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Background: Glioma is one of the most common, primary, and lethal adult brain

tumors because of its extreme aggressiveness and poor prognosis. Several recent

studies relevant to the immune function of CD44, a transmembrane glycoprotein

as a significant hyaluronic acid receptor, have achieved great success, revealing the

critical role of CD44 in immune infiltration in gliomas. The overexpression of CD44

has been verified to correlate with cancer aggressiveness and migration, while the

clinical and immune features of CD44 expression have not yet been thoroughly

characterized in gliomas.

Methods: Molecular and clinical data of glioma collected from publicly available

genomic databases were analyzed.

Results: CD44 was up-expressed in malignant gliomas, notably in the 1p/19q non-

codeletion cases, isocitrate dehydrogenase (IDH) wild-type, and mesenchymal

subtypes in GBM samples. CD44 expression level strongly correlates with stromal

and immune cells, mainly infiltrating the glioma microenvironment by single-cell

sequencing analysis. Meanwhile, CD44 can be a promising biomarker in predicting

immunotherapy responses and mediating the expression of PD-L1. Finally, RUNX1/

CD44 axis could promote the proliferation and migration of gliomas.

Conclusions: Therefore, CD44 was responsible for glioma growth and progression.

It could potentially lead to a novel target for glioma immunotherapy or a prognostic

biomarker.
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Introduction

Gliomas are the most common primary, lethal brain tumors in

adults (1). The World Health Organization’s classification of gliomas

classified central nervous system tumors into four different grades,

and the grade IV glioblastoma multiforme (GBM) is the most

devastating, malignant, and incurable astrocytic glioma (1, 2). The

molecular diagnosis and classification of gliomas emphasized that the

mutational status of isocitrate dehydrogenase (IDH) should be

considered as the critical biomarker of malignancy. Except for IDH

status, O-6-methylguanine DNA methyltransferase (MGMT)

methylation is hitherto regarded as another significantly prognostic

biomarker. Other markers are merely related to grade and further

estimate prognosis, such as CDKN2A/B homozygous deletion in

IDH-mutant astrocytoma, as well as 1p/19q co-deleted, TERT

promoter mutation, EGFR amplification or mutation, and +7/−10

copy number changes in IDH-wildtype diffuse astrocytoma (3).

Multiple approaches and therapies have been explored to increase

the efficiency of care and try to prolong survival in glioma patients

over the recent several years, such as traditional aggressive surgery,

radiation therapies, and chemotherapies, plus available new cocktails

of drugs (4, 5). At the same time, the life expectancy of patients with

GBM is fewer than 15 months after diagnosis with the standard of

care (1, 6). To improve this situation, new therapeutic strategies are

desperately needed to target the critical signaling pathways involved

in gliomas and reduce their mortality and morbidity (7, 8).

Immunotherapy is extremely attractive for further exploration as

a new therapeutic approach due to the emerging evidence from recent

discoveries and studies demonstrating long-lasting tumor remission

with fewer side effects. For example, PD-1, the typical immune

checkpoint and the most dominant target molecule in cancer

immunotherapy, has now aroused the majority of attention. Yet,

despite limited achievements in treating several solid tumors with

PD-1 antibody inhibition, such as the esophagus or non-small cell

lung cancer, few advances have been found in glioblastoma (9, 10).

Another inhibitory immune pathway is cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4), which is also viewed as a critical

role in the aggressiveness of gliomas. The anti-therapy aimed at

CTLA-4 seems less successful in gliomas because of complicated

reasons, including the blood-brain barrier and a lack of guiding

biomarkers of the blockade (11). Although many scientists have

been trying different strategies, such as peptides and dendritic cell

(DC) vaccines, there was not much success in clinical trials, especially

the increased overall survival (OS) with good life quality. More efforts

still are needed in this area (12).

CD44, also known as cluster determinant 44, is a single-pass

transmembrane glycoprotein comprised of four domains:

cytoplasmic, transmembrane, stem structure, and amino-terminal.

And its amino-terminal domain can be the docking site for the

extracellular matrix (ECM) components like hyaluronic acid, which

is the main glycosaminoglycan in the brain’s ECM and play a critical

factor in glioma invasion. The stem structure works as a linking part

between the transmembrane and amino-terminal domains, and its

function has remained unknown. The function of the transmembrane

region of CD44 was expected to be associated with lipid rafts.

Significantly, the cytoplasmic domain can interact with proteins

involved in motility and cell adhesion, including ankyrin and ERM
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proteins. In addition, this region also can interact with various

regulatory and adaptor molecules implicated in cell signaling, which

is the basis of CD44 as a pivotal role in MMP-mediated matrix

degradation, tumor development, migration, and invasion (13).

Previous research has provided evidence of high CD44 expression

in different tumors, such as head and neck cancer, lung cancer, breast

cancer, etc. (14–16). However, the mechanism of CD44’s involvement

in cancer metastasis remains unknown. A finding based on bone

metastatic cancer stem cells has revealed that the interaction with HA

may be the possible reason, making it a potential target for drug

intervention (17). Some studies also illustrated that several variant

isoforms of CD44 are directly linked with the signal pathway of

cancer cell migration and invasion (18, 19). A few studies have

focused on the molecular and clinical pattern of CD44 expression

in gliomas. CD44 serves as a hazardous marker in grade II/III gliomas

(20). CD44 was reported to be associated with glial dynamics in the

tumor microenvironment (21). MiR-373/miR-520s-CD44 axis could

significantly inhibit the growth and invasion of GBM (22). CD44

expressed by myeloid cells was found to promote the invasion of

glioma (23). EHD1 was revealed to promote the cancer stem cell

(CSC)-like traits of glioma via interacting with CD44 and suppressing

CD44 degradation (24). Besides, CD44 was recently demonstrated to

be associated with the M2-polarization of tumor-associated

macrophages and immunosuppression of glioma (25). Notably,

spatially resolved proteomic profiling recently identified CD44 as a

biomarker associated with anti-PD-1 sensitivity in advanced non-

small-cell lung cancer (26). Osteopontin/CD44 could control CD8+ T

cell activation and tumor immune evasion (27). Therefore, CD44 was

proposed as a potential regulator of macrophage and immunotherapy

in gliomas.

In this study, we tried to figure out the role of CD44 expression

and thoroughly investigated the molecular pattern of CD44 as well

as the clinical association with LGG and GBM. By researching the

whole database, our study is the first complete one that characterizes

and delineates the expression of CD44 in LGG and GBM from

molecular and clinical views. CD44 was found as an important

regulator of macrophage and immunotherapy in gliomas. Besides,

RUNX1/CD44 axis critically mediated the proliferation and

migration of gliomas. Understanding the CD44 expression pattern

and features in glioma better will assist in different optimal

strategies for glioma therapies.
Materials and methods

Data collection

The Cancer Genome Atlas (TCGA), Chinese Glioma Genome

Atlas (CGGA), and Gene Expression Omnibus (GEO) datasets were

mainly used for the follow-up study. Ivy Glioblastoma Atlas Project

(GAP) dataset (28) and Gill dataset (29) were included.
Mutation analysis

Copy number alternations (CNAs) associated with CD44

expression were analyzed using GISTIC 2.0.
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Immune analysis

The immune infiltrating cells were quantified by MCPcounter

algorithm (30), ssGSEA algorithm (31), and TIMER algorithm (32).

ESTIMATE algorithm (33) was used for calculating the

microenvironment scores. The cancer immunity cycle was

conducted using get set variation analysis (GSVA) (34, 35). 114

metabolic pathways from the previous literature were quantified

using GSVA (36).
Single-cell RNA sequencing analysis

The scRNA-seq matrix of GSE138794 (37) was conducted using

the R package Seurat. The detailed procedure was reported in our

previous study (38). “FeaturePlot”, “Dimplot”, and “VlnPlot” were

applied to visualize the expression of CD44. Single-cell pseudotime

trajectories analysis was processed using the R package Monocle (39).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were performed.
Western blotting assay

The western blotting assay evaluated the expression level of

RUNX1, CD44, PD-L1, and b-actin. Anti-RUNX1 (ab240639,

Rabbit, 1:1000, Abcam, UK), anti-CD44 (15675-1-AP, Rabbit,

1:2000, Proteintech, China), anti-PD-L1 (66248-1-Ig, Mouse,

1:2000, Proteintech, China), and anti-b-actin (66009-1-Ig, Mouse,

1:5000, Proteintech, China) were applied as the primary antibody.

HRP goat anti-mouse IgG (SA00001-1, Mouse, 1:5000, Proteintech,

China) and HRP goat anti-rabbit IgG (SA00001-2, Rabbit, 1:6000,

Proteintech, China) were applied as the secondary antibody.
RT-qPCR assay

The primers of GADPH (F ACAGCCTCAAGATCATCAGC;

R GGTCATGAGTCCTTCCACGAT) and CD44 (F CAGCTCA

TACCAGCCATCCA; R TGGGGTGTGAGATTGGGTTG) were

designed by the primer 5.0. Total RNAs were extracted and

reversely transcribed into cDNA by HiScript Q RT SuperMix for

RT-qPCR. GADPH and CD44 expression levels were conducted

using 2-DDCT.
Cell culture and transfection

U251 cells were cultured in Dulbecco’s modified eagle medium

(DMEM), with 10% fetal bovine serum (FBS) in the saturated

humidity incubator (37°C, 5% CO2). The RUNX1 specific primers

for overexpression (OV) plasmid were as follows: F CACACTGGAC

TAGTGGATCCCGCCACCATGGCTTCAGACAGCATA

TTTG; R AGTCACTTAAGCTTGGTACGTAGGGCCTCCACAC

GGCCTCCTC. The RUNX1-OV plasmid was transfected into

U251 cells via Lipofectamine 2000. The short hairpin (sh)-RNA

target sequences of CD44 (93684-1, GACCTCTGCAAGGCTT
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TCAAT; 93685-1, CTGCCGCTTTGCAGGTGTATT; 93686-11,

GAGCATCGGATTTGAGACCTG) were used for constructing the

lentivirus. RUNX1-OV and RUNX1-NC groups of U251 cells were

transfected with a lentivirus vector and cultured in DMEM with

puromycin for stable CD44-knockdown U251 cells.
Cell counting Kit-8 assay

The RUNX1-NC, RUNX1-OV, RUNX1-OV+CD44-shRNA, and

RUNX1-NC+CD44-shRNA groups of U251 cells were seeded in 24-

well plates, with a density of 1×104 cells per well. 30 ul CCK8 reagent

was diluted in 270 ul DMEM and subsequently added to each well.

Later, U251 cells were cultured for 0h, 24h, 48h, and 72h. The

absorbance was measured at 450 nm.
Clone formation assay

The RUNX1-NC, RUNX1-OV, RUNX1-OV+CD44-shRNA, and

RUNX1-NC+CD44-shRNA groups of U251 cells were plated in 6-

well plates for 2 weeks, with a density of 200 cells per well. The

colonies were fixed with 4% methanol (1 ml per well) for 15 min and

stained with 0.5% crystal violet. Representative images of each well

were collected.
Transwell assay

500 ul DMEM with 10% FBS was added to the lower chamber of a

6-well plate. The RUNX1-NC, RUNX1-OV, RUNX1-OV+CD44-

shRNA, and RUNX1-NC+CD44-shRNA groups of U251 cells were

digested and resuspended with a density of 2x106 cells/ml using

DMEM. 100 ul U251 cells were added to the upper chamber and

cultured for 48h. The upper chamber was stained with 0.5% crystal

violet for 5 min. Representative images of each well were collected.
IHC staining

The sections of different grades of gliomas were collected. Anti-

CD44 (15675-1-AP, Rabbit, 1:500, Proteintech, China) was used as

the primary antibody. The horseradish peroxidase-conjugated

antibody (ZSGB-BIO, PV-9000, China) was used as the secondary

antibody. The sections were stained with 3, 30-diaminobenzidine

tetrahydrochloride (DAB) and counterstained with hematoxylin.
Statistical analysis

Spearman or Pearson correlation analysis was used to evaluate the

correlations between continuous variables. For normally distributed

variables, significant quantitative differences between and among

groups were determined by a two‐tailed t-test or one‐way ANOVA,

respectively. For nonnormally distributed variables, significant

quantitative differences between and among groups were

determined by a Wilcoxon test or a Kruskal–Wallis test,
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respectively. All statistical analyses were conducted by the R project

(https://www.r-project.org/). It is considered to be statistically

significant when P-values < 0.05. All tests were two-sided.
Result

Up-regulated CD44 expression in gliomas

We delineated the pattern of CD44 mRNA expression levels

regarding disparate WHO-grade gliomas by evaluating data from

publicly available databases. Firstly, we checked the expression

pattern of CD44 in WHO grades, and then subtypes were divided

into LGG and GBM. Not surprisingly, the CD44 expression was

observed to be significantly increased in higher WHO grades

according to datasets from the CGGA and TCGA (Figure S1A).

Also, compared to LGG patients, GBM groups showed higher levels of

CD44 expression, which demonstrated an adverse role of CD44 in the

proliferation and aggressive progress of gliomas. (Figure S1B). The

representative images of CD44 in immunohistochemistry staining of

different grades of glioma are shown in Figure S1C.

Moreover, we tested CD44 in two important gene mutation

cohorts extensively used as clinical outcome prediction tools.

Interestingly, the IDH-mutated gliomas, linked with better clinical

outcomes (40), were associated with a lower CD44 level in pan-

gliomas and GBM cases (Figures S1D, E). Furthermore, the ROC

curve demonstrated that the value of CD44 is an effective predictor of

IDH mutation in GBM and pan-gliomas cases (AUC value = 0.789;

AUC value = 0.773, respectively Figure S1F). Similarly, analysis in 1p/

19q non-codeletion pan-glioma showed up-expressed levels of CD44,

which can predict the poor survival of glioma. Still, analysis in 1p/19q

codeletion pan-glioma showed down-expressed levels of CD44

(Figure S1G). Importantly, in LGG cases, 1p/19q codeletion and

IDH mutation are correlated with lower expression levels of CD44

(Figure S1H). At the same time, we tested the sensitivity of CD44 as a

prognostic biomarker in predicting the survival of 1 year, 3 years, and

5 years, respectively. (Figure S1I). We found the AUC of 1 year is

0.796, the AUC of 3 years is 0.767, and the AUC of 5 years is 0.766

according to the TCGA dataset, while the AUC of 1 year is 0.633, the

AUC of 3 years is 0.687, and the AUC of 5 years is 0.688 according to

the CGGA dataset. In addition, CD44 was found to be lower in

expression levels in methylated glioma in the TCGA dataset (Figure

S2A). The specific methylation probe significantly associated with

gliomas regarding CD44 expression is displayed in Figure S3. The

levels of CD44 expression in the histology of glioma tissues and

various cell lines are shown in Figure S2B.
Characteristics, expression pattern, and
distribution of CD44 in gliomas

There are three molecular categories with distinct sub-classes in

human gliomas: classical (CL), proneural (PN), and mesenchymal

(MS). Among these three sub-classes, subtypes of CL and MS show

more aggressiveness in behavior (10, 41). To delineate the inter-

tumor heterogeneity of CD44, we studied it among four molecular
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sub-classes according to the VERHAAK_2017 classification scheme

(42). Based on the TCGA dataset, GBM and pan-gliomas of CL and

MS subtypes had significantly higher expression levels of CD44

compared to subtypes of PN (Figures S2C, E). Furthermore, the

ROC curve demonstrated that CD44 might play a role as a predictor

of subtypes of CL and MS in GBM and pan-gliomas cases (AUC value

= 0.833; AUC value = 0.782, Figures S2D, F).

To detect the intra-tumor distribution of CD44 expression in

glioma tissues, we examined CD44 expression levels in disparate

structures. According to the Ivy Glioblastoma Atlas Project data, in

peri-necrotic zones, pseudo palisading cells around necrosis, cellular

tumors, and hyperplastic blood vessels, CD44 was highly expressed

(Figure S2G). Interestingly, in radio graphical regions, different

compositions were discovered in the T1 contrast-enhancing (CE)

regions, compared with the non-contrast-enhancing (NCE) margins.

The results of RNA sequencing analysis illustrated that CE regions

have higher CD44 expression compared to NCE or normal tissue

(NT) areas (Figure S2H).
Higher CD44 expression is found in glioma
patients with poor survival

Consequently, we evaluated prognostic value concerning the

different CD44 levels in gliomas through Kaplan-Meier analysis.

Compared to CD44low patients, CD44high patients showed

significantly shorter OS in GBM, pan-gliomas, and LGG samples

from TCGA and CGGA datasets (Figures 1A–F). Further, based on

the univariate and multivariate Cox regression analysis, CD44 showed

the potential as an independent prognostic factor with IDH, 1p19q,

MGMT, and Subtype (Figures 1G, H).

After all our work, the prediction value of CD44 as a biomarker in

clinical use still needs to be examined. We implied a prognostic

nomogram model developed by CD44 express ion and

clinicopathological risk factors to test its prediction in the clinical

prognosis of gliomas (Figure S4A). Nomograms, a widely used

graphical statistical model in cancer, are formed by a statistical

algorithm using a combination of all predictive factors that have

been admitted to affect the probability of a clinical event. Calibration

plots revealed nomograms’ potential to predict patients’ survival

based on an ideal model (Figure S4B). Kaplan-Meier survival curve

demonstrated the statistical significance of the survival difference

between high and low-risk patients (Figure S4C). The AUC of 4 years

is 0.865 in the TCGA dataset (Figure S4D).
CD44 predicts the drug response in gliomas

PRISM and GDSC databases were used for drug prediction based

on CD44 expression. The top correlated drugs in GDSC1 are shown

in Figure S5A. The top correlated drugs in GDSC2 are demonstrated

in Figure S5B. The top correlated drugs in PRISM were shown in

Figure S5C. Notably, AZD6482, Bicalutamide, Bortezomib,

Cyclopamine, Dasatinib, Lapatinib, Paclitaxel, Parthenolide,

Pazopanib, Rapamycin, and Sorafenib were found with lower

estimated IC50 in CD44high glioma patients (Figure S5D).
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CD44 affects stromal and immune cell
infiltration in gliomas

Two central cells consist of solid tumors: stromal cells and cancer

cells. At the same time, stromal cells and infiltrating immune cells

build up most of the tumor microenvironment. First, the correlation

between ESTIMATE scores and CD44 expression was explored. Data
Frontiers in Immunology 05
demonstrated a significantly positive association between CD44

expression level and stromal score, immune score, and ESTIMATE

score according to the TCGA dataset (Figure 2A), indicating that

changing stromal and infiltrating immune cells, CD44 can affect the

glioma microenvironment. These results also inspired us to believe

that there might be a specific role for CD44 in glioma development

and migration. To further study the relationship between high CD44
A B

D E F

G

H

C

FIGURE 1

Higher CD44 expression is found in glioma patients with poor survival. Kaplan-Meier analysis of OS based on high vs. low expression of CD44 in the
TCGA (A-C) and CGGA (D-F) datasets. The median value of CD44 was used as the cut-off value. P-values were obtained from the log-rank test. (G)
Univariate and multivariate Cox regression analysis on clinical factors in the TCGA dataset. (H) Univariate and multivariate Cox regression analysis on
clinical factors in the CGGA dataset.
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levels in gliomas and tumor immunity function, we performed

CIBERSORT, MCPcounter, and TIMER analyses to determine

whether the typical immune cells responsible for the immune

responses against tumors or participating in the inflammatory

activity are related to high CD44 expression. We discovered the

positive association between CD44 and multiple important

infiltrating immune cell types like monocytes, macrophages,

Myeloid-derived suppressor cells (MDSC), neutrophils, and natural

killer (NK) cells in the TCGA dataset (Figure 2A). Altogether, our
Frontiers in Immunology 06
data revealed that CD44high patients tended to increase immune cells

infiltrating within their tumor microenvironment.
CD44 is associated with immune processes
and metabolism

Then we turned to our most exciting part and evaluated the

possible immune-related functions of CD44 in glioma cell growth in
A

B

FIGURE 2

Immune processes and metabolism related to CD44 expression. (A) The association between CD44 and immune infiltrating cells was estimated by
CIBERSORT, ESTIMATE, MCPcounter, and TIMER algorithms. (B) The correlation between CD44 and cancer immunity cycle and metabolic pathways.
*, P< 0.05; ***, P<0.001; ****, P<0.0001.
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the TCGA dataset. Based on the cancer immunity cycle, CD44 was

positively associated with the release of cell antigens, priming and

activation, recruiting of CD4 T cell, CD8 T cell, Th1 cell, Th2 cell,

Th17 cell, Th22 cell, Treg cell, B cell, eosinophil, neutrophil, dendritic

cell, macrophage, NK cell, and the infiltration of multiple immune

cells (Figure 2B).

Besides, CD44 was positively associated with several metabolic

pathways, including glycogen biosynthesis, galactose metabolism,

glycosaminoglycan biosynthesis, N-glycan biosynthesis, and starch
Frontiers in Immunology 07
and suctose metabolism (Figure 2B), indicating a highly activated

tumor microenvironment.
Neoplastic cells and macrophages show
up-regulated CD44 in scRNA-seq of gliomas

To further evaluate the role of CD44 in immune infiltrating, the

expression of CD44 in gliomas was also analyzed by scRNA-seq. The
A B

D

E

F

C

FIGURE 3

The expression pattern of CD44 at the scRNA-seq level. (A) The expression distribution of CD44 in eight types of identified cells. (B) The expression level
of CD44 in eight types of identified cells. (C) Three-dimension plot of eight types of identified cells. (D) Three-dimension plot of the expression level of
CD44 in eight types of identified cells. (E) The pseudotime trajectory analysis of glioma cells. (F) The pseudotime trajectory analysis of macrophages.
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expression of CD44 in all eight identified cell types is visualized in

Figure 3A. CD44 was richly expressed in neoplastic cells,

macrophages, astrocytes, and T cells (Figure 3B). Additionally, the

distribution of eight cell clusters was visualized by a three-dimension

plot (Figure 3C). The correlation of CD44 and neoplastic cells,

macrophages, astrocytes, and T cells is confirmed (Figure 3D).

The single-cell pseudotime trajectories and functional

annotations of neoplastic cells and macrophages were explored. In

neoplastic cells, a trajectory was reconstructed, containing three

branch points and grouped cells into seven states (Figure 3E). In
Frontiers in Immunology 08
macrophages, a trajectory was reconstructed, containing five branch

points and grouped cells into eleven states (Figure 3F). The relative

expression level of CD44 in the cell states from neoplastic cells and

macrophages is presented in Figures 4A, 5A, respectively. 100 genes

were further identified with branch-dependent expression for branch

point 3 of neoplastic cells. The expression of the different genes before

and after branch point 3 and related clustering are presented in

Figure 4B. Moreover, 100 genes that differentially expressed with

branch-dependent expression for branch point 3 of macrophages

were also confirmed (Figure 5B). Finally, in regards to CD44 in
A B

C

FIGURE 4

Function annotation of CD44 in glioma cells at the scRNA-seq level. (A) The expression level of CD44 regarding the pseudotime and cell state changes.
(B) The gene expression pattern of 100 genes with branch-dependent expression for branch point 3. (C) GO and KEGG enrichment analysis.
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neoplastic cells and macrophages, the results of GO enrichment

analysis and KEGG pathway analysis was presented in Figures 4C, 5C.
RUNX1/CD44 axis mediates the proliferation
and migration of glioma

To investigate the potential mechanisms of the pathogenic role of

CD44 in gliomas, in vitro validation was performed. A strong positive

correlation between CD44 and RUNX1 was observed in the TCGA

dataset (Figure 6A). Lentivirus targeting CD44 was transfected into

U251 cells to select the shRNA (93684-1) with the highest knockout

efficiency (Figure 6B). The plasmid of RUNX1 was further transfected
Frontiers in Immunology 09
into U251 cells for the overexpression of RUNX1. Four groups,

RUNX1-NC, RUNX1-OV, RUNX1-OV+CD44-shRNA, and

RUNX1-NC+CD44-shRNA, were used for the follow-up

experiments. The western blotting assay revealed that the

overexpression of RUNX1 promoted the expression of CD44 with

statistical significance (Figures 6D, E). Notably, the silence of CD44

suppressed the expression of RUNX1 with statistical significance.

CCK8 assay revealed that CD44 inhibition could decrease the U251

cell proliferation. At the same time, the up-regulated levels of RUNX1

alleviated the reduced accumulation of U251 cells (Figure 6C). Clone

formation assay showed that the clone formation ability of U251 cells

decreased under CD44 inhibition. In contrast, the overexpression

of RUNX1 alleviated the decreased clone formation capacity of
A B

C

FIGURE 5

Function annotation of CD44 in macrophages at the scRNA-seq level. (A) The expression level of CD44 regarding the pseudotime and cell state
changes. (B) The gene expression pattern of 100 genes with branch-dependent expression for branch point 3. (C) GO and KEGG enrichment analysis.
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U251 cells (Figure 6F). Transwell assay revealed that CD44

inhibition could reduce the migration of U251 cells. In contrast,

the up-regulated levels of RUNX1 alleviated the reduced migration

of U251 cells (Figure 6G). A strong positive correlation between

CD44 and PD-L1was observed in the TCGA dataset (Figure 6A).

Furthermore, western blotting assay revealed that RUNX1/CD44

could promote the expression of PD-L1 (Figures 6D, E). These

results suggested that RUNX1/CD44 axis could mediate the

proliferation, migration, and immunotherapy of glioma.
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Immunotherapy prediction of CD44

CD44 was found with AUC values of larger than 0.6 in predicting

the immunotherapy responses in 12 immunotherapy cohorts

(Figure 7A). Compared to CD44low patients, CD44high patients

showed shorter OS in the IMvigor210 cohort, Liu cohort, Braun

cohort, Zhao cohort, and VanAllen cohort (Figure 7B). Compared to

CD44low patients, CD44high patients showed longer OS in the Gide

cohort, Lauss cohort, and Gide cohort (Figure 7B).
A B

D E

F

G
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FIGURE 6

RUNX1/CD44 axis mediates proliferation and migration of glioma. (A) Correlation between CD44 and RUNX1, PD-L1 in the TCGA dataset. (B) qPCR assay
for CD44 in shRNA-transfected U251 cells. (C) CCK8 assay for four groups of U251 cells. (D) Western blotting assay for RUNX1, CD44, and PD-L1 in
shRNA-transfected U251 cells. (E) Statistical analysis of western blotting assay for RUNX1, CD44, and PD-L1. (F) Clone formation assay for four groups of
U251 cells. (G) Transwell assay for four groups of U251 cells. NS, Not Statistically Significant; *, P< 0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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Discussion

Many efforts have been devoted to the research of glioma curing.

However, gliomas, particularly GBM, remain the most malignant

brain tumor with inferior survival. Among several strategies aiming at

improving treatment effects, immune therapy, eliciting an immune

response, or unlocking immune checkpoints blocked by a tumor, have

shown breakthroughs in many malignant tumors due to their long-

lasting cancer remission with minimal damage in preclinical and
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clinical trials. Because of that, immune therapy has been appealing to

many scientists and experts. As a principal receptor of HA, CD44 has

an important influence on cell adhesion, which may affect tumor cells’

migration and aggressiveness. Therefore, a work of better

understanding the CD44 feature in glioma is desperately required

to develop a treatment strategy.

According to our findings by a large-scale bioinformatic analysis,

we investigated the features and patterns of CD44 among gliomas.

The mRNA expression levels of CD44 were significantly up-regulated
frontiersin.org
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FIGURE 7

Immunotherapy prediction of CD44. (A) ROC curves regarding CD44 in immunotherapy cohorts. (B) Kaplan-Meier analysis of OS based on high vs. low
expression of CD44 in immunotherapy cohorts.
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in gliomas, GBM in particular. The expression levels of CD44 were

higher in unmethylated glioma with IDH wildtype and glioma with

1p/19q non-codeletion. Moreover, high expression levels of CD44

were closely correlated to the CL and MS molecular subtypes, which

indicated its potential to be a sensitive glioma diagnostic biomarker.

CD44 was localized to peri-necrotic zones, pseudo-palisading cells

around necrosis, cellular tumors, and hyperplastic blood vessels.

Moreover, higher expression of CD44 has a strong relationship

with poor survival. According to our exploration of the distinct

genomic alternations of CD44, we found a negative association

between the events of somatic mutations and CD44 expression,

which indicated that CD44 expression was correlated with the

aggressive glioma process. The results showed that CD44

expression was closely associated with glioma occurrence. And

CD44 is vital in aiding the oncogenic process and progression

of gliomas.

GBM can trigger the innate and adaptive immune systems, and

various immune cell types have accumulated around the tumor.

Therefore, they can come together to resist the assumptions that

the human brain is immune privileged. Many types of research have

proved that four kinds of immune cell types tend to help form a

permissive tumor microenvironment: tumor-associated

macrophagocytes, myeloid-derived suppressor cells, regulatory T

cells, and cancer-associated fibroblasts, which stimulate cancer cell

growth, migration, and invasion (43). Notably, few studies have

focused on the immune characteristics of CD44 expression in

glioma. A previous scRNA-seq analysis revealed SPP1/CD44-

mediated crosstalk between macrophages and cancer cells in glioma

(44). PLOD2 modulates the immune microenvironment and tumor

progression of glioma, in which CD44 was the critical downstream

molecule (45). Besides, CD44 was recently demonstrated to be

associated with the M2-polarization of tumor-associated

macrophages and immunosuppression of glioma (25). In our study,

the correlation analysis between CD44 and cells in the tumor

microenvironment suggested that CD44high glioma cells are inclined

to accumulate more inhibitive infiltrating immune cells (helper 2 T

cell, regulatory T cell, and immature dendritic cell) into the tumor

microenvironment. In line with our findings, GDF15 promotes the

immune escape of ovarian cancer by targeting CD44 in dendritic cells

(46). CD44 correlates with immune infiltrates in gastric cancer (47).

Besides, IL18 increases the immune escape of gastric cancer by

downregulating CD70 and maintaining CD44 (48). These results

supported that CD44 had cancer-promoting activity in the immunity

of gliomas through the immune microenvironment. Specifically,

CD44 was found to critically mediate the activity of glioma cells

and macrophages at the scRNA-seq level. The expression of CD44

could reflect the evolution direction of glioma cells towards

malignancy. Besides, the expression of CD44 could reflect the

evolution direction of macrophages towards immune activation.

Several immune checkpoint inhibitor treatments showed

encouraging benefits in preclinical trials, such as the classical drug

Ipilimumab targeting CTLA-4 and Nivolumab targeting PD-1. PD-1
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is a receptor on the surface of T cells that receives suppressive signals

from PD-L1 on cancer cells or APCs, which causes cytotoxic effects,

cytokine production, and reduced activity of T cells (9). To make

more assumptions about the clinical use of CD44 through previous

effective drugs, we analyzed the relationship between CD44 and PD-

L1. RUNX1/CD44 was proved to contribute to PD-L1 expression. The

interaction between CD44 and PD-L1 might inspire us to combine

therapy to treat gliomas, such as blocking CD44 and other

immune checkpoints.

RUNX1 has been identified as a critical transcription factor

regulating multiple biological processes of cancer (49). However,

the potential regulatory role of RUNX1 on CD44 has not been

explored. Our finding indicated that RUNX1 could potentially

promote glioma proliferation and migration by up-regulating the

expression of CD44. The RUNX1/CD44 axis in gliomas remained

valuable for further exploration.

Taken together, our work demonstrates the significant role of

CD44 in the progression and treatment of gliomas. Strikingly, CD44

probably has a more profound relationship with LGG than with

GBM. Further studies are required to explore the function of CD44

and turn it into a novel site for immune-therapeutic strategy or

prognostic biomarker for glioma patients.
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