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Macrophages have a wide variety of roles in physiological and pathological

conditions, making them promising diagnostic and therapeutic targets in

diseases, especially metabolic disorders, which have attracted considerable

attention in recent years. Owing to their heterogeneity and polarization, the

phenotypes and functions of macrophages related to metabolic disorders are

diverse and complicated. In the past three decades, the rapid progress of

macrophage research has benefited from the emergence of specific molecular

markers to delineate different phenotypes of macrophages and elucidate their role

in metabolic disorders. In this review, we analyze the functions and applications of

commonly used and novel markers of macrophages related to metabolic

disorders, facilitating the better use of these macrophage markers in metabolic

disorder research.
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1 Introduction

In the last three decades, rapidly evolving technology has greatly expanded and deepened

our understanding of the characteristics of macrophages. (a) Macrophages are professional

phagocytes present in virtually every tissue under homeostatic physiological conditions (1).

(b) Macrophages not only have important immunomodulatory functions, initiating the

innate response and inflammation, but also maintain tissue homeostasis and repair (2). (c)

The characteristics of macrophages are heterogeneity and plasticity, and they can be

phenotypically polarized by surrounding micro-environmental stimuli (2, 3). (d)

Macrophages have three distinct precursors: yolk sac (YS) macrophages, fetal liver (FL)

monocytes, and bone-marrow-derived monocytes, which can be divided into two groups:
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tissue-resident macrophages (originating from YS and FL) and

monocyte-derived macrophages (derived from bone marrow-

derived monocytes) (4–6).

To study macrophage heterogeneity and plasticity, the M1/M2

dichotomy has been developed for 20 years, which offers a useful

framework (7). (a) M1 macrophages play a proinflammatory role by

upregulating inducible nitric oxide synthase (iNOS) to produce reactive

oxygen species (ROS) and reactive nitrogen species (RNS) for activating

glycolysis, fatty acid synthesis (FAS), and the pentose phosphate

pathway (PPP); the M1 phenotype also suppresses the tricarboxylic

acid (TCA) cycle and mitochondrial oxidative phosphorylation

(OXPHOS), which promote the inflammatory response and

phagocytosis. (b) M2 macrophages play an anti-inflammatory role by

upregulating arginase-1 (Arg-1) to produce ornithine and urea to

enhance OXPHOS, FAS, and glutamine metabolism; they also

suppress PPP, thereby promoting the anti-inflammatory response and

tissue repair (8, 9). However, the M1/M2 dichotomy is too simple to

explain complex macrophages with various phenotypes and activation

statuses in different tissues (10). Recently, cytometry and single-cell

RNA sequencing have facilitated the development of macrophage

marker biology. Consequently, identifying phenotypes using markers

and exploring their relationship with macrophage metabolism are key

points in the study of macrophages.

Metabolic diseases are noncommunicable diseases characterized

by disorders of blood pressure, glucose, and lipid levels, including

obesity, diabetes, hypertension, and neurodegenerative diseases (11,

12). Macrophages are important for the maintenance of homeostasis

and play a profound role in the pathological state of metabolic

diseases (13). (a) Obesity and diabetes: unique metabolic activation

of adipose tissue macrophages (ATMs) in obesity and diabetes

increases OXPHOS and glycolysis, which may be therapeutic

targets to alleviate inflammation and insulin resistance (14). (b)

Neurological disorders: microglia stimulated by pathological signals

reprogram their metabolic pathways, such as increasing glycolysis,

iron accumulation, and decreasing mitochondrial respiration, to
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influence neuronal functionality and survival in the brain to

regulate neurological disorders (15, 16). (c) Cardiometabolic

disorders: dysregulation of polarization between proinflammatory

macrophages (PIMs) and anti-inflammatory macrophages (AIMs)

promotes excessive inflammation and cardiac injury, resulting in

cardiometabolic diseases; therefore, exploring cardiac macrophages

in polarization mechanisms and their interaction with other cardiac

cells is vital for future research (17).

The identification of macrophages in metabolic diseases is

beneficial for the development of macrophage marker biology. In

this review, we selected classical pan-markers of macrophages (F4/80

and CD68), conventional markers of macrophages in inflammatory

states (iNOS and Arg-1), markers of macrophages in different tissues

(C-X3-C motif chemokine receptor 1 (CX3CR1), CC chemokine

receptor 2 (CCR2), lymphatic vessel hyaluronan receptor1 (Lyve1),

and major histocompatibility complex class II (MHCII)), and novel

markers emerging in recent years (CD9 and triggering receptor

expressed on myeloid cells 2 (TREM2)), expanding on their

structure and location (Figure 1), biological function (Table 1), and

application in research.
2 Macrophage markers in
metabolic diseases

2.1 Diabetes and obesity

Obesity-induced adipose tissue hypoxia promotes macrophage

switching into PIMs with overexpression of iNOS (39–41). Cluster of

Differentiation 9 (CD9) and TREM2 are two macrophage markers in

the white adipose tissue of obese patients. Human adipocyte-related

macrophages are labeled with Cluster of Differentiation 68 (CD68)

and CD9 (42–44). The pan-marker CD68, proinflammatory marker

iNOS, and novel markers TREM2 and CD9 are widely used markers

in macrophages that are strongly associated with obesity and diabetes.
FIGURE 1

Schematic molecular structure and location of classical and novel markers of the macrophages. These markers of macrophages can be roughly divided
into two categories by their location: cell surface markers and intracellular markers. F4/80, CCR2, CD169, CX3CR1, CD206, CD163, Lyve1, CD9, TREM2,
and MHCII are macrophage markers located on the cell membrane. Moreover, CD68, iNOS, Arg-1, and Gal-3 are macrophage markers located inside the
cell. All schematics of markers are based on their two-dimensional molecular structure.
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2.1.1 CD68
CD68, also known as macrosialin, is a highly glycosylated

transmembrane protein that is deemed a member of the scavenger

receptor family because of its significant role in binding oxidized low-

density lipoprotein (ox-LDL) on the macrophage cell surface (45).

CD68 is strongly expressed by the mononuclear phagocyte

system, including macrophages, resulting in its use as a pan-

macrophage marker (4, 46). CD68 is regarded as a marker of

ATMs and has been shown to be the strongest predictor of insulin-

resistant obesity (47). CD68+ ATMs in obese mice increased

and presented a proinflammatory phenotype, which produced

inflammatory cytokines, regulated glycolysis, and cleared lipids

and dead adipocytes (48, 49). Similarly, CD68+ pancreatic

islet macrophages (PLMs) are increased in diabetic patients,

and their accumulation is associated with the pathogenesis of

type 2 diabetes mellitus (T2DM) in humans, such as amyloid

deposition (50, 51). CD68+ PLMs promote the compensatory

proliferation of b cells and reduce glucose-stimulated insulin

secretion (50, 52). In summary, CD68 is a commonly used pan-

marker of tissue macrophages related to glucolipid metabolic disorder

diseases, especially ATM- and PLM-mediated uptake of

modified lipoproteins.
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2.1.2 iNOS
iNOS is widely used as a marker of PIMs because PIMs have a 30-

fold higher expression of iNOS than AIMs (53). NO produced by

iNOS has a significant effect on the glucolipid metabolic response.

First, iNOS-derived NO in activated resident macrophages could

destroy the antilipolytic effect of insulin in adipocytes, resulting in

accelerated triglyceride lipolysis in adipose tissue. Second, iNOS

participates in the metabolic reprogramming of immune cells to

promote aerobic glycolysis in PIMs to strengthen the inflammatory

response (54).

The metabolism of arginine is important in regulating

macrophage polarization between pro- and anti-inflammatory

subtypes because arginine is a substrate of iNOS in PIMs; in

contrast, Arg-1 triggers the anti-inflammatory macrophage

phenotype, competing with iNOS for arginine (55). Therefore, the

future task of macrophage polarization research is to dissect the

relationship between pro- and anti-inflammatory phenotypes and

metabolism with respect to iNOS-derived NO.

Previously, the number of PLMs in T2DM patients with islet

amyloid deposition expressing CD68 and iNOS increased, which was

associated with lesion progression (56). Recent studies have shown

that the downregulation of proinflammatory iNOS expression in
TABLE 1 A list of classical and novel markers of the macrophages.

Name Species Functions Expressions Markers of macrophages References

F4/80 Mouse Adhesion, signaling (releasing cytokine and inducing CD8+ T cells) Mononuclear
phagocyte system

Macrophages (18, 19)

MHCII
(HLA)

Human Antigen presentation, mediating apoptosis Antigen-
presenting cells
(APCs)

Macrophages (M1, M2a, M2b) (20, 21)

Arg-1 Human/
mouse

Detoxification of ammonia in urea, wound healing, and
neuroprotection

Immune cells M2 macrophages (M2a, M2c) (22, 23)

CCR2 Human/
mouse

Mobilizing monocytes Monocyte,
macrophage

Monocyte-derived macrophage,
cardiac macrophage after MI

(24, 25)

CD163 Human/
mouse

Endocytosis of Hp-Hb, regulating erythropoiesis Monocyte/
macrophage
lineage

Mature tissue macrophages, M2a
and M2c macrophages

(26, 27)

CD169 Human/
mouse

Interaction with sialoglycoconjugates, modulator of immune
response

Macrophage Macrophages in secondary
lymphoid tissues

(28, 29)

CD206 Human/
mouse

Binding sugar ligands, scavenging inflammatory proteins DCs, macrophages M2 macrophage (M2a, M2c) (30, 31)

CD68 Human/
mouse

Binding ox-LDL Mononuclear
phagocyte system

Macrophages (32)

CD9 Human/
mouse

Various physiological cellular processes Various cells Anti-inflammatory macrophages (33)

CX3CR1 Human/
mouse

Migration of immune cells, cytokine synthesis, cellular signaling
processes, proliferation, and neuronal survival

Mononuclear
phagocyte system

Tissue-resident macrophage,
intestinal macrophage, microglia

(34)

Gal-3 Human/
mouse

Diverse functions Various cells M2 macrophages (35)

iNOS Human/
mouse

Regulating inflammation and immune response Immune cells M1 macrophages (36)

Lyve1 Human/
mouse

Binding and regulating hyaluronic acid, mediating leukocytes,
lymphatic endothelial proliferation

Vasculature Macrophages in vasculature (37)

TREM2 Human/
mouse

Cell activation, phagocytosis, regulation of inflammation Myeloid lineage
cells

M2 macrophages (38)
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macrophages is positively associated with improved glucose

intolerance and insulin resistance after treatment (57, 58).

Therefore, iNOS+ PIMs in obese and T2DM patients have a potent

phagocytosing capacity through NO production; thus, inhibiting their

formation may be a useful treatment strategy.

2.1.3 CD9
CD9, also called human lymphohematopoietic progenitor cell

surface antigen P24, was first identified by Kersey when combining

monoclonal antibodies with acute lymphoblastic leukemia cells (59).

CD9 has multiple biological functions that are involved in many vital

physiological and pathological processes, such as neuroectodermal

growth, myotubular formatting, and the incidence and transfer of

tumors (60).

CD9 can restrict the activation of macrophages in inflammatory

responses, so it is recognized as a marker for anti-inflammatory

monocytes and macrophages (61, 62). However, recent studies on

metabolic disorders have suggested that CD9 and TREM2 are

markers of lipid-associated macrophages (LAMs) that produce

proinflammatory cytokines in humans (43). In white adipose tissue,

CD9+TREM2+ macrophages correlated with the severity of

inflammation and influenced obesity pathology (42). In the aging

brain, CD9+TREM2+ macrophages containing lipid droplets may play

a pathogenic role in neurodegenerative diseases (63). Taken together,

CD9 is involved in the macrophage response to lipids, and infiltrating

CD9+ LAMs exacerbate metabolic diseases.

2.1.4 TREM2

TREM2 is a lipid-sensing extracellular receptor expressed by the

myeloid lineage (64, 65). TREM2 has been implicated in various

biological processes, including maturation, activation, survival of

cells, and regulation of inflammatory responses (65). TREM2

facilitates phagocytosis and transcription of anti-inflammatory

cytokines to inhibit the production of inflammatory cytokines (66).

TREM2 was first found to be expressed on the surface of

monocyte-derived dendritic cells (DCs) in humans, and it is

expressed on the myeloid lineage, including macrophages (65, 67).

It is expressed by a small subset of physiological tissue macrophages,

such as microglia and ATMs (68). TREM2+ macrophages are good at

lipolysis and are enriched in atherosclerotic lesions (69).

TREM2 expressed by macrophages inhibits the development of

metabolic disorders by facilitating cell death of prone adipocytes

(43). Overall, TREM2 participates in the transmission of an

inhibitory signal that reduces the inflammatory response, and

TREM2+ macrophages are associated with lipid metabolism by

suppressing lipid peroxidation and ROS to prevent systemic

metabolic dysregulation.
2.2 Neurological disorders

Metabolic disorders trigger gut microbiota dysbiosis and low-

grade systemic inflammation, leading to blood–brain barrier (BBB)

dysfunction. All circulating immune cells and molecules infiltrate the

brain because of increased BBB permeability, resulting in

neuroinflammation and amyloid imbalance (70–72). The innate
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immune cells involved in this process are mainly microglia, whose

classical markers are F4/80 and CX3CR1 (73–75). Recent studies have

shown that M2 macrophages provide neuroprotective and

regenerative effects, the targeting of which might be promising for

treating chronic neurological diseases (76). In conclusion, F4/80 and

CX3CR1-expressing macrophages play important regulatory roles in

neuroinflammation, which polarizes to the Arg1+ M2 phenotype,

contributing to the treatment of neurological disorders.

2.2.1 F4/80
F4/80 has been extensively used in the identification and study of

murine macrophages under physiological and pathological conditions

since 1981, and it has greatly boosted research on macrophages (77).

Extracellular epithelial growth factor (EGF) module containing

mucin-like hormone receptor 1 (EMR1), the homology of F4/80 in

humans, is a glycoprotein with an EGF-like domain and a seven-

transmembrane motif (TM7) (78, 79). Although human EMR1 and

murine F4/80 share a similar structure, EMR1 is not expressed in

human macrophages but is highly expressed in eosinophils, whereas

F4/80 is a well-known marker of mouse macrophages and microglia

(18, 80).

F4/80 is restricted to murine macrophages in almost all tissues,

including the liver, splenic red pulp, adrenal glands, and central

nervous system; it may also be implicated in the generation of efferent

CD8+ Treg cells required for inducing peripheral immune tolerance

(18, 19). Nevertheless, it was later proven that apart from

macrophages, F4/80 is also expressed in other myeloid cells, such as

DCs (81, 82). This evidence indicates that cell specificity and

limitations of F4/80 expression should be considered when labeling

macrophages and microglia with F4/80.
2.2.2 CX3CR1
CX3CR1 is a receptor for C-X3-C motif chemokine ligand 1

(CX3CL1) (83). CX3CL1-CX3CR1 has been shown to be a novel

regulator of leukocyte transportation with adhesive and chemotactic

functions; it is also a connecting bridge between neuronal cells and

microglia (84). The CX3CL1-CX3CR1 axis in microglia internalizes

and degrades amyloid-b deposits and Tau aggregates, which influence

the development of Alzheimer’s disease (AD) (85). Hence, regulating

CX3CL1 to bind microglia-expressing CX3CR1 may be a possible

therapy for disease progression in the central nervous system.

CX3CR1 is widely expressed by various cells belonging to the

macrophage lineage and is involved in macrophage development. For

example, in the central nervous system, CX3CR1 is predominantly

expressed by microglia and neurons and is engaged in activated

microglia recruitment to inflammatory sites following ischemia

(86). In recent years, it has served as a marker for intestinal

macrophages, microglia, and patrolling monocytes (34). For

instance, activated microglia were shown to have high CX3CR1

and/or MHCII expression (87). CX3CR1 can serve as a marker of

tissue-resident macrophages that migrate from monocytes, especially

in the brain and intestine, as well as in pathological conditions that

promote inflammatory macrophages. CX3CR1+ microglia perform

different activations to change mitochondrial dynamics and switch

between OXPHOS and glycolysis, which directly affects

neurological disorders.
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2.2.3 Arg-1
Arg-1 is a member of the ureohydrolase family of enzymes that

catalyze the hydrolysis of L-arginine to urea and L-ornithine (88). The

physiological functions of Arg-1 in healthy conditions include

detoxification of ammonia in urea, neuroprotection, and wound

healing (88, 89).

Arg-1 is a well-known marker of M2 macrophages with anti-

inflammatory properties that maintain tissue homeostasis and resolve

inflammation (90). A recent study has shown that promoting the

polarization of microglia toward the Arg-1+ M2 phenotype to

enhance Ab-induced neurite atrophy and neuronal regeneration

might be a therapeutic approach in the treatment of AD (91). Arg-

1+ microglia are mainly involved in neuroprotection, and it is

necessary to develop new potential drugs for neurodegenerative

diseases that modulate M2 microglial polarization.
2.3 Cardiometabolic disorders

Metabolic disorders are major risk factors for cardiovascular

disease (CVD), and metabolic syndrome increases the risk of CVD

twofold (92, 93). Cardiac macrophages are identified by MHCII and

CCR2, which are involved in maintaining homeostasis, immune

survei l lance, angiogenesis , injury repair , and assist ing

atrioventricular conduction (94). Recent studies have used Lyve1

and MHCII to label macrophages near blood vessels, which are

involved in suppressing inflammation and fibrosis (95). Taken

together, CCR2, MHCII, and Lyve1 are commonly used markers of

macrophages in the cardiac system.

2.3.1 CCR2
The CCR2 is a chemokine receptor, also known as the CCL2

receptor, of the monocyte chemotactic protein (MCP) family, which

has a high affinity for binding (96). CCR2 engages in monocyte

extravasation, adherence, and migration into inflammatory tissues,

where they differentiate into macrophages (97). CCR2, antagonized

by pharmacological action, can upregulate insulin sensitivity to cure

obesity in mice (98). Hence, future studies on the pharmacological

inhibition of CCR2 may offer guidance for therapeutic approaches in

inflammatory diseases.

CCR2 has been used to label tissue macrophages originating from

monocytes (99). It controls the migration of monocytes and

macrophages, which play a vital role in various diseases, especially

cardiometabolic disease (100). There are two distinct subsets of

cardiac macrophages divided by CCR2 expression of different

origins: YS-derived CCR2 macrophages and monocyte-derived

CCR2+ macrophages (24). Over time, CCR2− macrophages are

progressively replaced by CCR2+ macrophages via circulation,

which presents an anti-inflammatory phenotype and plays a

cardioprotective role (24). Tissue-resident CCR2+ macrophages are

vital regulators of monocyte movement, inflammation, cardiac

pacemaking, and electrical propagation (101). Recent studies have

expounded that the inhibition of CCR2 affects the polarization of

macrophages, and the inhibition of CCL2 binding to CCR2

upregulates the expression of proinflammatory genes (102, 103).

Thus, the expression and functional regulation of CCR2 in
Frontiers in Immunology 05
macrophages to affect inflammatory diseases need to be

further investigated.

2.3.2 MHCII
MHCII is a glycoprotein involved in the generation of immune

responses. Its main function is to present peptide fragments

from antigens to T cells to initiate an immune response (104).

Moreover, MHCII also activates intracellular signaling pathways as a

signaling receptor, which leads to the apoptosis of antigen-presenting

cells (APCs), resulting in the termination of immune responses (105).

MHCII is expressed by innate immune cells, particularly APCs

such as the monocyte-macrophage lineage (106). Macrophages

expressing MHCII are activated by various inflammatory agents.

IFN-g activates macrophages to PIMs by upregulating the

expression of MHCII and CD86 (20, 107). M2a macrophages

induced by IL-4 are associated with increased expression of MHCII

(21). IL-4 and IFN-g both enhance MHCII expression in

macrophages while also affecting macrophage polarization into

different subtypes. Therefore, MHCII can be used as a pro- and

anti-inflammatory marker for macrophages.

Recent studies have utilized the expression of MHCII to classify

different functional macrophage subsets in metabolic diseases. In

murine atherosclerosis, macrophages are subclassified into at least five

subsets based on MHCII and CCR2 expression (108). In the murine

heart, MHCIIhi macrophages are most prevalent under physiological

conditions, while MHCIIlow macrophages become the major

macrophages at the early stage of myocardial infarction because

MHCII expression on macrophages is transiently modulated by

ischemia-reperfusion injury (109). In conclusion, macrophages with

high MHCII expression play key roles in innate and adaptive immune

responses and can polarize into different subtypes, thereby regulating

inflammation to treat metabolic diseases by antigen presentation and

inducing apoptosis.

2.3.3 Lyve1
Lyve1 is a receptor of the extracellular matrix glycosaminoglycan

hyaluronan located in the lymphatic endothelium (110). Lyve1

mediates the docking and transit of leukocytes, including

macrophages, to influence inflammation and regulate the

movement of hyaluronan, which enters peripheral lymphatics for

immune activation (111–113).

Chakarov (95) demonstrated that monocyte-derived tissue

macrophages could be separated into two subsets: Lyve1lowMHCIIhigh

subsets adjacent to nerve bundles and fibers and Lyve1highMHCIIlow

subsets near blood vessels—the latter of which played a role in

inflammation influencing lung and heart fibrosis. Lim et al. (114)

proved that Lyve1 expressed on perivascular macrophages interacts

with hyaluronan on smooth muscle cells to protect against arterial

stiffness. In conclusion, Lyve1 is mainly restricted to lymphatic

endothelia and is also expressed in the liver, spleen, and lungs (111,

115, 116). Furthermore, it is expressed in a rare anti-inflammatory

macrophage subset with a potent endothelial progenitor appearing in

inflammatory and tumor sites (116–118). Lyve1+ macrophages interact

with hyaluronan, influencing endothelial junctional retraction and

proliferation. Future research should investigate the relationship

between macrophages in the lymphatic and vascular systems and Lyve1.
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3 Macrophages in metabolic tissues

Since these markers are expressed but not restricted to certain

tissues, macrophages identified by these markers distribute in

virtually all tissues related to metabolic disorders. For instance,

TREM2+ macrophages resided in different tissues during obesity,

including adipose tissue and liver, with different phenotypes, such as

LAMs, non-alcoholic steatohepatitis-associated macrophages, and

scar-associated macrophages (119). Identifying various macrophage

phenotypes requires the combination of multiple markers, which

helps to visualize macrophage heterogeneity and plasticity in affecting

the metabolic microenvironment of tissues. For example, glucose

uptake and utilization are upregulated in cardiac macrophages

(classified by TIMD4, Lyve1, MHCII, and CCR2), and free fatty

acids promote dysregulation of polarization, resulting in excessive

inflammation, activation of myofibroblast, and apoptosis of

cardiomyocytes during the metabolic disorders (120, 121). This

evidence proves macrophages identified by various markers in

metabolic tissues may be therapeutic targets to alleviate

inflammation and insulin resistance.
4 Conclusion

Macrophages are critical immune cells located in various

tissues and are polarized to various phenotypes depending on the

tissue microenvironment. Macrophage polarization influences

metabolism by regulating inflammation in metabolic diseases.

F4/80 is a pan-marker of mouse macrophages and microglia,

whereas CD68 is a pan-marker of human and mouse macrophages.

iNOS has been identified as a proinflammatory marker, Arg-1 and

CD9 are anti-inflammatory markers, and MHCII is a marker of

both states. CD9 and TREM2 are novel markers that are associated

with glucose and lipid metabolism, respectively. CX3CR1 is expressed

on microglia, Lyve1 on macrophages of the vasculature, and CCR2

and MHCII on cardiac macrophages. Applying a combination of

origin, recruitment dynamics, physiological and pathological
Frontiers in Immunology 06
functions, and marker expression to defined macrophage

phenotypes may be a new approach to investigating macrophages

in metabolic disorders.
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