, METTL5 and YTHDF1 (Figure 14B).
A B

C

FIGURE 12

Association of risk score-m6A-related gene-immune cell infiltration and drug sensitivity. (A) Histogram of the level of immune cells infiltration
between patients in a high-risk group and low-risk group. Light green represents the high-risk group, dark green represents the low-risk group, the
horizontal axis represents immune cell subtypes, and the vertical axis represents the infiltration level of cells. (B) Correlation diagram between m6A-
related genes and immune cells. The horizontal axis represents immune cell subtypes, the vertical axis represents m6A-related genes, the node size
represents the absolute value of the correlation size, and the node color represents the significance level. (C) Differences in drug sensitivity between
patients in the high-risk group and low-risk group. The horizontal axis indicates grouping, and the vertical axis indicates -log0 (IC50). *P < 0.05,
**P < 0.01, ns, not significant.
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Discussion

Cumulative evidence over the two decades suggested that

various types of RNA modifications, such as 5-methylcytosine

(m5C), m6A, inosine (I), and 2′-O-methylation (2′-O-Me) are
Frontiers in Immunology 16
implicated in PCa (6, 36–38). Among them, m6A has attracted

the most attention due to the wide distribution of this modification

across the human transcriptome. Yet, the interplay between m6A

and PCa development is still not clearly understood. In this study,

we systematically examined the relationship between expression of
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FIGURE 13

Analysis of the predictive power of risk scores for prognosis in PRAD patients. (A–D) Calibration curves of the nomogram. The horizontal axis is the
survival predicted by the nomogram, and the vertical axis is the actual survival with repeated 1000 times each time. The curve shows the model had
good predictive value of prognosis of patients for 2 years, 3 years and 5 years. (E) The risk group of the risk model. The horizontal axis shows the
order of patient risk gradually increasing; the purple nodes represent patients with high-risk, the green nodes represent patients with low-risk, the
vertical axis of the upper graph indicates the patient’s transformed risk score, and the vertical axis of the lower graph indicate survival time of
patients. (F) HR and P values for risk scores by Univariate Cox regression analysis combined with clinicopathological features. (G) Multivariate Cox
regression analysis of risk score combined with HR and P values of clinicopathological characteristics. The analysis showed that score of m6A group
was an independent risk factor for the prognosis of PRAD patients. (H) Time-ROC curve of nomogram model for predicting 1-year survival, 3-year
survival and 5-year survival of PRAD patients.
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m6A regulators and progression/prognosis of PCa with the help of

multiple bioinformatic tools. In addition, expression patterns of

three candidates, i.e., METTL3, METTL5 and YTHDF1, have been

successfully validated by experimental approaches.

As an important enzyme catalyzing the formation of m6A,

METTL3 forms an m6A methyltransferase complex with

METTL14, WTAP, and VIRMA to confer m6A marks to its

binding RNA transcripts (39). One study revealed that METTL3

inhibits apoptosis of PCa cells via Sonic Hedgehog (SHH)-GLI

pathway, indicating an oncogenic role of METTL3 during PCa

progression (40). Another study demonstrated that METTL3

regulates the expression of Integrin b1 (ITGB1) through m6A-

HuR-dependent mechanism, which subsequently promotes the

bone metastasis of PCa (41). Notably, MYC, a well-known

oncogene in PCa, was recently identified as a functional target of

METTL3-mediated m6A modification. As a result, over-expression

of MYC was sufficient to rescue the inhibitory effect of METTL3

knockdown on the tumorigenic activities of PCa cells (42).

Consistent with these previous studies, we re-confirmed the

elevated expression of METTL3 in PCa cells, identifying it as the

key node of the PPI network and further unveiling its potential in

the prognosis of advanced PCa.

Other than METTL3, which is responsible for more than

100,000 methylation events in humans, methyltransferase of

METTL5 can only catalyze m6A in human 18S rRNA at position

A1832 site, thus participating in translational control (43).

Dysregulation of METTL5 has been revealed in breast cancer,

pancreatic cancer and gastric cancer (44–46). To the best of our

knowledge, this is the first study that reported METTL5 being

downregulated in PCa samples compared to normal control.

Considering the fact that METTL5 is mostly found to be

upregulated in other cancer types and gas oncogenic functions, it

will be interesting to investigate the reason for the downregulation

of METTL5 in PCa and uncover its clinical relevance.

As an m6A reader, YTHDF1 interacts with several translation

initiation factors to mediate the translation of m6A-modified
Frontiers in Immunology 17
transcripts (47). A recent study suggested that YTHDF1 is highly

expressed in both PCa tissues and promotes the proliferation of PCa

cells by regulating TRIM44 (48). Surprisingly, although we

also identified YTHDF1 as a key node of both PPI and

mRNA-miRNA networks, both RT-qPCR and western blot results

showed a significant decrease of YTHDF1 in PCa cells compared to

normal RWPE-1 cell line. This discrepancy may reflect the

complexity of m6A-related regulation in PCa, which should be

further investigated.

Increasing studies have revealed the m6A regulatory patterns of

PCa and correlated these modification patterns with the tumor

immune cell infiltration microenvironment characteristics (49–51).

In addition, a recent paper found that m6A reader HNRNPC can

regulate Treg cell abundance as a possible mechanism for m6A

methylation-mediated response against CTLA-4, indicating that

activation of the immune microenvironment by targeting m6A

regulators may serve as a potential therapeutic approach for

advanced PCa(52).Our study synthetically analyzed the

relationship between the expression of m6A regulators and

immune characteristics and drug sensitivity of PCa patients. In

accordance with the previous reports, we confirmed that resting

memory CD4+ T cells and Tregs are highly correlated with m6A-

related genes (53, 54), while both high- and low-risk groups are

sensitive to a number of therapeutic drugs. Some of these drugs are

known to be effective in the treatment of PCa and have even been

approved for clinical use (55–57). Thus, it will be informative to

determine whether combinational treatment of m6A inhibitors and

conventional PCa drugs could achieve a synergistic effect.

In the current study, four miRNAs, including hsa-mir-1-3p,

hsa-let-7b-5p, hsa-mir-124-3p, and hsa-mir-16-5p were ranked as

the top miRNAs, which dedicate the expression of m6A regulators.

As expected, most of them have been validated to be closely

associated with PCa progression and metastasis (58–61), which

further confirmed our observations.

It still remains some limitations in this study. For instance,

although the dysregulation m6A-related genes have been validated
A B

FIGURE 14

Expression validation of m6A-related gene in PCa cells. (A) Differences in mRNA expression of 8 m6A-related genes in 22Rv1, PC3 and RWPE-1 by
RT-qPCR. (B) Differences in protein expression of METTL3, METTL5 and YTHDF1 in 22Rv1, PC3 and RWPE-1 by western blot. *P<0.05, **P<0.01.
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in a number of PCa cell lines, additional studies are needed to

investigate the change of global m6A level in PCa specimen as

compared with normal control. More importantly, the underlying

mechanism by which the m6A modification is modulated in

response to oncogenic signals during PCa development is yet to

be discovered. Future efforts should be made to systematically

deconstruct how the m6A-targeting axis promotes PCa

tumorigenesis and unveil its clinical relevance.
Conclusions

The present study systematically evaluated the expression

pattern, functional network, and potential prognostic value of

m6A regulators in PCa, which may provide novel insights into the

understanding of PCa molecular pathology and facilitate the risk

surveillance and clinical decision-making for patients diagnosed

with PCa.
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