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American ginseng with different
processing methods ameliorate
immunosuppression induced by
cyclophosphamide in mice via
the MAPK signaling pathways
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Shijiazhuang, China, 3Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science
and Technology University, Jilin, China
This study aimed to clarify the effects of two processed forms of American

ginseng (Panax quinquefolius L.) on immunosuppression caused by

cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive

model, mice were given either steamed American ginseng (American ginseng

red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by

intragastric administration. Serum and spleen tissues were collected, and the

pathological changes in mice spleens were observed by conventional HE

staining. The expression levels of cytokines were detected by ELISA, and the

apoptosis of splenic cells was determined by western blotting. The results

showed that AGR and AGS could relieve CTX-induced immunosuppression

through the enhanced immune organ index, improved cell-mediated immune

response, increased serum levels of cytokines (TNF-a, IFN-g, and IL-2) and

immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities

including carbon clearance and phagocytic index. AGR and AGS

downregulated the expression of BAX and elevated the expression of Bcl-2, p-

P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to

AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the

spleen index, and serum levels of IgA, IgG, TNF-a, and IFN-g. The expression of

the ERK/MAPK pathway was markedly increased. These findings support the

hypothesis that AGR and AGS are effective immunomodulatory agents capable of

preventing immune system hypofunction. Future research may investigate the

exact mechanism to rule out any unforeseen effects of AGR and AGS.
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1 Introduction

The immune system, consisting of immune organs, immune

cells, and cytokine (CK), is a critical defense of the body. To protect

the body from numerous external antigens, allergens, and infections

while preserving normal physiological homeostasis, specific and

non-specific immunities are triggered by self and foreign substances

under normal physiological conditions (1). However, this balance

can be affected by genetic factors, environmental factors, age,

gender, physical stress, mental stress, dietary habits, etc., leading

to immunological imbalance and disease (2). Since 1958, solid

carcinomas, hematological malignancies, autoimmune disorders,

and other diseases have all been treated with cyclophosphamide

(CTX), an alkylating drug with immunosuppressive properties (3,

4). CTX is inactive as a precursor drug in vitro and functions

primarily in vivo via hepatic P450 enzyme hydrolysis to

aldophosphamide, which subsequently enters the tissues to create

phosphoramide mustard (5). By interfering with DNA and RNA

functions, cross-linking DNA, and obstructing DNA synthesis,

CTX affects the cell cycle and, thus, inhibits the proliferation of T

and B lymphocytes (6). The active intermediates of CTX cannot

distinguish between normal and malignant cells in this process.

CTX often causes myelosuppression and immunosuppression, as

evidenced by leukopenia, neutropenia, decreased lymphocyte

proliferation, and decreased cytokine production (7). As a result,

CTX is frequently utilized to establish immunosuppressed mice

models for studying the effects of immunosuppression on various

diseases and testing the efficacy of new immunosuppressive drugs.

The primary method of therapy in traditional medical systems

is herbal, which is now extensively employed in clinics. Important

species of Panax L. used to cure various ailments include

notoginseng, Asian ginseng, and American ginseng (8, 9). In

RAW 264.7 mouse macrophages, Azike et al. found that

American ginseng extracts greatly increased the expression of

TNF-a and IL-6 while showing an immunostimulatory effect (10,

11). The first line of defense against microbial infections is innate

immunity, which is mediated by macrophages and kills pathogens

through phagocytosis or the production of cytokines such as TNF-

a. As reported by Yu et al., American ginseng extracts significantly

improved the phagocytosis of mice abdominal macrophages (12).

To treat intestinal immunological diseases in mice, Zhou et al.

found that American ginseng extracts could heal damaged intestinal

mucosa by increasing the variety and amount of beneficial intestinal

flora (13). American ginseng can be used to treat and prevent colitis

by increasing the expression of iNOS and COX-2 while decreasing

the expression of p53 (14). Additionally, American ginseng reduced

the expression of COX-2 and NF-kB (15), increased the expression

of EGFR, decreased proliferation, and increased apoptosis (16).

Thus, it was confirmed that American ginseng has various

pharmacological effects such as immunomodulation, anti-aging

(17), anti-inflammatory, and cancer prevention.

It has been extensively reported that ginseng undergoes

significant changes in chemical composition and biological

activity after steam-processing (18–21), and such changes in

biological effects may be related to the steam-processing
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treatment. In the past, raw sun ginseng dominated the market for

American ginseng products. In recent years, a large number of

steamed American ginsengs have entered the market at a much

higher price than raw sun ginseng. In addition, it has been reported

that the content of polar ginsenosides in American ginseng

significantly decreased after steaming, while the content of less

polar ginsenosides increased accordingly, generating new valuable

compounds (22, 23). The antiproliferative effect of ginseng on HT-

29 human colorectal cancer cells was significantly increased after

steaming and could be increased by extending the steaming time

within a certain range (24). Heat processing may disrupt the cell

wall of American ginseng and release the antioxidant compounds

within it, which inhibits lipid peroxidation and increases the activity

of antioxidant enzymes, resulting in more significant antioxidant

activity of steamed American ginseng (25). However, no

comparison has been made between the immunological activities

of American ginseng before and after processing. In this study, we

proposed using BALB/c mice to evaluate the differences in

immunomodulatory activities between steamed American ginseng

(AGR) and unsteamed American ginseng (AGS), investigate the

effect of steaming treatment, and reveal its mechanism of action.

The findings could provide data support for a comprehensive

evaluation of the nutritional quality of American ginseng and

provide a basis for its consumption to prevent and treat

coronavirus disease 2019 (COVID-19).
2 Materials and methods

2.1 Materials and reagents

Mouse tumor necrosis factor a (TNF-a) kit (YJ002095), mouse

interleukin 2 (IL-2) kit (YJ02295), mouse interferon g (IFN-g) kit
(YJ002277), mouse immunoglobulin G (IgG) kit (ml037601),

mouse immunoglobulin A (IgA) kit (ml037606), and mouse

immunoglobulin M (IgM) kit (ml063597) were purchased from

Shanghai Enzyme Link Biotechnology Co., Ltd. (Shanghai, China).

The 10% neutral formalin (SL1560) was purchased from Beijing

Coolaber Technology Co., Ltd. (Beijing, China). P38a/b (sc-7972),

ERK (sc-7383), JNK (sc-7345), p-JNK (sc-6254), p-P38 (sc-7973),

and p-ERK (sc-7383) were purchased from Santa Cruz

Biotechnology, Inc. (CA, USA). Bcl-2 (ab182858), BAX

(ab81083), and GAPDH (ab8245) were obtained from Abcam

(Cambridge, MA, USA). RPMI-1640 medium (C11875500BT),

fetal bovine serum (FBS, 164210), and Thermo Life Penicillin

Streptomycin Sol (15070063) were obtained from Thermo Fisher

Scientific Co., Ltd. (Shanghai, China); CTX (H32020857) was

purchased from Shengdi Pharmaceutical Co., Ltd. (Jiangsu,

China). Levamisole Hydrochloride Tablets (H37020819) were

purchased from Renhe Tang Pharmaceutical Co. Ltd. (Linyi,

China). PE/Cyanine7 anti-mouse CD3 (100220), FITC anti-

mouse CD4 (100509), and APC anti-mouse CD8a (100712) were

obtained from BioLegend (San Diego, CA, USA). ConA (C8110)

was purchased from Beijing Solarbio Science and Technology Co.,

Ltd. (Beijing, China).
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2.2 American ginseng sources
and preparation

Fresh samples were collected from Weihai, Shandong Province,

China, and identified as Panax quinquefolius L. (4 years old) by

Professor Wei Li of the School of Chinese Herbal Medicine, Jilin

Agricultural University. AGR was prepared as follows. Briefly, 500 g

of fresh samples were steamed at 98°C for 2 h. After steaming, the

ginseng was dried in a desiccator at 60°C for 24 h. The process was

repeated 8 times (26, 27). AGS was prepared with 500 g of fresh

samples. After washing and drying, the samples were dried at 25°C

for 48 h. Then, the temperature was raised 2°C/2 day to 35°C and

raised to 40°C after the main ginseng body was softened. After

drying for 48 h, the temperature was lowered to 34°C until

completely dry. The pulverized AGR and AGS were mixed

separately with water and refluxed for 2 h. The process was

repeated 3 times, and the residues were removed. The 3 extracts

were combined, concentrated, freeze-dried, and then stored in a

cool, dry environment.
2.3 CTX-induced immunosuppression

2.3.1 Determination of body weight
and organ indices

Liaoning Changsheng Biotechnology Co. Ltd. provided male

BALB/c mice (SPF level, License No. (Liao)-2020-0001). The

guiding principle was followed during the care and use of mice.

The experiment was approved by the Experimental Animal Ethics

Committee of the Institute of Specialties, Chinese Academy of

Agricultural Sciences (Changchun, China) (Permit No.

ISAPSAEC-2022-78). Seven groups were prepared after a 7-day

acclimation period: control group, CTX group, LHT group

(levamisole hydrochloride, 40 mg/kg), AGR low dose group (0.50

g/kg, AGRL), AGR high dose group (1.00 g/kg, AGRH), AGS low

dose group (0.50 g/kg, AGSL), and AGS high dose group (1.00 g/kg,

AGSH). In this experiment, the intragastric administration method

was used, which means that the drug solution or suspension is

instilled with a device (gavage needle) directly into the end of the

esophagus or stomach of the mice. In contrast, oral administration

involves mixing the drug with food or dissolving it in drinking

water and allowing the animal to ingest it freely (28). Although this

method is simpler and more convenient to use, it does not

guarantee the accuracy of the drug dose and therefore does not

objectively reflect the experimental results. The intragastric route is

often used to mimic a common dosing route in humans. It also

allows for precise dosing of substances when compared to oral

administration through food or water (29). The mice from the AGR

groups and AGS groups were given different doses of AGR and AGS

every day, while the control group mice and the CTX group mice

was intragastrically administered an equal amount of normal saline.

All mice other than the control group were administered CTX (50

mg/kg) through intraperitoneal injection for 4 consecutive days

since day 26. After the last administration, some mice were used for

the determination of carbon clearance, delayed hypersensitivity
Frontiers in Immunology 03
reaction and spleen cell proliferation rate, respectively

(Figure 1A). The remaining mice were euthanized, and blood and

spleen were collected for subsequent experiments and analysis.

2.3.2 Histological examination
The spleen tissues were fixed with 10% paraformaldehyde,

rinsed with water for 1 h, dehydrated and transparent with

ethanol, embedded in wax by immersion, trimmed in wax blocks,

and serially sectioned at 4 mm thickness. After dewaxing, sections

were stained with hematoxylin and eosin, and histopathological

changes in the spleen were observed under an Olympus

BH22 microscope.
2.4 Cellular immunity experiments

2.4.1 ConA-induced splenocyte proliferation
Spleens were collected from the sacrificed mice under aseptic

conditions and then gently crushed and lysed of red blood cells to

create a splenocyte solution on day 31. The cells were washed 3

times with PBS, and the cell concentration was adjusted to 3×106

cells/mL with RPMI-1640 complete medium. The splenocyte

suspension was separated into two wells of a 24-well culture plate,

one with 75 μL of ConA solution and the other as a control, before

incubating at 37°C and 5% CO2 for 68 h. At the end of incubation,

MTT (5 mg/mL) was added to each well, and the incubation

continued for 4 h at 37°C and 5% CO2. To dissolve the purple

precipitate, 1 mL of acidic isopropanol solution was added to each

well at the end of the incubation. The wells were then dispersed into

96-well culture plates, and the optical density (OD) was determined.

The optical density values of the wells with ConA were subtracted

from the optical density values of the wells without ConA to

represent the proliferation capacity of lymphocytes.

2.4.2 Sheep red blood cells induced
delayed-type hypersensitivity

On day 30, 0.2 mL of 2% defibrinated SRBC (1×108 cells) was

injected intraperitoneally 1 h after CTX administration to stimulate

the proliferation of T lymphocytes into sensitized lymphocytes in

mice. Based on our earlier work (30), footpad thickness was

measured using vernier calipers on day 31, and the footpad was

attacked with SRBC and measured again after 24 h. The changes in

footpad thickness before and after the reaction correspond to the

degree of DTH and indicate the effect of American ginseng on

cellular immunity.
2.5 Carbon clearance capacity

Each mouse received an intravenous injection of 4 times diluted

India ink at a dose of 0.1 mL/10 g) on day 31. At 2 min (t1) and

10 min (t2) afterward, 20 ml blood was collected from the retinal

venous plexuses and immediately mixed with 2 ml of 0.1% Na2CO3.

The absorbance was measured at 600 nm in an ELISA reader. Mice

were euthanized by cervical dislocation, and their spleen and liver
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were removed and weighed. Phagocytic index a was used to express

the carbon clearance capacity of the mice, which can be calculated

according to the following equation.

K=
logOD1− logOD2

t2−t1

a=
Body weight

Liver weight+Spleen weight
�

ffiffiffiffi

K3
p

2.6 Measurement of splenic t-lymphocyte
subpopulations and leukocyte counts

The ocular venous plexuses of mice were sampled for 20 μL of

blood, and leukocytes were quantified using a hemocytometer on

day 31. Then, the animals were euthanized, and sterile spleens were

gently crushed and lysed of erythrocytes to make spleen cell

suspension. Based on the experimental procedure in our previous

study (31), the cell concentration was adjusted to 1×106 cells/mL,

and splenocyte surface markers were labeled with fluorescein

isothiocyanate (FITC)-coupled anti-mouse CD4, APC-coupled

anti-mouse CD8a, and PerCP-Cy5-coupled anti-mouse CD3. The

cells were maintained at room temperature for 40 min under

natural light, washed twice, resuspended with 5 mL PBS, and

analyzed using the FACSCalibur and CellQuest software.
2.7 Cytokines detection by ELISA

Blood samples were collected from the ophthalmic vein plexus

of mice and centrifuged at 4°C for 10 min. The serum was stored at

-80°C on day 31. The contents of various cytokines and

immunoglobulins were determined according to the instructions

of the ELISA kit.
2.8 Western blotting

Protein was extracted from spleen homogenate using lysis

buffer. Protein concentration was determined using the BCA

method. In addition, 10% to 15% SDS-PAGE gels were prepared

to separate equal amounts of proteins. Proteins were transferred to

PVDF membranes under the constant voltage of 70 V. After

membrane transfer, 5% skim milk powder was added and

incubated for 1 h. Subsequently, membranes were washed by

PBST for 30 min. Then, specific primary antibodies, including

Bax, Bcl-2, p ERK, p-JNK, p-P38, ERK, P38, JNK, and GAPDH,

were added before incubating overnight at 4°C. The primary

antibody was washed off by PBST, and an HRP-coupled

secondary antibody was added for incubation on a slow-shaking

shaker at room temperature for 1 h. After washing off the secondary

antibody, the target proteins were visualized using the BeyoECL

Plus kit, and Western Blot bands were determined using Image G

image analysis. The net gray value was determined by Image G

image analysis and compared with the internal reference GAPDH
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assay, and the ratio was calculated to compare the differences

between the groups.
2.9 Statistical analysis

Results are presented as mean ± SEM. Statistical tests were

performed using GraphPad Prism 9.0. One-way analysis of

variance (One-way ANOVA test) was used to test the differences

between groups, and P< 0.05 indicated significant differences.
3 Results

3.1 Effect of AGR and AGS on body weight
and immune organ indices

During the test period, the mice in each test group had

increased body weights, with no significant difference from the

control group (Figure 1B). Mice in the CTX group had significantly

lower body weight, thymic indices (Figures 1B, C), and spleen

indices compared to mice in the control group. LHT, AGR, and

ARS groups had considerably increased body weight, thymic

indices, and spleen indices compared to the CTX group.

Compared to the AGS group, spleen indices were considerably

higher in the AGR group, indicating that the steamed American

ginseng increased the immune organ index of immunocompromised

mice. H&E staining showed that the control spleen’s red pulp (RP)

and white pulp (WP) were clear with obvious boundaries, and the

splenic corpuscle (SCor) was apparent (Figure 1D). The RP and WP

were not clearly defined, and the lymph sheath around the tiny

central artery was weakened in CTX-induced immunosuppressive

mice, indicating that CTX may have harmed the splenic immune

cells. The RP and WP were demarcated after AGR and AGS

treatments, and the marginal area of the WP was expanded,

demonstrating that AGR and AGS could heal CTX-induced

spleen damage.
3.2 Effect of AGR and AGS on
monocyte-macrophage function
and cellular immunity

By reflecting the phagocytic activity of the macrophages with

the carbon clearance capacity, the function of non-specific

immunity can be assessed. As illustrated in Figure 2A, the carbon

particle clearance rate was significantly lower in the CTX group

compared to the control group. The carbon particle clearance rate

was significantly higher in the LHT, AGR, and AGS groups

compared to the CTX group. DTH is a T lymphocyte-mediated

hypersensitive reaction that can be used to detect the

immunological performance of cellular immunity. The footpad

thickness in the CTX group was lower than the control group

(Figure 2B), while those of the LHT, AGR, and AGS groups tended

to rise. Compared with the CTX group, the footpad thicknesses in

the AGRL, AGRH, and AGSL groups were significantly increased.
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ConA is a mitogen for T lymphocytes, and it selectively stimulates

lymphocyte proliferation (32). To measure the level of cellular

immunity, we used ConA-induced splenocyte proliferation.

Compared to the control group, splenocyte proliferation was

significantly decreased in the CTX group. Compared to the CTX

group, splenocyte proliferation was significantly higher in the AGR

and AGS groups (Figure 2C). Compared to the control group,

leukocyte counts were significantly lower in the CTX group;

leukocyte counts were significantly higher in the LHT, AGR, and

AGS groups than in the CTX group (Figure 2D). AGR and AGS

may improve CTX-induced immunosuppression in mice by

increasing the number of leukocytes, macrophage phagocytosis,

and T-lymphocyte proliferation capacity.
3.3 Effect of AGR and AGS on splenic
T-lymphocyte subpopulations

As T cell proliferation is required for specific immune

activation, we conducted a phenotypic analysis of the total T cells

and the T cell subsets (Figure 3). The content of CD4+CD8-T cells

and the ratio of CD4+CD8-/CD4-CD8+ were significantly

downregulated in the CTX group compared to the control group.

Compared with the CTX group, the content of CD4+CD8-T cells

and the ratio of CD4+CD8-/CD4-CD8+ in the LHT, AGRL, AGRH,
Frontiers in Immunology 05
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AGS group, the spleen lymphocyte content of CD4+CD8-T cells and

the CD4+CD8-/CD4-CD8+ ratio were significantly higher in the

AGR group, while the content of CD4-CD8+T cells was significantly

lower. The balance of T-lymphocyte subpopulations in mice was

restored by steamed American ginseng.
3.4 Effect of AGR and AGS on serum levels
of immunoglobulins and cytokines

We used ELISA kits to detect the serum levels of

immunoglobulins (IgA, IgG, and IgM) and cytokines (TNF-a,
IFN-g, and IL-2) and examine the effects of American ginseng

aqueous extracts on CTX-induced immunosuppression. Compared

to the control group, the expression of IgA, IgG, IgM, TNF-a, IFN-
g, and IL-2 fractions were decreased in the CTX group (Figures 4A–

F). Compared with the CTX group, the expression of IgA, IgM,

TNF-a, IFN-g, and IL-2 was significantly increased in the LHT

group, the expression of IgA, IgG, IgM, TNF-a, IFN-g, and IL-2 was
significantly increased in the AGR group, and the expression of IgA,

IgG, IgM, TNF-a, IFN-g, and IL-2 was significantly increased in the

AGS group. The steamed American ginseng improved the immune

system of immunocompromised mice by increasing the expression

of immunoglobulins and cytokines.
D

A

B C

FIGURE 1

Effects of AGR and AGS on body weight and immune organ indices in mice. Except for the control group, mice were administered CTX through
intraperitoneal injection for 4 consecutive days since day 26. Mice were euthanized by cervical dislocation on day 31, blood was collected, and the
spleen and thymus were isolated. The spleen and thymus were weighed, and organ indices were calculated. (A) shows the overall therapeutic
procedural design scheme. (B), body weight (N = 8, means ± SEM); (C) immune organ index (N = 8, means ± SEM); (D), spleen histopathology in
mice (scale bar = 200 mm, objective: 10×; scale bar = 50 mm, objective: 40×). All data shown are representative of three independent experiments
with similar results. The statistical significance was analyzed using one-way ANOVA. CTX, cyclophosphamide-induced immunosuppressive group;
LHT, levamisole hydrochloride group; AGRL, American ginseng red low dose group; AGRH, American ginseng red high dose group; AGSL, American
ginseng soft branch low dose group; AGSH, American ginseng soft branch high dose group. ### P < 0.001 vs. Control group, * P < 0.05 vs. CTX
group, ** P < 0.01 vs. CTX group, *** P < 0.001 vs. CTX group, &&& P < 0.001 vs. AGS group.
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3.5 Effect of AGR and AGS on apoptosis

According to Figure 5, the expression of BAX was significantly

increased, while that of Bcl-2 was significantly decreased in the CTX

group compared to the control group, indicating that CTX caused

apoptosis in the spleens of mice. Compared with the CTX group,

the expression of BAX was significantly decreased, while that of Bcl-

2 was significantly increased in the spleens of mice in the AGR and

AGS groups. Compared with AGS, AGR significantly inhibited the

protein expression of BAX and promoted the expression of Bcl-2 in

the spleens of mice. Steamed American ginseng significantly

inhibited apoptosis of splenic cells in mice, and the effect was

better after processing.
3.6 AGR and AGS ameliorate
CTX-induced immune deficiency
by regulating the MAPK pathway

To assess the molecular mechanism by which American ginseng

aqueous extracts mediated the regulation of immune-related
Frontiers in Immunology 06
proteins, we determined the expression of the MAPK signaling

pathway. The MAPK family includes three major subgroups: p-

ERK, p-JNK, and p-P38. Compared to the control group, the

expression of p-JNK, p-ERK, and p-P38 was significantly lower in

the spleens of mice in the CTX group in Figure 6. Compared with

the CTX group, the expression of p-JNK, p-ERK, and p-P38 was

significantly higher in the spleens of mice in the AGR and AGS

groups. Compared with the AGS group, the expression of p-JNK, p-

ERK, and p-P38 was significantly higher in the spleens of mice in

the AGR group. AGR and AGSL could improve the immune

activity of mice by activating the intracellular MAPK signaling

pathway, and the effect was better after steaming.
4 Discussion

Enhancing human immunity to prevent and treat COVID-19

has emerged as a new topic in medicine, and herbal medicines play

a crucial part in COVID-19 prevention and treatment. The

outbreak of COVID-19 poses a severe threat to human health. As

natural immunomodulators, herbs enhance the immune response
D

A B

C

FIGURE 2

Effects of AGR and AGS on ConA-induced splenocyte proliferation, SRBC-induced DTH, carbon clearance capacity, and leukocytes in CTX-induced
immunosuppressive mice. Except for the control group, the mice were administered CTX through intraperitoneal injection for 4 consecutive days
since day 26. (A), carbon clearance capacity (N = 8, means ± SEM). Each mouse received an intravenous injection of 4 times diluted India ink on day
31. At 2 min and 10 min afterward, 20 ml blood was collected from the retinal venous plexuses and mixed with 2 ml of 0.1% Na2CO3 at once. The
absorbance was measured at 600 nm in an ELISA reader. Mice were euthanized by cervical dislocation, and their spleens and livers were removed
and weighed; (B), SRBC-induced DTH (N = 8, means ± SEM). On day 30, 1 h after CTX administration, a certain dose of defibrinated SRBC was
injected intraperitoneally into mice to stimulate the proliferation of T lymphocytes into sensitized lymphocytes. Footpad thickness was measured
using vernier calipers on day 31, and the footpad was attacked with SRBC and measured again 24 h later; (C), ConA-induced splenocyte proliferation
(N = 8, means ± SEM). The animals were euthanized and sterile spleens were gently crushed and lysed of erythrocytes to make spleen cell
suspension. Induction of splenocyte proliferation was achieved using a certain dose of ConA; (D), leukocyte count (N = 8, means ± SEM). Blood was
collected from the ocular venous plexus of the mice, and leukocytes were quantified using a hemocytometer on day 31. All data shown are
representative of three independent experiments with similar results. The statistical significance was analyzed using one-way ANOVA. CTX,
cyclophosphamide-induced immunosuppressive group; LHT, levamisole hydrochloride group; AGRL, American ginseng red low dose group; AGRH,
American ginseng red high dose group; AGSL, American ginseng soft branch low dose group; AGSH, American ginseng soft branch high dose group.
### P < 0.001 vs. Control group, * P < 0.05 vs. CTX group, ** P < 0.01 vs. CTX group, *** P < 0.001 vs. CTX group, NS: no significant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1085456
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1085456
D

A B

E F

C

FIGURE 4

The immunoglobulins and cytokines in CTX-induced immunosuppressive mice. Except for the control group, the mice were administered CTX
through intraperitoneal injection for 4 consecutive days since day 26. Blood samples were collected from the ophthalmic vein plexus of mice on day
31 and centrifuged at 4°C for 10 min, and the serum was stored at -80°C. The contents of various cytokines and immunoglobulins were determined
according to the instructions of the ELISA kit (N = 8, means ± SEM). (A), IgA; (B), IgG; (C), IgM; (D), TNF-a; (E), IFN-g; (F), IL-2. All data shown are
representative of three independent experiments with similar results. The statistical significance was analyzed using one-way ANOVA. CTX,
cyclophosphamide-induced immunosuppressive group; LHT, levamisole hydrochloride group; AGRL, American ginseng red low dose group; AGRH,
American ginseng red high dose group; AGSL, American ginseng soft branch low dose group; AGSH, American ginseng soft branch high dose group.
# P < 0.05 vs. Control group, ## P < 0.01 vs. Control group, ### P < 0.001 vs. Control group, * P < 0.05 vs. CTX group, ** P < 0.01 vs. CTX group, ***
P < 0.001 vs. CTX group, & P < 0.05 vs. AGS group, && P < 0.01 vs. AGS group, &&& P < 0.001 vs. AGS group, NS: no significant difference.
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FIGURE 3

Effects of AGR and AGS on the proportion of splenic CD4 or CD8T cells. Except for the control group, the mice were administered CTX through
intraperitoneal injection for 4 consecutive days since day 26. Then, the animals were euthanized and sterile spleens were gently crushed and lysed
of erythrocytes to make spleen cell suspension. Splenocyte surface markers were labeled with fluorescein isothiocyanate (FITC)-coupled anti-mouse
CD4, APC-coupled anti-mouse CD8a, and PerCP-Cy5-coupled anti-mouse CD3. The cells were maintained at room temperature for some time
under natural light and analyzed using FACSCalibur and CellQuest software. (A), flow cytometry; (B), the proportion of splenic CD4+CD8- T cells (N
= 4-5, means ± SEM); (C), the proportion of splenic CD4-CD8+ T cells (N = 8, means ± SEM); (D), the ratio of splenic CD4/CD8 T cells (N = 8,
means ± SEM). All data shown are representative of three independent experiments with similar results. The statistical significance was analyzed
using one-way ANOVA. CTX, cyclophosphamide-induced immunosuppressive group; LHT, levamisole hydrochloride group; AGRL, American ginseng
red low dose group; AGRH, American ginseng red high dose group; AGSL, American ginseng soft branch low dose group; AGSH, American ginseng
soft branch high dose group. # P < 0.05 vs. Control group, ### P < 0.001 vs. Control group, * P < 0.05 vs. CTX group, ** P < 0.01 vs. CTX group, ***
P < 0.001 vs. CTX group, & P < 0.05 vs. AGR group, && P < 0.01 vs. AGS group, &&& P < 0.001 vs. AGS group, NS: no significant difference.
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to pathogens by activating immunoreactive cells (33). Under

immune deficiency or overactivity, herbs can also enhance or

suppress the immune response and restore the immune system to

a healthy state (34). Natural immune reactions of plant origin are

more stable with fewer side effects than chemically synthesized

immunomodulators (35, 36), and more safe and effective natural

immunomodulators should be developed to enhance the immunity

against harmful chronic diseases, such as stress, obesity, ischemia,

tuberculosis, diabetes, autoimmune diseases, and COVID-19 (37).

American ginseng has received much attention in natural

immunomodulator development because of its unique biological

properties, such as antihypertensive (38), antioxidant (39),

antitumor (40), antidiabetic, and cardiovascular disease

prevention (41). Numerous American ginseng extracts have

shown notable immune-enhancing properties (11, 42–44). To

demonstrate the immunomodulatory activity of American

ginseng, Yu et al. (45) extracted alkali-extractable polysaccharide

from an aqueous extract of American ginseng, which significantly

increased the expression of NO, TNF-a, and IL-6 in macrophages.

Wang et al. (46) prepared North American ginseng extracts (CVT-

E002), which increased the splenic B cells and the expression of

serum immunoglobulin. The most popular animal model in the

research concerning the stimulatory and regulatory effects of

bioactive substances on the immune system is CTX-induced

immunosuppression in male BALB/c mice (47, 48). In this study,

LHT was used as a positive control (49, 50), and male BALB/c

mice with CTX-induced immunosuppression served as an animal
Frontiers in Immunology 08
model to investigate the regulatory potential of AGR and

AGS on CTX-induced immunosuppression in male BALB/c

mice and evaluate whether steam-processing increased the

immunomodulatory activity.

Immune tissues, immune organs, immunological cells, and

immune active chemicals consist of the immune system. In some

cases, the spleen and thymus are crucial immunological organs

controlling the immune responses in the body, and the spleen and

thymus indices can directly reflect non-specific immune activity

(51). First, LHT, AGR, and AGS can significantly reverse the body

weight loss and immune organ index declines induced by CTX.

Additionally, the splenic vesicles were improved, suggesting that

LHT and American ginseng can repair the spleen tissue damage

induced by CTX. Furthermore, body weight and immune organ

indices were significantly increased. Lymphocytes are considered a

crucial defense against invasive infections (52), and T lymphocyte

proliferation is a crucial cellular immunity index (53). B cells

produce antibodies and increase the capacity of cellular immune

response with the assistance of T helper cells (Th). Activated Th

cells generate cytokines that control the activity of T cells, B cells,

monocytes, macrophages, and other immune cells. Th cells can be

divided into three groups based on cytokine differences: Th1, Th2,

and Th0. Th0 lymphocytes primarily produce IL-2 but can secrete

cytokines with Th1 and Th2 properties. In addition to secreting

IFN-g, IL-2, and TNF-a, Th1 activates T cells and monocytes,

promotes T cell-mediated cellular immunity, and stimulates B cell

IgM and IgG synthesis (54, 55). Th2 secretes IL-2 and TNF-a,
A

B C

FIGURE 5

The protein expression of BAX and Bcl-2 in the spleen (N = 8, means ± SEM). (A), images of the bands from the Western blotting; (B), the expression
of BAX/GAPDH; (C), the expression of Bcl-2/GAPDH. The loading control was GAPDH. All data shown are representative of three independent
experiments with similar results. The statistical significance was analyzed using one-way ANOVA. CTX, cyclophosphamide-induced
immunosuppressive group; LHT, levamisole hydrochloride group; AGRL, American ginseng red low dose group; AGRH, American ginseng red high
dose group; AGSL, American ginseng soft branch low dose group; AGSH, American ginseng soft branch high dose group. ## P < 0.01 vs. Control
group, ### P < 0.001 vs. Control group, *** P < 0.01 vs. CTX group, & P < 0.05 vs. AGS group, && P < 0.01 vs. AGS group, &&& P < 0.001 vs. AGS
group, NS: no significant difference.
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triggers IgG and IgM conversion on B cells, and controls humoral

immunity (56). It works to trigger allergic immune reactions when

IFN-g is relatively absent.

Cytokines and immunoglobulins are vital to immunity (57, 58).

Cytokines are low molecular weight soluble proteins with extensive

biological activities secreted by immune cells and some non-

immune cells, such as chemokines, oncogenes, and growth factors

(59). These play various roles in immunity, including intrinsic and

adaptive immunity regulation, cell growth and proliferation, and

damaged tissue repair. Produced by various cells, including immune

cells, endothelial cells, and mast cells, TNF-a directly kills or

induces apoptosis of target cells. During active innate immunity,

immune cells rapidly produce TNF (60). IFN-g is primarily

produced by NK and Th1 cells, which stimulates macrophage

phagocytic activity, mediates cellular immune function, promotes

Th1 cell differentiation and proliferation, encourages IgG

production, and activates complement (61), constituting a

component of innate and antigen-specific immunities (62, 63).

IL-2 plays a central role in the maturation and development of

lymphocytes and monocytes as a T-cell growth factor (64). IgA is

the most important antibody for mucosal immunity, IgG is the

most common antibody subtype found in serum, and IgM is the

largest antibody subtype in terms of molecular weight (65). CTX

negatively affects monocytes and macrophages, decreases the

proliferation rate of T lymphocytes, and reduces the ratio of

CD4+CD8-/CD4-CD8+. CTX also inhibits the serum levels of
Frontiers in Immunology 09
TNF-a, IL-2, IFN-g, IgA, IgM, and IgG in mice (66–68). The

number of CD4+CD8-T cells and the proliferation rate of T

lymphocytes in the mice spleen were significantly increased in the

AGRH group, whereas the AGRL and AGS groups only showed

significantly increased proliferation rate of T lymphocytes, without

significantly regulated T lymphocyte subsets. LHT, AGR, and AGS

groups showed significantly increased expression of IL-2, IFN-g,
TNF-a, IgA, IgG, and IgM. Moreover, AGR greatly improved the

expression of IgA, TNF-a, and IFN-g compared to AGS. Thus, AGR

had improved immunomodulatory effects on mice with CTX-

induced immunosuppression by significantly increasing the

expression of cytokines and immunoglobulins.

The Bcl-2 family is essential in controlling the mitochondrial

apoptotic pathway (69). Bcl-2 is a key anti-apoptotic protein (70),

and BAX is a key pro-apoptotic protein (71). MAPK is a class of

serine/threonine protein kinases highly conserved in eukaryotic

species, serving as central signaling elements regulating cell

proliferation, differentiation, and stress responses (72–74). They

are also known as classical pathways that regulate immune

responses (75). MAPK is linked to T cell development and

function, such as ERK required for T cell proliferation and CD4

T cell polarization. ERK and JNK are also important upstream

regulators of IL-2 transcription, and the decrease in the expression

of IL-2 production may be due to the decreased expression of ERK

and JNK (76–80). Additionally, the activation of ERK, JNK, and P38

is necessary for CD8T cells to respond in a cytotoxic manner (81).
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FIGURE 6

The protein expression of the MAPK signaling pathway in the spleen (N = 8, means ± SEM). (A), images of the bands from the Western blotting; (B),
the relative expression of p-ERK/ERK; (C), the relative expression of p-JNK/JNK; (D), the relative expression of p-P38/P38. The load control was
GAPDH. All data shown are representative of three independent experiments with similar results. The statistical significance was analyzed using one-
way ANOVA. CTX, cyclophosphamide-induced immunosuppressive group; LHT, levamisole hydrochloride group; AGRL, American ginseng red low
dose group; AGRH, American ginseng red high dose group; AGSL, American ginseng soft branch low dose group; AGSH, American ginseng soft
branch high dose group. ### P < 0.001 vs. Control group, *** P < 0.001 vs. CTX group, &&& P < 0.001 vs. AGS group.
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P38MAPK can increase the stability and translation of cytokine

mRNA, which can increase cytokine levels. P38 is also a crucial

regulator of the IFN produced by CD4 and CD8 T cells (82, 83).

CTX promotes the expression of Bax, suppresses the expression of

Bcl-2 (84, 85), and inhibits the phosphorylation of the MAPK

pathway (86). In this study, LHT, AGR, and AGS significantly

reduced the expression of BAX, increased the expression of Bcl-2,

and activated the expression of p-JNK, p-ERK, and p-P38 proteins

compared to the CTX group. The findings demonstrated that

steaming significantly increased the immunomodulatory effect of

American ginseng in reducing CTX-induced immunosuppression

in mice.

Red ginseng is a popular processed form, whereas steamed

American ginseng is increasingly common. Homologous herbs of

American ginseng, including Asian ginseng, have likewise been

demonstrated to actively and passively improve immunity (30, 87).

Compared to white ginseng, ginseng steamed at high temperatures

has a different chemical composition and much more free radical

scavenging action (88). Heat-processed ginseng significantly

increased cytokine expression and activated MAPK and NF-kB
pathways in RAW264.7 cells compared to white ginseng (89). Saba

et al. investigated the antioxidant and immunostimulatory activities

of red ginseng, black ginseng, and fermented red ginseng using an

acetaminophen-induced oxidative stress model and a

cyclophosphamide-induced immunosuppression model,

concluding that red ginseng had strong antioxidant and

immunostimulatory activities compared to black ginseng and

fermented red ginseng (90). The pharmacological action of herbs

is affected by the processing methods. Steaming of botanicals

provides new techniques to boost immunity and cure immune-

related disorders.
5 Conclusion

This study investigated the effects of steaming on American

ginseng’s immunomodulatory properties. The results showed that

AGR and AGS could relieve CTX-induced immunosuppression by

enhancing immune organ indices, improving cell-mediated

immune response, increasing serum cytokine and immunoglobulin

levels, and promoting macrophage activities such as carbon

clearance and phagocytic index. Compared to AGS, AGR

significantly improved the number of CD4 T cells, the spleen

indices, and the levels of IgA, IgG, TNF-a, and IFN-g in serum,

markedly increasing the expression of the ERK/MAPK pathway.
Frontiers in Immunology 10
AGR may be an effective immunomodulatory agent capable of

preventing immune system hypofunction. Future research may

investigate the exact mechanism to rule out any unforeseen effects

of AGR and AGS.
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