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IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated

IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies,

leading to formation of nephritogenic circulating immune complexes. Incidence

of IgAN displays geographical and racial disparity: common in Europe, North

America, Australia, and east Asia, uncommon in African Americans, many Asian

and South American countries, Australian Aborigines, and rare in central Africa. In

analyses of sera and cells from White IgAN patients, healthy controls, and African

Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B

cells infected with Epstein-Barr virus (EBV), leading to enhanced production of

poorly galactosylated IgA1. Disparities in incidence of IgANmay reflect a previously

disregarded difference in the maturation of the IgA system as related to the timing

of EBV infection. Compared with populations with higher incidences of IgAN,

African Americans, African Blacks, and Australian Aborigines are more frequently

infected with EBV during the first 1-2 years of life at the time of naturally occurring

IgA deficiency when IgA cells are less numerous than in late childhood or

adolescence. Therefore, in very young children EBV enters “non-IgA” cells.

Ensuing immune responses prevent infection of IgA B cells during later exposure

to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly

galactosylated IgA1 in circulating immune complexes and glomerular deposits in

patients with IgAN. Thus, temporal differences in EBV primo-infection as related to

naturally delayed maturation of the IgA system may contribute to geographic and

racial variations in incidence of IgAN.
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1 Introduction

IgA nephropathy (IgAN) is an autoimmune disease in which IgA,

exclusively of the IgA1 subclass, with an altered glycanmoiety manifested

as deficiency of galactose (Gd-IgA1) on its heavy-chain hinge region

(HR) acts as an autoantigen which is recognized by ubiquitous, naturally

occurring, anti-glycan antibodies to form nephritogenic circulating

immune complexes (CIC). Some of these complexes deposit in the

glomerular mesangium to induce kidney injury (1–7). Detailed

analyses of CIC and the mesangial immune deposits of IgAN patients

revealed the presence of under-galactosylated IgA1 in the polymeric (p)

form with joining (J) chain (3, 8–22). The nephritogenic potential of CIC

containing Gd-IgA1 isolated from IgAN patients was demonstrated by

studies of their effect on mesangial cells (23–25) or that of complexes

generated in vitro with poorly galactosylated myeloma pIgA1 and

corresponding anti-glycan antibodies (26) on the proliferation and

activation of human primary mesangial cells in culture. Importantly,

complexes with molecular mass of ~700-1,000 kDa displayed stimulatory

activity whereas smaller complexes did not (3, 25). Furthermore,

intravenous injection of complexes comprised of human Gd-pIgA1

and recombinant IgG antibodies specific for this IgA1 into immune-

deficient mice induced kidney pathology features and urinary

abnormalities typical of IgAN (27).

IgAN is the leading cause of primary glomerulonephritis in many

countries (1). However, its prevalence displays striking geographic,

racial, and age-related distributions (1, 28–30). IgAN is common in

most European countries, USA, and east Asia but is less frequent in

South America, India, Bangladesh, Indonesia, Nepal, Pakistan, and

other Asian countries and is rare in central Africa (29–31).

Furthermore, there are marked racial differences in disease

incidence. African Blacks, African Americans, and indigenous

Australian Aborigines living in remote rural areas display a low

incidence of IgAN (31–41). Because of these race-associated

differences in the incidence of the disease and discovery of

multiplex families with multiple affected members, it has been

proposed that genetically modulated differences play an important

role in the mechanisms of disease (42–48).

Investigation of a possible role of genetics in the development and

expression of IgAN initially included linkage studies of multiplex

pedigrees. Three loci on separate chromosomes have been identified,

although the genes responsible for the linkage have not been defined

(42, 47). Later, genome-wide association studies (GWAS), first in the

United Kingdom and later with cohorts of patients and controls of

European and east Asian ancestry, identified multiple loci associated

with IgAN (now at least 30) (45, 48). The associated loci include a

wide variety of genes, including some in the major histocompatibility

complex involved in antigen processing and presentation. Other

associated loci encompass genes involved in chemokine and B and

T cell receptor signaling, regulation of the alternative complement

pathway, genes encoding anti-microbial peptides a-defensins, and
genes affecting NF-kB signaling, T cell–independent IgA class-

switching, IgA plasma cell activation, IgA Fc receptor, and the O-

glycosylation pathway (47, 49). Interestingly, analysis of 85 world

populations performed by Kiryluk et al. (47) showed that a genetic

risk score, based on 15 single-nucleotide polymorphisms, increased

with progressive eastward and northward distance from Africa.

Additional studies found a highly significant association between a
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genetic risk score and age at diagnosis; a greater genetic burden

promoted an earlier onset of disease (46).

An alternative explanation of immunopathogenesis of IgAN

based on the epidemiology and impact of Epstein-Barr virus (EBV)

infection on the IgA system was recently proposed to elucidate the

possible pathways in the geographic and race-associated differences in

the prevalence of IgAN (50). The structural characteristics of IgA in

CIC and mesangial deposits and phenotypic profiles of circulating

IgA-secreting cells from IgAN patients revealed a remarkable

concordance with results observed with in vitro EBV-infected B

cells (18, 50–56), including the predominant secretion of pIgA1

with poorly galactosylated glycan chains (Table 1). Therefore, we

initiated studies of phenotypes of EBV-infected B cells from the

peripheral blood of IgAN patients and African American and White

controls (50) to address a potential role of EBV in the pathogenesis of

IgAN. These cells were analyzed with respect to the maturation

profiles and the expression of cell-surface homing markers,

including those involved in the characteristic lymphoid tissue

distribution, and the ability to produce pIgA1 with poorly

galactosylated glycans (50). The EBV-infected IgA+ B cells from

IgAN patients displayed phenotypic characteristics very similar to

those of IgA+ B cells infected in vitro with EBV (50–56).
2 Evidence for the autoimmune
nature of IgAN

Studies of the composition of CIC and mesangial deposits

revealed that they consist of IgA exclusively of the IgA1 subclass,

IgG, C3 of the complement cascade, and sometimes IgM (2, 3, 10, 11).

These findings prompted the search for the participating exogenous

or possibly endogenous antigens involved in CIC formation.

Although antigens of the microbial and food origin have been

sought as components of CIC or immune complexes in the

mesangium, no uniformly prevalent antigen was identified (57–60).

The possible autoimmune character of IgAN was postulated because

of the exclusive presence of the IgA1 subclass in complexes with IgG,

C3, and soluble IgA Fc receptor (FcaRI or CD89) in the absence of

other identifiable components (10). Recently it was reported that

CD89 represents critical factor for mesangial proliferation in
TABLE 1 Concordance of properties of IgA produced by EBV-infected IgA-
secreting plasma cells and IgA in circulating immune complexes and
mesangial deposits.

EBV-infected
cells

CIC Mesangial
deposits

IgA Subclass Only IgA1 secreted IgA1 IgA1

Molecular forms of
IgA

Polymer Polymer Polymer

Presence of J chain + + +

Gd-IgA1 + + +

Lambda light chains + ND +
CIC, circulating immune complexes; EBV, Epstein-Barr virus, Gd-IgA1, galactose-deficient
IgA1; J, joining; ND, not determined; + states for "yes".
Based on published data (2, 3, 8–21, 50–56)
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childhood IgAN (61). As discussed below, human and hominoid-

primate IgA1 has, in contrast to IgA2, a unique HR of the a1 heavy

chains characterized by an additional 13 amino acids that include Thr

and Ser residues which may be glycosylated (Figure 1) (62).

Comparative evolutionary studies of the Ig HR clearly indicate a

recent insertion of a gene segment encoding for the HR of IgA1 into

phylogenetically older IgA2 (62). Furthermore, IgA1 from IgAN

patients displayed an aberrant glycosylation pattern with the

characteristic galactose (Gal) deficiency in the O-linked glycans in

the HR (Figures 1, 2) as revealed by reactivities with relevant lectins or

monoclonal antibodies specific for Gd-IgA1, or direct biochemical

analyses of glycans of IgA1 eluted from glomerular immune

complexes (2, 3, 7, 8, 12, 14, 18, 71, 76). Gd-IgA1 in CIC and in

mesangial deposits is in the polymeric form, as demonstrated by the

elution profiles of IgA from dissociated CIC, and reactivity of

mesangial IgA1 with secretory component (SC) – the extracellular

part of the polymeric IgA receptor (pIgR) expressed on epithelial cells

– which binds exclusively pIgA and IgM with J chain (2, 21, 77–80).

Gd-pIgA1 is recognized by antibodies specific for terminal N-

acetylgalactosamine (GalNAc) residues in the O-linked glycans in the
Frontiers in Immunology 03
HR of Gd-pIgA1 which may contribute to the conformational

alteration of HR and generation of new antigenic determinants (2,

3, 21, 23, 77, 81–83). It is thus evident that the structurally unique HR

of human IgA1 in IgAN patients (Figure 1) resulted in the appearance

of novel antigenic determinants. These epitopes are recognized by

ubiquitous, naturally occurring, antibodies (21, 23, 84, 85) or those

that probably evolve due to the affinity maturation (86), ultimately

leading to formation of nephritogenic CIC that deposit in the

glomerular mesangium (2, 3). The universal presence of IgG in

mesangial deposits was demonstrated using anti-IgG nanobodies

which selectively recognize potentially hidden antigenic

determinants of IgG in mesangial immune complexes of IgAN

patients (87). Furthermore, somatic mutations in the variable

regions of heavy chains may modulate the affinity of autoantibodies

against Gd-IgA1 (86). The presence of naturally occurring antibodies

in sera of all healthy individuals, specific for the HR-containing Fab

fragment of some IgA1 myeloma proteins, suggested that these IgA1

proteins exhibit unique antigenic determinants not present in IgA2

myeloma proteins (23, 86, 87). Importantly, parallel determination of

such IgA1-specific antibodies revealed significantly increased levels in
FIGURE 1

Comparison of systemic and mucosal IgA compartments. Systemic and mucosal compartments differ in proportions of the IgA subclasses, amount of IgA
produced daily, dynamics of IgA production relative to normal adult values, the proportion of individual Ig isotype-positive cells, and tissues with IgA-
secreting plasma cells. IgA1 heavy chain (a1) has, in contrast to IgA2 (a2), a unique hinge region with an additional 13 amino acids that include Thr and
Ser residues which may be glycosylated. Red-highlighted amino acids may be O-glycosylated (55, 62–70).
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sera of IgAN patients (21, 77, 85). There are several sites in the HR of

the IgA1 heavy chains that display a high degree of heterogeneity in

their O-linked GalNAc without Gal (63, 64). The specific site(s) with

the O-linked GalNAc that serves as the epitope(s) recognized by

autoantibodies to form CIC that accumulate in the mesangium of

IgAN patients has not been identified (65). Based on the reactivities of

IgG anti-Gd-IgA1 antibodies with the HR fragments generated by the

proteolytic cleavage of IgA1 myeloma protein, we propose that

GalNAc on Thr228 and Thr233 may be involved (66).

However, the basis for the induction of these naturally occurring

GalNAc-specific antibodies has not been conclusively established.

Certain microorganisms, including EBV, express O-linked glycan

chains on their surfaces which may induce such antibodies (88–93).

Gp350/220 EBV complex is expressed on the virion surface at high

density, thereby allowing efficient cross-linking of the CD21 and

activating resting B cells to proliferate. Gp350 is heavily glycosylated

with N- and O-linked glycans, together contributing 60% of its total

molecular weight (88, 89).

The biochemical and biological activities of immune complexes

containing Gd-pIgA1 and IgG were first reported after their

characterization and isolation from sera of IgAN patients (3, 10, 21,

25, 77). The specificity of antibodies for GalNAc residues in O-linked

glycans of the IgA1 HR was demonstrated by the inhibition of re-

association of acid-dissociated immune complexes in the presence of

other GalNAc-containing glycoproteins or free GalNAc (21). The

biological properties manifested as proliferation of mesangial cells

induced in vitro were dependent on the molecular mass of such

complexes. Those of molecular mass ~700-1,000 kDa displayed the

stimulatory effect whereas smaller complexes did not (3, 25, 26). Thus,
Frontiers in Immunology 04
we concluded that immune complexes composed of Gd-pIgA1 and

GalNAc-specific IgG in the circulation of IgAN patients are

nephritogenic and responsible for the clinical expression of IgAN

(1–3, 6).
3 Uniqueness of human IgA system

3.1 Structural features relevant to IgAN

The fact that in humans IgA is produced in quantities that twice

exceed the combined production of IgG and IgM (IgA ~70 mg/kg/

day; IgG ~25 mg/kg/day; IgM ~7 mg/kg/day) (67) is infrequently

acknowledged in the current literature. In contrast to other Ig

isotypes, IgA occurs in several molecular forms: in plasma, ~95% of

IgA is present as monomers (m) and ~ 1-5% as dimers and tetramers

(62, 67). In external secretions, dimeric and tetrameric secretory IgA

(S-IgA) with ~60% dimers and ~40% tetramers are dominant (62, 67,

94). With the exception of hominoid primates, serum IgA in other

animal species is present mostly in dimeric form (95). In humans and

hominoid primates, IgA occurs in two subclasses, IgA1 and IgA2; in

other species (62, 95, 96), with the exception of lagomorphs, there is

only a single IgA isotype, structurally similar to human IgA2 (62, 95).

Thus, in comparison to phylogenetically older Ig isotypes, IgM

analogs, IgG, and IgA2, it is apparent that IgA1 is phylogenetically

a recent Ig isotype (95). The most obvious structural difference

between IgA1 and IgA2 is in the unusual HR of IgA1 (Figure 1).

The origin of the gene segment encoding the HR of IgA1 remains

enigmatic. Most interestingly, this segment of IgA1 is the only known
FIGURE 2

Differences in glycosylation pathways in EBV-infected or non-infected IgA1-producing cells. In the healthy conditions, IgA1-producing plasma cells
generate IgA1 with hinge-region O-glycans; the prevailing form consists of the N-acetylgalactosamine (GalNAc) with b1,3-linked galactose (Gal) forming
the Core 1 structure (also called T antigen) and its mono- and di-sialylated forms. O-glycosylation is a highly complex process involving about 50
glycosyltransferases and occurs in the Golgi complex. O-glycosylation is initiated by one of several N-acetylgalactosaminyltransferases (GalNAc-Ts)
which catalyze the transfer of GalNAc to the Ser or Thr residues (S/T), leading to formation of Tn antigen. GalNAc-T2 is probably an essential enzyme
responsible for galactosylation of IgA1; however, other GalNAc transferases are also expressed in B cells and could participate in this process (64, 65, 71–
73). Formation of Tn antigen is followed by the addition of Gal catalyzed by only one known Core1 b1,3-galactosyltransferase 1 (C1GalT1) and its
chaperon Cosmc. Core 1 can be expanded with sialic acid(s) attached, by several sialyltransferases to Gal, GalNAc, or both. The process is catalyzed by
Galb1,3GalNAc a2,3-sialyltransferase (ST3Gal) (72) or/and a a2,6-sialyltransferase (ST6GalNAc-I or ST6GalNAc-II), respectively (74). Replicating EBV-
infected IgA1+ cells can produce EBV gp350 and IgA1. C1GalT1 participates in the parallel formation of Core1 on gp350 and IgA1, leading potentially to a
relative C1GalT1 deficiency and generation of O-glycans with terminal GalNAc with or without a2,6 attached sialic acid. Preterminal sialylation of Tn
antigen increases formation of Gd-IgA1 (75). .
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substrate for the family of structurally highly diverse proteases of

bacterial origin capable of the cleavage of IgA1 into the Fab and Fc

fragments (97). Other differences between the a1 and a2 heavy chains
include allotypic determinants associated with the IgA2 isotype (62).

Furthermore, antibodies specific for a variety of antigens differ in their

association with the IgA1 and IgA subclasses (98).

IgA1 and IgA2 also differ in their glycosylation patterns (62, 63,

99). IgA1 contains O-linked oligosaccharide chains in the HR that are

absent from Igs of all other isotypes except IgD (100). In the IgA1 HR,

there are nine Thr and Ser residues to which GalNAc may be attached

(62, 63). Analyses of O-linked glycans in monoclonal or polyclonal

IgA proteins revealed a significant variability (63).

Based on our recent analyses of light chains associated with

surface (s)IgA+ B cells, the dominant expression of l chains was

observed (101). Interestingly, the dominance of l chains in mesangial

deposits and pIgA1 in the circulation of patients with IgAN has been

reported in many studies (102–108). Importantly for the elucidation

of the IgA1 binding to mesangial cells, it appears that IgA1l displays

marked charge differences leading to enhanced binding (108).

Because Gd-pIgA1 is present in the high-molecular-mass form of

CIC and anti-Gd-IgA1 is detectable in a free form in sera of IgAN

patients, it is obvious that CIC were generated in the antibody-excess

zone. The biological effects of CIC and efficiency of their removal

from the circulation are related to their molecular mass. Monomeric

and polymeric IgA in their free forms display relatively short half-

lives in the circulation (~4-6 days) and are effectively catabolized by

hepatocytes which on their surfaces express the asialoglycoprotein

receptor specific for Gal and GalNAc residues of glycoproteins,

including IgA (68, 109, 110). However, the IgA1-containing CIC of

the high molecular mass in sera of IgAN patients do not reach the

space of Disse in the liver. Thus, it is likely that, due to the larger size

of glomerular endothelial fenestrae, they enter the mesangium where

they induce stimulation and proliferation of mesangial cells (2, 3).
3.2 Cellular aspects of IgA production

Plasma cells producing polymeric or monomeric IgA1 or IgA2

display a characteristic tissue distribution (62, 67, 69, 70, 111).

Circulatory mIgA1 is produced by mainly plasma cells in the bone

marrow; smaller amounts are secreted by plasma cells in systemic

lymph nodes and spleen (62, 67, 111). Plasma cells in mucosal tissues

produce pIgA but the tissue distribution of IgA1- or IgA2-producing

cells displays a characteristic pattern: in the respiratory and upper

alimentary tracts, IgA1-producing cells are present in higher numbers

than are IgA2-producing cells, while IgA2-producing cells are

dominant in the large intestine (62, 69, 70, 111). In the bone

marrow, ~40-50% of plasma cells produce IgA; in contrast, in the

intestines, ~90% of plasma cells produce IgA (55, 62, 69, 70, 109, 111)

(Figure 1). This distribution of cells producing IgA1 or IgA2 in

monomeric or polymeric forms is in agreement with quantitative data

concerning the production and metabolism of IgA (109).

It is assumed that expression of Igs on surfaces of B cells precedes

production of Igs of the same isotype after their differentiation into

Ig-secreting plasma cells. In the case of sIgA+ B cells in peripheral

blood, widely variable numbers of sIgA+ cells have been reported,
Frontiers in Immunology 05
partially due to the differences in the reagents and methods used to

identify such cells. Importantly for the differentiation of cells

ultimately secreting IgA1 or IgA2, the earlier expression of sIgA is

not necessary; sIgM+ B cells may also directly differentiate into the

IgA–secreting cells without prior expression of sIgA (112). This point

is of considerable importance in the explanation of seemingly

discrepant data concerning the phenotypes of B cells, including

expression of sIg isotype and their history of EBV infection. The

total numbers of IgA-producing cells in mucosal and systemic tissues

greatly exceeds the numbers of IgG- and IgM-producing cells

(Figure 1), thus explaining the pronounced dominance of IgA

production over that of other Ig isotypes in humans (62, 67).

Interestingly, recent data indicate that IgA-producing cells in the

intestine exhibit a life-span of 10-20 years that is enormously

extended compared with that of IgG- or IgM-producing cells (113).

This surprising finding has a great impact of the physiology of the

entire IgA system. Currently, it is not known whether the EBV-

infected Gd-pIgA1l-producing cells in other mucosal tissues and the

bone marrow display such remarkable longevity.
3.3 Independence and different maturation
of systemic and mucosal IgA cells

In addition to differences in molecular forms and tissue

distribution of cells producing IgA, the systemic and mucosal

compartments also exhibit remarkable degree of independence and

maturation patterns (Table 2). IgA produced as monomers in the

bone marrow and other systemic lymphoid tissues remains almost

entirely in the circulation with a 4-5 day half-life and is catabolized in
TABLE 2 Differences and independence of the systemic and mucosal
compartments of the IgA system.

Systemic Mucosal

Quantities of IgA
produced
per kg body
weight/day

~ 25 mg ~ 50 mg

Fate of IgA Half-life 4-5 days
Catabolized in liver

Transported into external
secretions

Site of production Bone marrow >> spleen
> lymph nodes

Mucosal tissues

Number of IgA-
producing cells

2.5 x 1010 ~6 x 1010

Maturation Adult levels reached in
adolescence

Adult levels reached in 2-3
years, highly variable

IgA: molecular
forms

95-99% mIgA ~95% pIgA

Dimers (~60%)
Tetramers (~40%)
Contains J chain

Subclasses IgA1 ~ 85%
IgA2 ~ 15%

Variable
Upper respiratory IgA1 >
IgA2
Large intestine IgA2 > IgA1
m, monomeric; p, polymeric
Based on published data (51, 55, 67, 68, 92, 103, 113–123)
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the liver; importantly, only trace amounts appear in external

secretions (62, 67, 68, 109, 110). In contrast, pIgA produced in

mucosal tissues is selectively transported by a receptor-mediated

mechanism into external secretions (114). This receptor is specific

for pIgA and IgM containing J chain and is expressed on mucosal

epithelial cells of the intestinal, respiratory, and genital tracts and

ductal cells of mucosa-associated glands (salivary, lacrimal, genital,

and lactating mammary glands) (114). From the quantitative point of

view, the amount of IgA produced in mucosal tissues greatly exceeds

the amount of IgA generated systemically in the bone marrow

(Table 2, Figure 1).

In general, serum IgA displays a naturally highly delayed

maturation pattern, manifested as absent or trace amounts of IgA

in cord blood with a strongly age-dependent increase in levels in the

circulation; adult serum levels of IgA are reached during adolescence

(Figure 1) (115–120, 124, 125). In contrast, adult levels of secretory

IgA (S-IgA) are attained at ~ 1-2 years of age. Thus, there is an

extended period of physiologically normal IgA deficiency in the

systemic compartment. These serological data are corroborated by

immunohistochemical studies of IgA-producing cells in systemic and

mucosal lymphoid tissues demonstrating an age-dependent paucity of

such cells in lymphoid tissues (70, 121–123, 126, 127). This

physiological delay in maturation of the systemic IgA compartment

is of enormous importance in the immunopathogenesis of IgAN

when related to the racial differences in EBV infection (50).

The differentiation of B cells into IgA-secreting plasma cells

proceeds in T cell-dependent or -independent pathways regulated

by substances involved in Ig-isotype switching (Figure 3) (128, 135).

The progression of sIgM+/D+ B cells into IgA-producing plasma cells

is regulated by products of T cells as well as cells of the non-T cell

phenotype which mediate the sequential steps involving Ig isotype

switching, proliferation, and terminal differentiation (Figure 3) (128,

129, 135, 136). Particularly, TGF-b and IL-10 participate in Ig isotype

switching and IL-10 increases terminal differentiation into IgA-

producing plasma cells. Both chemokines are secreted by T cells

and epithelial cells (129, 136). Thus, IL-10 may enhance production of

IgA to reach high circulating levels, a characteristic feature of IgAN

(1–3, 137–139). One explanation of these high levels is the activity of

the EBV lytic gene BCRF1; that encodes a homolog of cellular IL-10,

designated as vIL-10, that accelerates terminal differentiation of B

cells into IgA-producing plasma cells (129, 136, 140). vIL-10 also has

immunosuppressive activity. vIL-10 is analogous to cellular IL-10 in

its suppression of INF-g synthesis in human peripheral blood

mononuclear cells and reduction of responses of NK and cytotoxic

T cells (Figure 4) (145, 146).
4 The impact of EBV infection on B cell
differentiation and IgA production

The pathways of differentiation of lymphocytes of B cell lineage

into IgA-producing cells have been extensively studied using

polyclonal stimulation with various cytokines, pokeweed mitogen

(PWM), and EBV (51–55, 135, 147–151). EBV infects B cells in the

earliest stages of their differentiation pathway (Figure 4). Human pro-

, pre-, immature, and mature B cells are EBV infectable due to the
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presence of an EBV receptor, CD21 (52). Interestingly, as EBV-

infected B cells mature, the transition of pro– and pre–B cells into

phenotypically characterized plasma cells is not accompanied by a

parallel synthesis of Igs (52). This lack of production is due to the

“sterile” differentiation pattern, with the failure of VDJ rearrangement

(52). Such plasma cells contain abundantly expressed J chain that is

otherwise involved in the polymerization of IgA and IgM (62). In cell

culture, J chain is not secreted in the free form into the supernatants

and remains strictly in the intracellular compartment (52). EBV

infection of peripheral blood B cells induces their differentiation
FIGURE 3

T cell-dependent and T cell-independent IgA isotype switching.
Surface IgM-positive (sIgM+) B cells are induced to undergo isotype
switch by i) T cell-dependent manner in Peyer’s patches and other
mucosa-associated lymphoid follicles (left panel) or by ii) T cell-
independent manner in the vicinity of mucosal epithelial surfaces in
diffuse lymphoid tissues of lamina propria mucosae (right panel) (128–
134). In Peyer’s patches, B cells differentiation depends only partially
on the cognate help signals from Tfh exposing CD40L and secreting
TGF-b and IL-21. In concert, FDCs secrete BAFF, APRIL, RA, and TGF-b
in response to DAMP stimulation. Furthermore, FDCs present native
antigens to B cells to support crosslinking by BCR. Peyer’s patches
contain also a TipDCs which render B cells more sensitive to TGF-b
due to NO-induced enhancement in the expression of TGF-b
receptor. Peyer’s patches contain also pDC secreting BAFF and APRIL
upon stimulation by type I interferon from the ISC (128, 134). Diffuse
lymphoid tissues of the intestinal lamina propria contribute mostly to
the T cell-independent Ig switching in B1 cell subset. Besides several
subsets of MC and DC, local PCs are involved in this process. TipDC
are typical for lamina propria and they act similarly to their counterpart
in Peyer’s patches. In addition, DC expressing TLR5 member of the
DAMP family are stimulated by flagellin to secrete RA and IL-6. DAMP-
activated DC co-stimulated by TSLP from epithelial cell produce BAFF
and APRIL. Some DC extend their dendrites through the epithelial cell
junction or across the M cells into intestinal lumen to sample antigens
for recycling and presentation in unprocessed form to B cells, as the T
cell-independent antigens. PC maturation and survival could be
supported by mast cells producing IL-4, IL-5, IL-6, and BAFF.
Furthermore, Eo could contribute to PC survival by secretion of IL-6.
Finally, local IgA-secreting PC were identified as a producers of TNF
and iNOS (128, 129, 135, 136). APRIL, a proliferation-inducing ligand;
BAFF, B cell activating factor; BCR, B cell receptor; DAMP, danger-
associated molecular pattern; DC, dendritic cells; Eo, eosinophils;
FDC, follicular dendritic cells; iNOS, TNF-inducible nitric oxide
synthase; ISC, intestinal stromal cells; MC, mast cells; NO, nitric oxide;
PC, plasma cells; pDC, plasmacytoid dendritic cells; RA, retinoic acid;
Tfh, follicular T helper cells; TFR, follicular regulatory T cells; TipDC,
TNF- and iNOS-producing DC; TSLP, thymic stromal lymphopoietin.
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into lymphoblasts, plasmablasts, and plasma cells secreting Ig of all

major isotypes (51). Although EBV induces intracellular production

of IgA of both subclasses, only IgA1 is secreted into cell culture

supernatants after extended incubation (53, 54). This finding is of

considerable importance in IgAN because the IgA in elevated levels in

patients’ sera is exclusively of the IgA1 subclass (1–3, 9). Furthermore,

most of the secreted IgA1 is in the polymeric, J chain-containing,

form (51, 55) and is Gal-deficient (Table 2) (18).

The preferential synthesis of IgA1 that is Gal-deficient may be due

to competition between IgA1 and the gp350 protein of EBV for

galactosylation. Galactosylation of GalNAc residues in the HR of IgA1

involves the enzymatically-mediated transfer of Gal from the donor,

UPD-Gal, to the recipient GalNAc residues (64). Importantly, the

galactosylation of the IgA1 HR in EBV-infected plasma cells proceeds

with the parallel production of EBV with its heavily O-glycosylated

gp350 glycoprotein (67, 88, 89). Thus, it is conceivable that the

GalNAc residues on the HR of IgA1 and gp350 of EBV compete

for UDP-Gal as well as access to the requisite enzymes C1GalT1 and

Cosmc, resulting in the reduced galactosylation of IgA1

HR (Figure 2).

In EBV-infected cells, the activity and gene expression of several

enzymes involved in the synthesis of theO-glycans in the IgA1 HR are

altered (18). The activity of b1,3-galactosyltransferase that adds Gal to
GalNAc is deceased. The galactosylation is further stressed by reduced

expression of encoding gene, C1GalT1, and the gene encoding

Cosmc, the chaperone for b1,3-galactosyltransferase that maintains

its enzymatic activity. Furthermore, another enzyme, ST6GalNAc,

exhibits increased activity and its gene is overexpressed. The resulting

enhanced a2,6-sialylation prevents attachment of Gal to GalNAc-S/T

in the IgA1 HR, thereby accentuating synthesis of Gd-IgA1 (75).

Recently, Dotz et al. (152) found that decreased sialylation of IgA1

is associated with decreased estimated glomerular filtration rate

(eGFR) in patients with IgAN. Although this study used mass

spectrometry to analyze serum total IgA containing IgA1 and IgA2

in monomeric and polymeric forms, the finding may provide a new

biomarker for monitoring disease activity. Two earlier reports

confirmed that Gd-IgA1-specific autoantibodies in IgAN patients
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bound more Gd-IgA1 after removal of sialic acid (23, 86). Based on

the observation of Dotz et al, acute removal of sialic acid from Gd-

IgA1 HR, for example due to infection by neuraminidase-secreting

viruses (such as influenza) or bacteria (such as pneumococci), could

contribute to increased amounts of Gd-IgA1 in the circulation,

leading to enhanced binding of autoantibodies and formation

nephritogenic CIC. This scenario may explain the clinical

association of macroscopic hematuria with mucosal infection in

patients with IgAN (3). Because mucosal infection induces a

general inflammatory response that includes stimulation of IgA-

secreting cells and Gd-IgA1 production and because desialylation of

IgA is the natural catabolism of IgA, the postulated contribution of

infection-mediated desialylation of Gd-IgA1 to disease activity in

IgAN should be tested in future studies.

EBV profoundly influences the expression of receptors on

infected B cells, with the preferential expression of those involved

their homing to tonsils and the upper respiratory tract (50, 153, 154).

Thus, EBV, as well as other viruses (155), direct the ultimate tissue

distribution of these cells through expression of pertinent homing

receptors. In the case of EBV infection, integrin a4b7 (LPAM-1) is

induced in the tonsils of patients with infectious mononucleosis,

thereby allowing B cells to home to the gastrointestinal mucosa-

associated lymphoid tissue (GALT) (156).
5 EBV infection

EBV as well as other herpesviruses establish life-long and latent

residence in target cells of the host and evade elimination (141, 142,

157–160). EBV infects only humans (157, 160). The ensuing clinical

manifestations depend on the type and magnitude of the induced

immune responses and age of the host (141, 157–160). Acute EBV

infection of children usually remains clinically silent (141, 158–161).

EBV is present in saliva to provide an easy means to spread the virus

to uninfected individuals. EBV crosses the epithelial barrier of the oral

cavity and nasopharynx to infect susceptible B cells to induce their

proliferation and maturation to the Ig-secreting plasma cells or to
FIGURE 4

The impact of EBV infection on sIgA1+ B cells. After the initial mucosal infection, the virus remains in resident memory B cells; upon activation, Igs and
EBV are produced in plasma cells (141–143). EBV-infected plasma cells secrete J-chain-containing Gd-pIgA1 with preferentially l light chains. Such cells
also display homing receptors involved in the selective population of the upper respiratory mucosa. In addition, vIL-10 is likely to support the
differentiation of cells into IgA producers and probably suppresses the cytotoxic activity of CTLs (141, 143, 144). CTL, cytotoxic T lymphocytes; Gd-IgA1,
galactose-deficient IgA1; J, joining; L light; URT, upper respiratory tract.
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establish persistent residence (141, 142, 157). The most important

lymphoepithelial tissue susceptible to EBV infection is Waldeyer’s

ring which includes the adenoids and palatine, tubal, and lingual

tonsils with adjacent draining lymph nodes (Figure 5) (141, 142, 157).

EBV establishes persistent infection in resident, long-lived, memory B

cells (142) and retains the ability to replicate in activated and

differentiated plasma cells that produce antibodies of various

isotypes and also release the virus (Figure 4) (141, 143, 144). In

these oropharyngeal lymphoid tissues, the virus can initiate a new

round of B cell and perhaps epithelial cell infection that leads to

further shedding into the saliva (141). However, the possibility of EBV

replication in epithelial cells remains controversial; virus in complexes

with antibodies may be also internalized through the Ig receptors

expressed on epithelial cells (141). The frequency of EBV-infected B

cells is highly variable, ranging from 5 to 3,000 infected cells/107

memory B cells in Waldeyer’s ring and peripheral blood; other

lymphoid tissues (spleen and mesenteric lymph nodes) contain at

least a 20-fold fewer infected cells (141, 142, 157). The virus replicates

in terminally differentiated B cells (plasma cells) in Waldeyer’s ring

but only a few cells participate in viral production (143, 157).

However, the life-span of such infected plasma cells in the upper

respiratory tract and oral cavity has not been determined. In mucosal

tissues and the bone marrow, IgA-producing plasma cells persist for a

surprisingly long time, up to 10-20 years (113). Asymptomatic EBV

reactivation in oral mucosa-associated lymphoid tissues occurs

periodically in most healthy subjects (94). This event may be

caused by reactivation of EBV-infected resting memory B cells

upon their entry into lymphoid tissue and physiologic stimulation

through the B cell receptor, leading to terminal differentiation into

plasma cells and activation of the viral replicative cycle, associated

with expression of viral glycoprotein gp350.
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Due to the presence of pIgA-producing cells with J chain in the

bone marrow of IgAN patients, the glomerular IgA may originate in

the bone marrow as well as mucosal tissues (163–165). However, the

altered glycosylation pattern and the possible presence of EBV in the

bone marrow of IgAN patients has not been addressed. It is

conceivable that in these patients there are indeed Gd-pIgA1l-
producing cells in the bone marrow in addition to the lymphoid

tissue in the upper respiratory tract and, perhaps, other mucosal

tissues. In these tissues, EBV remains associated with infected

memory B cells. Upon the stimulation of these cells, probably by

infection with other microorganisms, some differentiate into plasma

cells that produce Gd-IgA1l and release EBV.
5.1 Epidemiology of EBV infection

Although ~95% of adults worldwide are EBV-infected (141, 142,

157, 158, 160, 161), there are significant differences in age at primary

infection and the incidence of EBV-associated diseases (166, 167).

Children from the birth to ~ 6 months of age are protected against

EBV infection by maternal IgG antibodies acquired by transplacental

transfer (167). Most importantly, socio-economic status, irrespective of

the country or continent, is of primary importance (160, 161, 168–171).

The number of children in a family, sharing of rooms and utensils,

hygienic conditions, level of family income, cultural practices (such as

maternal pre-chewing of food) (141, 159, 161, 171–173), and

breastfeeding with milk containing EBV (174–176) may impact the

likelihood and timing of EBV infection. Up to ~90% of children in

families with unfavorable socio-economic situations become infected

within the first year of life (166–168). This finding may be a relevant

factor for early EBV infection of some African American, African Black,

and Aborigine children in Australia (166–168). Importantly, EBV

infection at a young age is generally asymptomatic (159–161).

Furthermore, epidemiological data indicate that early EBV infection

induces protective humoral and cellular immune responses resulting in

the significantly reduced incidence of infectious mononucleosis and

possibly some autoimmune diseases (174). In sharp contrast, individuals

of a higher socio-economic status more often are infected during

adolescence and have an increased frequency of EBV-associated

diseases (169). Recent studies have shown an association between a

progressively older age at primary EBV infection with a higher incidence

of infectious mononucleosis and other EBV-associated diseases (173).

Based on the above-described consequences of EBV infection of B cells

as related to the naturally delayed maturation of the IgA system, it is

possible that socio-economic status, in addition to genetic factors, plays

an important role in the incidence of IgAN. Description of familial

incidence of EBV infection with different clinical outcomes in individual

family members also may be relevant in IgAN. Many first-degree

relatives of IgAN patients have high blood levels of Gd-pIgA1 without

any clinical or laboratory evidence of kidney disease (46, 177). However,

EBV serology has not been performed to assess a possible contribution

of EBV infection to the development of IgAN. Nevertheless, in view of

the strongly age-dependent clinical manifestations of EBV infection, it is

possible that the variable outcome is due to quantitative differences in

the blood levels of Gd-pIgA1 and corresponding autoantibody to

generate CIC with possible nephritogenic potential.
FIGURE 5

Waldeyer’s ring. Waldeyer’s ring is comprised of the nasopharyngeal
tonsils (adenoids) attached to the roof of the pharynx, the tubal tonsils
(adenoids) located at the pharyngeal aperture of the Eustachian tubes,
the palatine tonsils in the oropharynx, and the lingual tonsils on the
posterior third of the tongue. Tonsils are lymphoreticular and
lymphoepithelial organs. Tonsillar epithelium invaginates and lines the
tonsillar crypts enhancing the surface for direct contact with
exogenous antigens to a surface of 350 cm2, predominantly in the
palatine tonsils (162).
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5.2 EBV involvement in human diseases

Although more than ~95% of adults worldwide are infected with

EBV, relatively few individuals display a broad spectrum of EBV-

associated diseases of infectious, autoimmune, or malignant nature

(141, 161, 178–185). Apparently additional immunologic, genetic,

and environmental factors contribute to the development of EBV-

associated diseases (158, 169, 180, 181, 183–185). Infectious

mononucleosis is a disease most commonly acquired at 15-25 years

of age in developed countries (159, 161, 174, 185). However, the

disease is uncommon in African Blacks and 30x less common in

African Americans than in Whites (160, 161). Clinical symptoms of

infectious mononucleosis appear most frequently in adolescents/

young adults living in areas with high hygienic and socio-economic

conditions. These patterns are reminiscent of the incidence of IgAN

with well documented racial differences (1, 28, 29, 32, 33, 37).

EBV-associated malignancies include Burkitt’s lymphoma (in

association with malaria or HIV infection), Hodgins’s disease,

nasopharyngeal carcinoma, gastric carcinoma, and, possibly,

multiple myeloma (178, 180). EBV infection has been also

associated with many diseases of the autoimmune nature, including

systemic lupus erythematosus, multiple sclerosis, rheumatoid

arthritis, inflammatory bowel disease, and possibly Sjögren’s

syndrome and others (169, 181–183, 185).
5.3 Low incidence of IgAN in individuals
with early EBV infection

Because almost all adults, irrespective of race, gender,

socioeconomic status, and other variable environmental factors,

become infected with EBV, the obvious question concerns the

relatively low incidence of EBV-associated diseases, including IgAN,

in racially diverse populations. We propose that, in the case of IgAN,

the timing of EBV infection plays an essential role. In children

infected prior to the strongly age-dependent maturation of the IgA

system, EBV infects the precursors as well as mature B cells of non-

IgA phenotypes and the ensuing humoral and cellular responses

effectively protect against later infection of sIgA+ B cells (50). Early

EBV infection is usually asymptomatic, probably due to the effective

elimination of EBV-infected cells by CD8+ cytotoxic T lymphocytes

which diminishes with advancing age (169, 185). This scenario is

likely a common mechanism in the appearance of several

autoimmune diseases as related to the age of the individual (169,

181, 183, 185). The presence of Gd-IgA1 in the circulation of

asymptomatic relatives of IgAN patients (46, 177) as well as in

mesangial deposits in individuals without clinically manifested

kidney disease (186) suggests that not only the level of Gd-pIgA1

but also the antigenic determinants in the HR of Gd-IgA1, and the

level and perhaps specificity of corresponding IgG autoantibodies that

lead to marked differences in the serum levels of CIC and, most

importantly, CIC molecular properties, especially with respect to the

molecular mass, play important roles in disease expression (24). An

analogous situation occurs in serum sickness, in which CIC of various
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molecular masses (based on the proportion of antigen to antibody)

are effectively eliminated and only those of relevant molecular mass

deposit in the mesangium (187). Based on this principle, additional

studies to examine the capacity of non-cross-linking monovalent

antibodies to Gd-pIgA1 to block formation of nephritogenic CIC

should be explored.
5.4 Potential role of EBV infection in the
geographic distribution of IgAN

IgAN is the most common form of glomerulonephritis in many

countries in Europe, North America, and Australia, and east Asia (1,

28–30). In contrast, the disease is rare in Africa, many Asian and

South American countries, in indigenous Australian Aborigines, and

is uncommon in African Americans (28, 29, 31–40, 188). The rarity of

IgAN in African Americans is remarkable in the light of the findings

of a recent GWAS study that found African ancestry consistently

associated with higher serum IgA levels and greater frequency of IgA-

increasing alleles compared to other ancestries and that a high serum

IgA level was correlated with IgAN (189). However, this study did not

test for an association of ancestry with serum levels of Gd-IgA1, a

small fraction of serum total IgA and the autoantigen for development

of IgAN, or examine the potential influence of environmental factors.

Based on the above-described impact of EBV infection of human

B cells with respect to the cell differentiation, production of Gd-

pIgA1l, and expression of homing receptors involved in populating

Waldeyer’s ring and the upper respiratory tract, we compared the

frequency of EBV-infected B cells and their expression of sIg isotypes

and homing receptors in White IgAN patients and healthy adult

White and African American controls (50). In the IgAN patients,

EBV-infected B cells displayed dominantly sIgA while in the African

American controls such cells were missing and only sIgM/sIgD-

positive cells were present (50). Furthermore, EBV-infected B cells

from White IgAN patients more frequently expressed the a4b1
homing receptor for the upper respiratory tract and Waldeyer’s

ring (50). In concert with previous in vitro studies, we proposed

that EBV is intimately associated in pathogenesis of IgAN (Figure 2,

5) (50).

Comparative epidemiological studies in various countries have

revealed that the marked temporal, racial, and geographic differences

in the acquisition of EBV infection are strongly related to

socioeconomic status (172, 173, 176). In addition to the above-

described factors, child care in nurseries (190) or, in the

adolescence, entry into a university lead to a significant increase in

EBV seroconversion (170, 171). Early EBV infection also occurs in

African Americans, African Blacks, and in Australian and New

Guinea indigenous populations; all children ages 1-5 years were

EBV-seropositive (168). Importantly, the incidence of IgAN in

these populations is significantly lower than in the Australian non-

indigenous White population (36). Thus, age-related studies of EBV

seroconversion in countries with the low-frequency of IgAN (e.g.,

New Zealand, South Africa, Sudan, Bangladesh, India, Saudi Arabia,

Peru, and others) would be important. Early EBV seropositivity is also
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accompanied by a significant decrease in the incidence of infectious

mononucleosis. However, the predicted trend in the delay of EBV

acquisition is likely to be followed by an increase in the incidence of

infectious mononucleosis (173, 191) and possibly IgAN.
6 IgAN, IgA vasculitis with nephritis,
and EBV

IgA vasculitis (formerly known as Henoch-Schönlein purpura) is

the most common vasculitis in children, characterized by

leukocytoclastic inflammation and IgA in the small blood vessels in

the skin, joints, intestines, and (in a minority of patients) kidneys

(192–195). IgAN and IgA vasculitis with nephritis share some

common clinical, laboratory, and pathology features, including

increased levels of Gd-IgA1 in the circulation and accumulation of

Gd-IgA1 in glomeruli, suggesting a related immunopathogenesis (17,

43, 196–199). In contrast, IgA vasculitis patients without nephritis

have normal circulating levels of Gd-IgA1 (196, 197). Furthermore,

serum Gd-IgA1 levels are elevated in many first-degree relatives of

pediatric patients with IgAN and IgA vasculitis with nephritis (43,

196). Based on the mechanisms involved in the glycosylation of HR of

IgA1 (196, 200) and the familial epidemiology of EBV infection, it is

plausible to speculate that EBV is also involved in the aberrant

glycosylation of IgA1 in IgA vasculitis with nephritis. Indeed,

several case reports support this possibility (201–203). The

occurrence of IgA vasculitis with nephritis in children seropositive

for acute EBV infection has suggested a role for the virus in the acute

syndrome (201–203).
6.1 IgAN, tonsillectomy, and EBV

After the initial mucosal infection through the oral and upper

respiratory tract, EBV establishes a latent and persistent residence in

Waldeyer’s ring (Figure 5) (141, 142, 157, 204). The virus remains in

the resident memory B cells and, upon activation, EBV is produced by

plasma cells (141–143) in the free or epithelial cell-associated forms

and appears in the saliva. The lymphoepithelial oropharyngeal tissues

function as mucosal inductive as well as effector sites (205–207).

These tissues contain Ig-producing cells, including those secreting

IgA (205, 206, 208). Several studies have suggested that the tonsils and

cells in the adjacent structures are the dominant source of IgA,

including Gd-pIgA1 with J chain, which enters the circulation

(209–216). Indeed, cultured Ig-producing cells from tonsils secreted

Gd-pIgA1 into culture supernatants. Therefore, tonsillectomy has

been promoted for treatment of IgAN in combination with

corticosteroids in some studies (217–223). Nevertheless,

tonsillectomy has remained controversial as a treatment option for

IgAN due to the discrepant reports summarizing the results of

tonsillectomy in various countries (222–225).

The palatine tonsils represent the largest but certainly not the only

component of the Waldeyer’s ring (205–208). Adenoids, lingual and

tubal tonsils, other associated small lymphoepithelial oropharyngeal

structures, and draining lymph nodes with resident EBV-infected B
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cells and their descendants remain a potential continual source of Gd-

pIgA1, albeit in lower amounts. Furthermore, other mucosal tissues

may also contribute to the pool of Gd-pIgA1 in the circulation. EBV-

infected B cells are found rarely in systemic lymphoid tissues,

including the spleen and mesenteric lymph nodes (141), probably

due to the lack of the relevant homing receptors. Nonetheless, a small

portion of these cells also express gut-associated a4b7 homing

receptors (50) and, upon differentiation, could contribute Gd-

pIgA1l to the circulatory pool. It is conceivable that the IgA1-

producing plasma cells in the bone marrow in IgAN patients also

produce Gd-pIgA1l. This possibility remains to be explored because

of the bone marrow has been considered to be the source of

circulatory pIgA1 in IgAN patients (163, 164).
7 Conclusions

Based on the pleiotropic impact of EBV infection on B cells as

related to the stage of maturation of the IgA system, the production of

Gd-pIgA1l as the autoantigen, and the preferential expression of

homing receptors specific for the upper respiratory tract, we propose

a novel pathway in the immunopathogenesis of IgAN. Although almost

all adults are infected with EBV, there aremarked differences in the time

of infection among individuals of diverse racial and, more importantly,

socio-economic backgrounds. Most African Americans, African Blacks,

and Australian Aborigines are infected with EBV in very early

childhood (1-2 years of age) without overt clinical symptoms. At that

time, the IgA system is physiologically immunodeficient, manifested as

absent or low serum levels of IgA and a paucity of IgA-producing cells

in lymphoid tissues. Consequently, when very young children are

exposed to EBV, the virus enters B cells of non-IgA isotype. The

ensuing humoral and cellular immune responses prevent subsequent

infection of IgA+ B cells during EBV reactivation at older ages when IgA

B cells are more numerous. EBV infection of IgA-secreting cells

markedly increases the fraction of synthesized IgA that is Gd-pIgA1l.
Therefore, EBV infection at a very young age may significantly reduce

the lifetime risk of development of IgAN. Thus, the low incidence of

IgAN in the above specified populations may reflect immunological,

age-related, genetic, and pronounced socio-economic differences from

populations with higher incidences of IgAN with respect to the

frequency of early acquisition of EBV infection.
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