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Diabetic kidney disease (DKD) is the most common cause of end-stage renal

disease and has gradually become a public health problem worldwide. DKD is

increasingly recognized as a comprehensive inflammatory disease that is largely

regulated by T cells. Given the pivotal role of T cells and T cells-producing

cytokines in DKD, we summarized recent advances concerning T cells in the

progression of type 2 diabetic nephropathy and provided a novel perspective of

immune-related factors in diabetes. Specific emphasis is placed on the

classification of T cells, process of T cell recruitment, function of T cells in the

development of diabetic kidney damage, and potential treatments and therapeutic

strategies involving T cells.
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Abbreviations: DKD, Diabetic kidney disease; MHC, Major histocompatibility complex; MAIT, Mucosal-

associated invariant T cells; NKT, Natural killer T cells; Trm, Tissue-resident memory T-cells; TFH, T follicular

helper cells; IFN-g, Interferon-g; TNF-a, Tumor necrosis factor-a; STAT, Signal transducer and activator of

transcription; TIM3, Immunoglobulin domain and mucin domain 3; Treg, Regulatory T cell; FasL, NF-a/Fas

ligand; S1PR1, Sphingosine 1-phosphate receptor 1; HbAlc, Glycated hemoglobin; CXCL, C-X-C motif

chemokine ligand; CXCR, C-X-C motif chemokine receptor; CCL2, Chemokine ligand 2; CCR, Receptor C-

C chemokine receptor; AGE, Advanced glycosylation end; TIM-1, T-cell immunoglobulin and mucin-

containing molecule-1; KIM-1, kidney injury molecule-1; tolAPCs, Tolerogenic antigen presenting cells;

IDDM, Insulin-dependent diabetic; TP, Triptolide; TCR, T-cell-specific antibody anti-T-cell receptor; GRK2,

G protein coupled receptor kinase 2; DT, Diabetea teame.
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1 Introduction

Diabetic kidney disease (DKD) is a highly prevalent microvascular

complication of diabetes that affects >50% of incident cases of diabetes

mellitus (DM) and profoundly contributes to patient morbidity and

mortality (1). Clinically, DKD is characterized by the presence of

albuminuria and decreased estimated glomerular filtration. DKD is

diagnosed based on glomerular basement membrane thickening,

mesangial expansion, diffuse or nodular glomerulosclerosis, podocyte

loss, and interstitial fibrosis on pathology and histology (2). Multiple

mechanisms contribute to the outcome of DKD. Among them,

nonimmune factors, metabolism, and hemodynamics are considered

the most crucial causes of renal damage in patients with type 2 DM

(T2DM) and DKD in traditional perceptions (3–5). Therefore, optimal

control of hyperglycemia and intensive treatments for elevated blood

pressure remain the current management strategies for patients with

diabetes. However, current treatments are insufficient to prevent its

progression in a large proportion of patients, and the prevalence of

DKD is still increasing every year. The mechanisms leading to the

development of renal dysfunction in diabetes are not fully understood;

therefore, there is an urgent need to identify the pathogenesis and

therapeutic approaches to DKD.

In comparison to merely considering DKD a non-immune

metabolic disease induced by hyperglycemia, current studies

emphasize that DKD is also an inflammatory disease (6, 7). The

infiltration of immune cells, which is related to innate and adaptive

immunity, may be involved in hyperglycemia-induced renal injury (8).

In particular, the role of T-cells in the development of DKD has been

confirmed (9). On the one hand, high glucose has been verified to

induce T cells recruitment, activation, differentiation, and maturation,

even the cytokine factor expression profiles of T cell (10). On the other

hand, serum concentrations of chemokines and cytokines produced by

T cells have been assessed in patients with diabetes, which are

supposedly to predict the onset of diabetic complications.

Hence, we summarized the updated progress in the aspects of

differentiation, recruitment, function of T cells, and their products in

the DKD as well as the potential strategies for the treatment of DKD,

hoping to provide insights for future research.
2 Classification and differentiation of T
cells in diabetic kidney disease

T cells are involved in host defense and clearance of pathogens. In

general, T cells are divided into two species according to their

constitutive chains, called “conventional T cells” and “unconventional

T cells,” which operate in utterly different ways to regulate and

coordinate immune responses in the kidney.

Classically, T cells that express T-cell receptors (TCRs) with a-
and b-chains are classified as conventional T cells; specifically,

conventional T cells can be separated into CD8+ T cells and CD4+

T cells, and these cells recognize peptides presented by the major

histocompatibility complex class II and I. Based on the specific

function, the differentiated CD4+ T cell subsets were further

distinguished into T-helper (Th) cells and regulatory T cells (Tregs).

According to previous research, unconventional T cells recognize

antigens in the absence of classical restriction via the major
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histocompatibility complex and respond rapidly upon antigen

encounters (11). In the kidneys, unconventional T cells include mucosal-

associated invariant T (MAIT), natural killer T (NKT), and gdT cells (12).

In addition, tissue-residentmemory (TRM)T-cells, themost abundant

memory T-cell subset, have been identified as a class of T cells that reside in

the kidney (13, 14). The different phenotypes and functions of TRM are

derived from its position in various tissues (15). Due to the synergistic effect

of the anatomical localization effector and memory phenotype, TRM T-

cells located in the kidney are critically involved in DKDs.
2.1 Overview of T helper cells

Th cells are a cluster of highly plastic CD4+ T cells and are

simultaneously important contributors to the autoimmunity and

inflammation induced by DKD. Many modulatory mechanisms

employed by Th cells contribute to the adjustment of renal tissue

damage, such as by mediating the production of local cytokines.

According to their cytokine and transcription factor expression

profiles, Th cells are primarily grouped into Th1, Th2, Th3, Th9,

Th17, Th22, T follicular helper (Tfh), and Tregs.

As a flock of plastic cells, Th cell subsets can acquire regulatory

functions upon chronic stimulation in diabetes, opening a new

perspective for the exploration of immunomodulatory mechanisms

for diabetes (8, 16). Hence, the classification and differentiation of Th

cells in diabetes and its renal complications are associated with their

unique subsets, which are described in the following sections.

2.1.1 Th1
Since 1986, a groundbreaking study has elaborated the patterns of

lymphokine activity production of Th1 and Th2 cells; Th1 expresses

its signature cytokines such as interleukin (IL)-2, interferon-g (IFN-
g), tumor necrosis factor-a (TNF-a), and transcription factor T-box

(T-bet), among others (17–19), owing to which it participates in the

activation of macrophage cell-mediated immunity and systematically

regulates cellular function.

Notably, the level of Th1 can be mediated by multiple factors. For

example, STAT4 and STAT1, members of the signal transducer and

activator of transcription (STAT) family, are crucial for inducing

differentiation and maintaining the Th1 cell phenotype (20, 21). T-bet

also modifies the level of Th1 by activating STAT1 (22). In contrast,

the cell immunoglobulin domain and mucin domain 3 are extensively

considered suppressants of IFN-g-producing T-cells (23).

Meanwhile, Th1 has been shown to respond to preceding and

accompanying immunoreaction in DM (24). In clinical settings, Th1

cells dramatically increase in patients with type 2 diabetic

nephropathy (T2DN), and the degree of proteinuria is positively

correlated with aberrant cytokine production, such as IFN-g and IL-

2R (25). Creatinine clearance is also negatively correlated with plasma

TNF-a and urinary MCP-1 levels.

2.1.2 Th2
Th2 and its produced IL-4, IL-5, IL-9, IL-10 and IL-13 are related

to the pathogenesis of DKD (26, 27). Furthermore, the inherent link

between Th1 and Th2 has been discussed in the immunopathogenesis

of diabetes. In contrast, IL-10 and IL-4 produced by Th2 can dampen

IFN-g secretion and suppress Th1 cell activation (in the regulation of

humoral immunity, among other processes (27, 28).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1084448
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1084448
Contrastingly, the decrease in T-bet produced by Th1

corresponds with the increase in plasma IL-4 secreted by Th2,

implying an imbalance between Th1 and Th2 (29). Hence,

upregulating GATA-3 and IL-4 expression and downregulating T-

bet and IFN-g levels may provide a novel therapeutic method for type

1 diabetes (T1D) treatment in non-obese diabetic (NOD) mice (30).

Intriguingly, GATA-3, a promoter of Th2 responses, was increased in

diabetes (31, 32), while peritoneal dialysis may increase the frequency

of Th2 cells during the treatment of DKD (33).

2.1.3 Th17
As discovered in 2005, Th17 secrete IL-17 as its signature cytokine

(34). After Th17 cells receive active signaling, the JAK/STAT pathway

directly culminates in activation of STAT3 of RORgT, resulting in the

production of IL-17 (35). In contrast, IL-2-induced activation of

STAT5 causes a decrease in ROR-gt and a transient downregulation

of IL-17 (36). In addition to ROR-gt, the differentiation of Th17 cells

can be directed by transforming growth factor (TGF)-b, IL-6, IL-1b,
and IL-23 (37, 38). Interestingly, unique cytokines can induce

different types of Th17 cells. For example, the proinflammatory

subtype of Th17 cells is induced by TGF-b, whereas the less

pathogenic subtype is promoted by IL-1b (36, 39). In peripheral

blood lymphocytes from patients with diabetes, promoter activation

was verified as the core principle of the change in IL-17 and its

downstream signaling (40).

On the immune-mediated kidney disease, Th17 cells are likely to

get upregulated in DKD, resulting in a general increase of IFN-g and IL-
17A in streptozotocin (STZ)-induced diabetes (41). A clinical study

based on blood samples collected from 56 patients with nephropathy

and 57 patients with diabetes revealed that patients carrying at least one

allele of the IL-17A (rs2275913) gene polymorphism were vulnerable to

DKDs (42). In a cross-sectional study, the level of serum IL-17 was also

found to be lower in individuals with diabetes or renal lesions in Asian

and Indian populations (43).

Furthermore, in terms of DKD treatment, IL-17A gradually

demonstrates dose-dependent properties. As mentioned above,

presence of IL-17A in individuals with diabetes and diabetic mouse

models is an obvious characteristic, and serum and urinary levels of

IL-17A in the former with advanced DKD confirms this finding;

additionally, low doses of IL-17A have a noteworthy therapeutic effect

on podocytes and tubular cells (44). The protective effect of IL-17 may

also be dependent on its subsets, as low doses of IL-17A and IL-17F

can prevent severe impairment of renal function at the beginning of

the course of DKD; however, IL-17C or IL-17E do not show a similar

effect (40).

With respect to the relative ratio of Th17 cells, interesting studies

have demonstrated that the Th17/Treg ratio promotes inflammation

and may hasten the development of diabetic complications. The

increase in Th17 or decrease in Tregs may be a contributing factor

to the deterioration of kidney function (45, 46). The Th17/Th1

response ratio is a potential contributor to b cell destruction and

provides a novel biomarker for the rapid diagnosis of T1D preceding

the clinical end. Moreover, similar investigations have been

performed on the serum levels of relevant cytokines in patients

with T2DM, and the Th1/Th2/Th17/Treg paradigm has been

demonstrated to skew toward Th1 and Th17 (26).
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2.1.4 Th3, Th9, and Th22
As the research has progressed, various types of Th cells have been

discovered to be involved in diabetic complications. Characterized by

high expression of TGF-b, Th3 has a negative correlation with DKD

at the onset of the disease rather than in the prediabetic phase (47).

Another subset, named Th9 cells, is designated as IL-9 producers.

With the technical support of nanoscale flow cytometry, Semenchuk

et al. found that IL-9 is inversely related to the quantification of

urinary podocyte-derived extracellular vesicles (48). Additionally,

Th22 participates in the regulation of DKD by producing IL-22 (49).
2.2 Tfh cells

Tfh cells are another distinctive Th subset of cells that require the

synergistic action of IL-6 and IL-21 to drive differentiation (50, 51).

Tfh cells are involved in diabetic syndrome, leading to elevated levels

of CXCR5, ICOS, PDCD1, BCL6, and IL21 (52). Many subsets of Tfh

cells, such as CXCR5+ PD1+ ICOS+ and CD4+ CXCR5+ PD-1+, are

increased in children and adults with diabetes (53, 54). In particular,

CD4+ CXCR5+ Tfh cells have been confirmed to manipulate the levels

of estimated glomerular filtration rate (GFR), creatinine, urea, urinary

protein, fasting and postprandial blood glucose, and hemoglobin A1c

in patients with DKD (55).
2.3 Regulatory T cells

Analysis of gene polymorphisms revealed that FOXP3+ Tregs

were reduced in patients at the onset of diabetes (56). The apoptosis of

Tregs is affected by aberrant IL-2R signaling, leading to a decrease in

FOXP3 persistence and impacting the establishment of tolerance (57).

Therefore, a single infusion of autologous polyclonal Tregs and

recombinant human low-dose IL-2 may be a novel treatment for

diabetes (58).

In addition to suppressing T cells, NK cells, NKT cells, B cells, and

dendritic cells in the adaptive immune responses, Treg cells play a

fundamental role in the pathological development of DN,

maintaining a dynamic equilibrium between inflammatory

cytokines and anti-inflammatory cytokines (59–61). Treg cells can

control phenotypic changes by increasing (IFN-g, IL-2, and IL-17)

and decreasing (IL-10, IL-35, and TGF-b) the levels of anti-

inflammatory cytokines (62, 63). Generally, the population and

function of Tregs has a peculiar effect on immunoregulation in

patients with diabetes.
2.4 CD8+ T cells

Recent findings have reported that CD8+ T cells were increased in

patients with diabetes and that suppressing CD8+ T cells may alleviate

the pathological reaction of DKD (64). Furthermore, infiltration of

CD8+ effector T cells is important for recruiting macrophages to

ameliorate systemic insulin resistance in mice fed a high-fat diet (65).

Interestingly, the proportion of CD8+ TRM cells was increased in

DKD and further promoted podocyte injury and glomerulosclerosis,
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suggesting a pivotal role of CD8+ T cells in podocyte damage in

insulin-resistant patients with DN (66).
2.5 NKT cells and gd T Cells

NKT cells are another characteristic T-cell subset that links the

innate and adaptive immune systems, and abnormalities in the

frequency and activity of NKT cells may be attributed to the

exacerbation of T1D (67). NKT cells play a fundamental role in

various renal diseases involving abnormal metabolism. For instance,

inappropriate overactivation of NKT cells can cause kidney damage

via the TNF-a/Fas ligand pathway (68). In progressive non-alcoholic

fatty liver disease, NKT cells also cause glomerular function and renal

immunotoxicity (69). Furthermore, during chronic kidney disease

(CKD) progression, the raise of CD3- CD56+ NK cells were observed

in tubulointerstitial, and the frequency of CD3- CD56+ NK cells and

CD3+ CD56+ NKT cells were also remarkably elevated in the

peripheral blood of diabetic patients (70, 71). Simultaneously, NKT

cells express IL-4, IFN-g, natural-killer group 2 member D, and IL-17,

thus inducing vascular injuries (72).

The subsets of yd TCR+ cells, such as CD27- CD44hi and CD27+

CD44lo, have also been increased in prediabetic NOD mice; however,

the knowledge of concrete mechanism of gd T in DKDs has been

limited until now (73).
2.6 Mucosal-associated invariant T cells

MAIT cells not only belong to a specialized subset of

unconventional (non-major histocompatibility complex-restricted)

T cells but have also emerged as key players in immunity and

pathological inflammation. First, human MAIT cells express a

semi-invariant TCRa chain (Va7.2, coupled with restricted Ja

segments), coexpressed with high levels of the C-type lectin

receptor CD161, which is beneficial to its presentation in human

barrier sites such as the kidneys (74, 75). Moreover, MAIT cells were

reported to sharply increase with a cytokine cocktail comprising IL-

12, IL-15, and IL-18, which participates in the progression of chronic

inflammation (76).

Furthermore, researchers have found that dysregulation of MAIT

cells may influence the severity of insulin resistance. The frequency of

MAIT has been shown to be influenced by BMI, and there is a positive

correlation between MAIT and HbA1c levels, accompanied by an

increase in CD25 and CD69 (77, 78). Another study by Harms et al.

observed a significant increase in the CD27- MAIT cell subset and IL-

17A in patients with T1DM, particularly in younger patients (77).
2.7 Tissue-resident memory T-cells

CD69+ CD103+ and CD69+ CD103- TRM cells have been

identified as two primary subsets of TRM cells (15). CD69 binds to

S1PR1 on the T cell membrane, restraining the migration of memory

T cells from the blood to peripheral tissues (79). Therefore, a mass of

TRM-T cells exists in the kidney rather than in the circulation. After

encountering antigens in vivo and in vitro, native T cells rapidly
Frontiers in Immunology 04
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lymphoid tissues, persisting through barrier tissues, such as the

kidney (80, 81). Following inflammation resolution, antigen-specific

effector T cells differentiate into diverse memory T cell subsets with

distinct trafficking properties.

In the tubulointerstitium of DKD, a recent xCell analysis has

identified immune cells, thus revealing significant changes, including

activated Th2 cells, CD4+ T cells, CD8+ T cells, dendritic cells,

conventional dendritic cells, M1 macrophages, and restrained Tregs

(82). However, knowledge of T cell differentiation in DKD

remains limited.
3 Recruitment and activation of T cells
in diabetic kidney disease

As early as 2012, the aberrant recruitment and activation of T cells

in DKD had been discussed (83). The results showed an increase in

CD4+, CD8+, and CD20+ cells in the interstitium, indicating that

aberrant intrarenal infiltration and recruitment of T cells are potential

immunopathological mechanisms of diabetic kidney lesions.

Immunohistochemical analysis also showed that a substantial

proportion of juxtaglomerular apparatuses in patients with T1DM

contained abundant T cells (84).

To exert their local effects on renal injury, circulating T cells must

reach the site of inflammation. Typically, some T cells, such as Th

cells, do not possess a residency status similar to that of other immune

cells, such as kidney TRM-T cells.

A series of tissue-specific markers has been reported to activate T

cells in the kidney. Once activated, T cells can expand their

immunoreaction, inducing chemokine release and more widespread

recruitment of T cells (85). However, little is known about the

trafficking of T cells into the kidney under hyperglycemic

conditions, and their migration patterns have been the subject of

extensive studies (17). Hence, the methods for circulating T cell

migration into kidney should be assessed in the next step of research.
3.1 Chemokines and its receptor

There is a positive feedback between chemokines and T cells in

the inflammatory response and immune adjustment. In other words,

chemokines facilitate the attraction of circulating T-cells and

stimulate their infiltration into tissues. T cells also participate in the

regulation of the pathophysiological progression of renal insufficiency

by producing chemokines. In this section, we focus on the

chemokines involved in the recruitment of T cells in DKD.

3.1.1 CXCL9-CXCR3
Multiple studies have shown that the urinary level of C-X-C motif

chemokine ligand 9 (CXCL9) mRNA is significantly elevated and

correlated with eGFR decline, which can be utilized to measure and

stratify the risk of DKD (86, 87).

On the other side of the CXCL9-CXCR3 axis, C-X-C motif

chemokine receptor 3 (CXCR3) is a well-known chemokine

receptor predominantly expressed on the surface of Th1 polarized

T cells and regulates the recruitment of Th1 cells (88). Moreover,
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CXCL9 and CXCR3 have been found to be influenced by advanced

glycosylation end products (AGEs), implying that Th1 can be

recruited under diabetic conditions (89).

3.1.2 CXCL10/CXCR3
In an exploratory study, the CXCL10/CXCR3 axis was observed

in the autoimmune process in T1D. Serum levels of CXCL10, a well-

known Th1 chemokine, are elevated in patients with T1D, suggesting

that CXCL10 plays a critical role in predicting T1D (90). Most

importantly, CXCL10 may be induced by IFN-g, promoting T cell

infiltration and accelerating beta cell destruction (91).

3.1.3 CXCR5
In individuals with DN, the increase in CD4+ CXCR5+ Tfh cells

may significantly increase creatinine, urea, urinary protein levels,

fasting blood glucose, postprandial blood glucose, and HbA1c and

decrease estimated GFR (55). In the future, the increased number of

CD4+ CXCR5+ PD-1+ Tfh cells in patients with DN may be a new

target for intervention in DKD (47).

3.1.4 CX3CL1-CX3CR1
At an early stage of nephropathy, CX3CR1+ T cells are elevated

and induce IL-17A production in renal impairment (92–94). In

addition, the polarization of TH17 or Treg cells may be associated

with an increase in CX3CR1 reporter gene expression in T cells (92).

Several studies have shown that CX3CR1 and CX3CL1 are

upregulated in the kidneys of patients with diabetes, accompanied

by an increase in urea, creatinine, A/C ratio, HbA1C, and IgG;

however, the concrete mechanism of CX3CL1-CX3CR1 recruiting T

cells requires further exploration in DKD (93).

3.1.5 CCL5 (RANTES)- CCR5
CCL5 is a b-chemokine, which is also known as RANTES

(regulated on activation, normal T cell expressed and secreted), and

can function as a chemotactic factor for T cells and induce cellular

activation of normal T cells (95) In inflammatory kidney diseases,

constitutive RANTES expression facilitates the accumulation of CD4+

T cells in the kidney, while the administration of RANTES-neutralizing

antibody is helpful in reducing the accumulation of T cells in the

kidneys to a large degree. Moreover, RANTES-neutralizing antibodies

can reduce the deposition of collagen in obstructed kidneys (96).

There is no doubt that CCR5 is a characteristic of Th1

lymphocytes and a critical chemokine receptor for trafficking of

TH1 cells to the kidney (88, 97); however, the status of CCR5 in

T2DM and microvascular complications remains controversial. The

problems are mainly focused on the significant discrepancy in the

allelic frequency of CCR5 between different ethnic groups. In Asian

populations and people with T2DM, the CCR5 59029G/A

polymorphism is significantly associated with an enhanced

susceptibility to DN (98). Nevertheless, the CCR5 59029 A allele

only has a convincing association with nephropathy in T2DM

Malaysian Chinese population but is weakly associated with

nephropathy in Malaysian Indian population (99). Additionally, in

native Estonian patients with T2D, there was a lack of association

between the CCR5-D32 mutation and DKDs (100). Hence, further
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research is needed to determine whether CCR5 is associated with

DKD worldwide.

3.1.6 CCL2 (MCP-1)- CCR2
Chemokine ligand 2 (CCL2) binds to its receptor, C-C chemokine

receptor 2 (CCR2), initiating the migration and infiltration of T cells

and regulating tissue inflammation (101). A longitudinal analysis

followed the fate of CCR2−/− T cells and observed that CCR2 regulates

the immune response by modulating the effector/regulatory T ratio.

Additionally, CCR2 deficiency in T cells decreases the levels of Th17

cells while promoting a program that induces the accumulation of

Foxp3+ Tregs in vivo (102).

Recent studies have suggested that CCL2 (MCP-1) is a key

chemokine involved in DN. In a blood sample analysis conducted

in Iran, CCL2 was gradually elevated in patients with T1D with

disease duration (103). Furthermore, the blockade of this pathway

plays a protective role in insulin resistance, modulation of adipose

tissue, restoration of renal function, and restraint of progressive

fibrosis in hyperglycemic kidneys (104, 105). A phase Ia study

targeting emapticap impeded the CCL2/CCR2 receptor axis and

exerted beneficial effects on ACR and HbAlc in albuminuric T2D

(106). Overall, the CCL2/CCR2 receptor axis is thought to be crucial

for the progression of DKD.

3.1.7 Interleukins
T cells not only produce several members of the IL family but are

also recruited by other immunocytes produced ILs, such as IL-18, IL-

19, among others.

IL-18 is not mainly produced by T cells but plays an underlying

pathophysiological role in the progression of T cell differentiation in

DKD. IL-18 induces plasticity in established Th1 and Th2 cells (107–

109). It also acts synergistically with IL-12 to increase the level of IFN-

g, a Th1 cytokine (110). In recent years, a cross-sectional study of

patients with T2D showed that IL-18 levels were significantly boosted

at a low eGFR and positively correlated with the development of DN

and urinary albumin excretion (UAE) rate (111, 112).

Similarly, IL-19 were markedly positively correlated with Hs-

CRP, cystatin C, and UAE in patients with DN (113). The reduction

in IL-19 levels contributes to the suppression of T-cell responses and

inhibition of the regulatory activity of CD4+ T cells, causing cell-

mediated immunosuppression (114). Therefore, IL-19 may be

another target for regulating T cell differentiation in DKD.
3.1.8 TGF-b
In renal inflammatory diseases, TGF-b has been demonstrated to

orchestrate the differentiation of T cells, including Th17 and Foxp3+

Treg cells (96) Additionally, rats with hyperglycemia-induced

microalbuminuria possess upregulated TGF-b and serum creatinine

levels (115). Recently, the role of TGF-b in promoting the

characterized T cell cytokines, IL-9 and IL-17, has become more

widely accepted. TGF-b controls the secretion of both these cytokines,

subsequently mediating fasting and postprandial glucose and HbAlc

levels in patients with DN (116). Taken together, restraining TGF-b
may be considered as an approach aimed at attenuating T1D in the

immediate future.
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3.2 Other factors that regulate T cells

Similar to chemokines, there are many other factors that facilitate

the assembly and infiltration of T cells, such as C3a and its receptor,

AGE, KIM-1, Chromogranin A, among others.

3.2.1 Complement C3a and its receptor
Emerging evidence suggests that the expression of C3a and C3aR

is involved in DN pathogenesis (117). Compared with normal

controls, C3aR was significantly increased in the renal specimens of

patients with diabetes and wild-type (WT) diabetic mice. In vitro

microarray profiling revealed the underlying mechanism that C3a

plays a role in suppressing T-cell adaptive immunity by interfering

with CD4+ and CD8+ T cell infiltration, and in an in vitro study, C3a

was able to enhance differentiation of the T-cell lineage in

inflammatory responses (118). Thus, C3aR may be a promising

target for T cell recruitment and activation.

3.2.2 Advanced glycosylation end products
In peripheral blood T lymphocytes, the expression of AGE

binding sites serves to target T cells to the AGE-rich renal tissues.

With the increase and accumulation of AGE products and AGE-

modified proteins, their binding to the AGE receptor on T cells is

remarkably increased, promoting the synthesis and release of

proinflammatory cytokines in diabetes (119).

3.2.3 KIM-1
KIM-1 is also known as T-cell lg mucin 1 (TIM-1) or hepatitis A

virus cellular receptor 1 and has been reported as a transmembrane

glycoprotein receptor on T cells (120). Recent studies have revealed

elevations in KIM-1, suggesting that glycemic variationsmay increase the

production of KIM-1 in CD8+ T cells in individuals with DKD, thereby

increasing the risk of DKD (121). The elevations in circulating KIM-1

also increases the urinary KIM-1 in DN, verifying that KIM-1 can be a

biomarker and a reliable predictor of diabetic kidney injury (122).

3.2.4 Chromogranin A
The b-cell secretory granule protein, also known as chromogranin

A, is a new autoantigen in T1D. A recent study identified

chromogranin A as a forceful inducer of the reacting CD4+ T cells

in the pathogenic process of T1D in NOD mice (123). However,

studies on the function of chromogranin A in diabetic vascular

complications and DKD are still insufficient.
4 T cells regulate inflammation in
diabetic kidney disease through
inflammatory cytokines

In DKD, the inflammatory cytokines secreted by T cells can cause

the epithelial-to-mesenchymal transition and the extracellular matrix

accumulation (124). In this section, we have elaborated on the

mechanisms by introducing, summarizing, and comparing the

inflammatory mediators in DKD, which may prove useful in

future researches.
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4.1 IL-1b

Based on the different encoding genes, IL-1, a classical chemokine,

is divided into IL-1a and IL-1b. Both can bind to the primary

receptor point of distinction (IL-1RI), while only IL-1b is secreted

by T cells and macrophages (125). In diabetic metabolic syndrome,

high glucose and oxidative stress can induce IL-1 activation, which

occurs earlier than the pathophysiological manifestations. IL-1b
production may be related to TNFR-Fas-caspase-8-dependent

pathway in CD4+ T cell-driven autoimmune pathology (126).

Moreover, IL-1b was also identified to cause endothelial cell

damage in resistance arteries and affect the NADPH oxidase

activation (127, 128). In addition, studies have shown that

repressing IL-1b and its receptor can reduce systemic inflammation

in patients with T2DM (128, 129).
4.2 IL-2

IL-2 can be produced by Th and kidney-derived MAIT cells. The

function of the IL-2/IL-2R in renal dysfunction has been discussed

in early studies, which has indicated that serum soluble IL-2R (sIL-

2R) levels increase with a decrease in creatinine clearance (130). In

the autoimmune diabetic NOD mice, two separate research groups

have revealed that deficiency in IL-2 production or the

responsiveness of Tregs to IL-2 may be associated with the

development of the immune response (131, 132). Given its crucial

role in the expansion and function of Tregs, IL-2 has been used to

regulate tissue damage and limit the immune response following

infection (133). Low-dose IL-2 selectively induces CD4+ CD25+

FOXP3+ Tregs in patients with CKD, and these Tregs limit the levels

of proinflammatory Th1 and Th17 cells (133). In other mouse

models of autoimmune diseases, such as C57BL/6 mice, CD4+

CD25+ Tregs are also induced by recombinant IL-2, thus

preventing the progression of diabetes (134). Hence, it would be

interesting to explore the effect of IL-2 on new therapeutic schedules

for patients with DKD.
4.3 IL-4

IL-4, partly produced by Th2 and NKT cells, can expand the

proliferation of activated T and B cells and regulate the differentiation

of Th1 and Th2 cells (135). The role of IL-4 in DM remains

controversial. Data investigation of Filipino patients suggested that

the risk of T1D was partly determined by specific polymorphisms.

The variability in promoters, coding sequences, and specific

combinations of genotypes indicated that IL-AR of IL-4 and IL-13

were significantly associated with susceptibility to T1DM (136). In

contrast, no significant change in IL-4 plasma levels between patients

with T2DN and those without nephropathy was observed in a study

(25). The IL-4 rs2243250 polymorphism is irrelevant to DN in

Slovenian patients with T2DM (137). As a result, the relationship

between IL-4 and DN may depend on race, ancestry, geographical

conditions, and national customs to some extent, which needs to be

proven by more prospective evidence.
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4.4 IL-6

IL-6 levels are significantly increased in the plasma of patients

with DN patients than those with diabetes but without nephropathy

(138). Furthermore, the IL-6-174 G allele was found to increase the

occurrence rate of DN, confirming the correlation between IL-6 and

DN (139). Similarly, a recent meta-analysis revealed the significance

of different IL-6 polymorphisms in DN progression. The results

showed that IL-6 rs1800795, rs1800796, and rs1800797 were

associated with DN, whereas IL-6 rs2069837 and rs2069840 may be

indifferent to the risk of renal complications in patients with

T2DM (139).

Classically, IL-6 participates in the pathogenesis of DKD by

various methods, including binding to the receptor IL-6R, sIL-6R

trans-signaling pathway, and IL-6 autocrine signaling (140). IL-6

influences renal cells by relying on diverse signaling pathways. For

instance, IL-6 facilitated mesangial expansion by infiltrating the

mesangium, interstitium, and tubules, which has been observed in

human renal biopsies (141). Second, the determination of samples

from patients indicated that the width of the glioblastoma (GBM) was

directly associated with fibrinogen and IL-6 levels in diabetic

glomerulopathy (142). Moreover, the effects of IL-6 on diabetic

renal injury may be due to increased insulin resistance and

promotion of the inflammasome (143).
4.5 IL-9

IL-9 is mainly produced by a flock of T cells, such as Tregs and

Th2 cells, and manipulates signaling pathways in renal immune

diseases. For example, IL-9 protects against progressive

glomerulosclerosis and tubulointerstitial fibrosis and regulates T

cell-induced immune suppression in adriamycin-induced

nephropathy and acute kidney injury (144, 145). Meanwhile, as

characterized by T cell cytokines, IL-9 levels were evidently reduced

in the diabetic group and positively correlated with the level of urea

and microalbuminuria, which may be considered as an approach of T

cells to address hyperglycemia damage (43).
4.6 IL-17

IL-17A can be produced by many types of CD4+ab and gd T cells,

particularly Th17 cells (146). The IL-17 family is essential for

the inflammatory response and includes six structurally related

isoforms: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F.

However, only IL-17A and IL-17F have unique functions in DN,

whereas IL-17C and IL-17E are indifferent to DN (44).

Clinically, the decline in IL-17 levels is synchronous with the

progression of DKD and is correlated with declining GFR (43, 147).

IL-17A has been proven to not only trigger inflammatory signaling

pathways associated with NF-kB downstream but also regulate the

viability of T cells (147). However, another study reported the

opposite result, indicating that IL-17A may increase the infiltration

of inflammatory cells in renal tissue and blood pressure in mice (148)

As a potential immunologic therapeutic target for DKD, studies

have suggested that intrarenal IL-17A1 CD41 T cells can be
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suppressed by mycophenolate mofetil, which is beneficial for

treating albuminuria and tubulointerstitial fibrosis (41). All-trans

retinoic acid was used to retain the capacity of Tregs to secrete IL-

17 during hyperglycemia, implying an important role of IL-17 in

DKD (149).
4.7 IL-22

In addition to studies on DKD, IL-22, mainly produced by Th22,

was found to be downregulated in patients with DKD. Further

observations indicated that the mechanism of IL-22 participating in

inflammatory processes of DKD is intricate and comprehensive. Chen

et al. demonstrated that IL-22 induced AMPK/AKT signaling and

PFBFK3 activity, alleviating the level of dysfunctional mitochondria

and the accumulation of reactive oxygen species (150). In addition,

IL-22 can ameliorate renal fibrosis and attenuate microalbuminuria in

DKDs (150, 151).
4.8 IL-35

Anti-inflammatory cytokine IL-35 is expelled by Tregs, regulatory

B cells, and tolerogenic antigen presenting cells. Tregs were reported

to infiltrate renal tissues to maintain homeostasis of the immune

system in patients with diabetes and use IL-35 to intervene in the

development of DKD (63).
4.9 INF-g

Several studies have reported that T cells can be stimulated by

high glucose concentrations and expedite IFN-g production (83, 130,

152). Under conditions of high glucose concentrations, IL-12 can

stimulate CD4 cells to produce IFN-g. AGE-modified proteins bind to

the receptor for AGE and T cells, inducing the synthesis and release of

IFN-g and accelerating inflammation of renal tissues (130).
4.10 TNF-a

As a synthetic product of T cells, TNF-amay be used as an indicator

for evaluating DKDs (153). Many clinical studies have found that TNF-

a is increased in the plasma and urine of patients with diabetes, leading

to a higher risk of mortality, more serious macroalbuminuria, sodium

retention, and renal hypertrophy (154–157). Specifically, TNF-a
participates in the pathophysiological reaction in DN via diverse

pathways, including altering intraglomerular blood flow, reducing

glomerular filtration, inducing cytotoxicity to renal cells, and

producing local reactive oxygen species (158–160).
5 Summary of other functions of T cells
in diabetic kidney disease

Pathologically, hyperglycemia stimulates T cells to produce

chemokines and cytokines that not only participate in the
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promotion of inflammation and activation of macrophages and

endothelial cells but also damage renal function through different

mechanisms. First, these proinflammatory molecules highlight the

role of T cells in the process of insulin resistance. Second, T cells

mediate the glomerular filtration barrier through podocytes. Third, T

cells contribute to extracellular matrix deposition and the

differentiation and proliferation of myofibroblasts. Ultimately, T

cells lead to proteinuria and the development of DKD (Figure 1).
5.1 Function of T cells in insulin resistance

Insulin resistance is often regarded as a strong marker of DKD and is

characterized by hyperinsulinemia and reduced insulin action, affecting

many classical insulin-regulated pathways in the kidney and vasculature

(161). For instance, the lack of insulin resistance in the kidney has been

verified as an inducer of sodium retention, resulting in salt-sensitive

hypertension. Podocyte insulin sensitivity is critical for glomerular

alterations and disorders in DKDs (162, 163). In recent years, T-cells

have been reported to improve glucose tolerance, enhance insulin

sensitivity, and reduce weight gain in mouse models (164). However, a

summary of T cells in renal insulin resistance is currently insufficient.

The relationship between insulin resistance and T cells has been

described, involving Tregs, CD8+ T cells, Th cells, and MAIT cells.

The depletion of Tregs leads to enhanced insulin resistance and

impaired insulin sensitivity accompanied by albuminuria and

glomerular hyperfiltration (165). In contrast, insulin sensitivity in

DKD can be significantly rescued by adoptive transfer of CD4+

FoxP3+ Tregs in a murine model, resulting in less diabetic kidney

damage (166). In addition, CD4+T cells in visceral adipose tissue have

also been demonstrated to regulate insulin resistance and control

glucose homeostasis in diet-induced obesity progression. When Th1

statically overwhelms CD4+ FoxP3- Tregs, weight gain and insulin

resistance are reversed (166).

Moreover, the depletion of CD8+ T cells has been reported to

alleviate macrophage infiltration of CD8+ T cells. CD8 + T cells

recruit macrophages to mediate insulin resistance and adipose tissue
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inflammation (65). Conversely, systemic insulin resistance is

aggravated by adoptive transfer of CD8+ cells (167). In addition,

Th1 and MAIT cells can regulate insulin resistance (77, 168).

As mentioned above, secretion and release of T cells produce

proinflammatory cytokines that not only induce insulin resistance

but also impair kidney function. IL-1, IL-6, IL-17, IL-33, GATA-3,

and other proinflammatory cytokines also play important roles in renal

insulin resistance. First, the blockade of IL-1 improves glycemia and b-
cell secretory function; repression of the IL-6 receptor relieves diabetic

renal injury and insulin resistance, and suppression of GATA-3 restores

insulin sensitivity (129, 143, 169). In clinical investigations, TGF-b is

positively correlated with insulin resistance markers, including fasting

and postprandial glucose levels and HbA1c, whereas IL-17 is negatively

associated with them (43). Additionally, studies have shown a serial

decline in IL-33 levels in DN, resulting in an increased severity of

insulin resistance and microalbuminuria (170). Overall, insulin

resistance in DKD is closely associated with proinflammatory

cytokines produced by T cells.
5.2 T cells and podocyte damage in DKD

Normal function and structural integrity of podocytes are

essential for the occurrence of albuminuria and progression of

diabetes (171). T cells and their production have been described as

novel factors influencing podocytes in patients with diabetes (172).

Therefore, podocytes may be regarded as an essential part of T cells

that mediate pathological effects in DKD.

Firstly, CD28/B7 and cytotoxic T lymphocyte-associated antigen-

4 (CTLA4) are critical for Th cells and podocytes. With regard to T-

cell proliferation, differentiation, and survival, costimulatory

molecules composed of CD28, B7-1 (CD80), and B7-2 (CD86) have

been reported to play crucial roles (173). As a novel biomarker for

podocyte damage, B7-1 is upregulated in podocytes under high

glucose conditions. After activation, the CD28/B7-1 pathway

mediates circulating T cells to aggravate podocyte damage (174,

175). Moreover, CTLA4 is a negative regulator of T cell activation,
FIGURE 1

The model of T cells and their products participating in DKD.
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and genetic polymorphisms in CD28/B7/CTLA4 are related to

susceptibility to T2DM (176). However, the fact that B7-1 was not

inducible in podocytes in patients with DKD is contradictory;

therefore, further investigation is required (177).

Researchers have also discovered that IL-17A is a characteristic

proinflammatory cytokine in the serum and urine of patients with

diabetes, and CD40 expression was observed to be increased in

podocytes with DN (38, 147). The synergistic action of IL-17 and

CD40L regulates the inflammatory response and mediates

remodeling of glomerular sclerosis in DN.

Furthermore, podocyte damage is affected by TNF. Albuminuria

is partly attributed to TNF-induced ABCA1 deficiency in podocytes.

Studies have indicated that TNF is sufficient to cause free cholesterol-

dependent podocyte injury through an NFATC1/ABCA1 dependent

mechanism (155).

Podocyte apoptosis is triggered by CD8+ TRM cells. In db/db mice,

the relative proportion of CD8+ TRM cells is remarkably increased

under pathological conditions, and renal CD8+ TRM cells have

cytotoxic effects on podocytes and enhance podocyte apoptosis (66).

5.3 T cells and renal fibrosis in DKD

Pathologically, fibrosis is one of the most fundamental

characteristic mechanisms in the onset and progression of DKD,

and renal T-cell infiltration is helpful for fibrosis. Therefore,

hyperglycemia stimulates T cells and T cell-derived products,

including IL-1, IL-6, IL-17, and IL-22, which are of central

importance in progressive fibrosis in DKD (66).

Primarily, IL-1b induces proximal tubule damage and fibrosis in

renal tubule interstitials (178). One study showed that IL-1b
participates in the dysregulation of glycolysis and matrix activation,

leading to tubulointerstitial fibrosis (147). In contrast, another report

on CKD described the relationship between IL-1b and fibrosis

initiation and progression (178).

Second, IL-6 trans-signaling may be a crucial factor in the

development of renal fibrosis, thus influencing the width of the

GBM in the pathogenesis of diabetic glomerulopathy (142, 179).

Simultaneously, targeting IL-6 trans-signaling, Fc-gp130, could be a

novel therapeutic strategy for renal fibrosis.

Moreover, IL-17 suppresses fibrosis via the STAT-3 and WAP

domain protein pathways in models of T1D and T2D, and

tubulointerstitial fibrosis can be rescued by suppressing intrarenal

IL-17A1 CD41 T cells (41, 44). Furthermore, through the NLRP3/

caspase-1/IL-1b pathway, IL-22 can reverse the overexpression of

fibronectin, collagen IV, and extracellular matrix in mouse renal

glomerular mesangial cells, thereby ameliorating renal fibrosis and

proteinuria excretion in DN (150, 180).

Additionally, sphingosine 1-phosphate receptor 1 activation in T

cells leads to fibrosis in normoglycemic conditions but exacerbates

fibrosis in a model of STZ-induced diabetic cardiomyopathy (181).
5.4 T cells and albuminuria in DKD

5.4.1 The quantity of T cells and albuminuria
To elaborate the internal relationship between T cells and albuminuria

in DN, preliminary exploration was performed. Under STZ stimulation,
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only Rag1(+/+) mice, which have mature T lymphocytes, had glomerular

immunoglobulin deposition. However, Rag1(-/-) mice, which lack kidney

infiltration with T cells, were protected from albuminuria (172).

Additionally, the degree of albuminuria is regulated by the number of T

cells infiltrating the kidneys of DKD animals, and abatacept ameliorates

DKD by blocking systemic T-cell activation (182).

However, there are also a series of contradictory reports. Absolute

and percent T-lymphocytes were found to be relatively lower in

patients with nephrotic proteinuria and long-standing insulin-

dependent diabetes (183). In contrast, Another study showed that T

cell-positive patients had a shorter duration of diabetes and lower

albumin excretion rates than T cell-negative patients (84). Hence, the

exploration and summary of the relationship between T cells and

proteinuria in DN are significant.

5.4.2 Types of T cells associated with proteinuria
In general, circulating CD8+ T cells and Tregs are considered the

main types of T cells that are associated with albuminuria in DN. A

cross-sectional study showed that the percentage of circulating CD8+

T cells was correlated with albuminuria in T2DM, indicating that

systemic inhibition of T lymphocytes provides a new therapeutic

direction for albuminuria in DKD (184). In addition, FoxP3+ Tregs

exert a protective effect in the kidneys of diabetic mice, although it

reduces glomerular hyperfiltration and albuminuria. Moreover,

depletion of Tregs with anti-CD25 antibodies can accelerate the

progression of albuminuria (165).

5.4.3 Product of T cells and albuminuria
T cells regulate albuminuria through cytokines including IL-6, IL-

9, TNF-a, IL-22, IL-33, and IL-233.

IL-6, associated with higher albuminuria, has been reported in db/

db mice and patients with diabetes (143, 185). The IL-6 receptor

antibody (tocilizumab) can reduce proteinuria and glomerular

mesangial matrix accumulation. Furthermore, the levels of IL-9 and

TNF-a are positively correlated with the levels of urea and

microalbuminuria (43, 185, 186). Albuminuria may be caused by

TNF-a via alterations in the glomerular capillary wall and an increase

in albumin permeability.

In addition, studies on IL-22 support the hypothesis that cytokines

drive proteinuria. IL-22 can alleviate mesangial matrix expansion and

proteinuria in mice (151, 172). IL-33 also represses microalbuminuria

in DKDs (170, 187). Intriguingly, the increase in IL-33 levels in DN is

only associated with diabetes but not with kidney injury (188).

Therefore, the exact role of IL-33 in DKD remains controversial.

Notably, a novel cytokine (named “IL-233”) possesses the

activities of both IL-2 and IL-33 and protects against type-2 DN by

promoting T-regulatory cells. Treatment with IL233 reduces

hyperglycemia, plasma glycated proteins, and albuminuria,

protecting mice from T2DN (189).
6 Promising novel therapies targeting T
cells in DKD

Until now, the standard management strategy for DKD has

prioritized strict glucose control and blood pressure with RAAS
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blockade. However, the therapeutic means are limited to stopping or

reversing the progression of DN. Therefore, new drugs targeting the

pathological mechanisms of DKD, such as T cells and their products,

have drawn increasing attention (Table 1).
6.1 Traditional drug therapy with T cells

First, there are some drugs that target the Th cells. Similar to

triptolide, a well-known drug for DN, influences Th lymphocyte cells

in rat models of DN by regulating the Th1/Th2 cell balance. DN is

associated with the upregulation of Th1 cells and downregulation of

Th2 cells; however, triptolide can alter this ratio in high-fat diets and

STZ-induced rats (152). Concurrently, animal experiments have

shown that miR-29b is a novel therapeutic agent for treating T2D

that effectively rescues renal inflammation and fibrosis by inhibiting

T-bet/Th1-mediated immune response (190).

Second, the expansion and activation of CD4+ and CD8+ T cells

can be enhanced by Enalapril and g-aminobutyric acid receptors in

DKDs (191, 192).

In addition, combining anti-TNF-a therapy and the T-cell-

specific antibody anti-TCR can reverse the diabetic metabolic state

in a model of human T1D (193).
6.2 Tregs-targeted drugs

Researchers have discovered that administering drugs targeting

Tregs can be beneficial in diabetic diseases. For instance, Paroxetine,

a G protein-coupled receptor kinase 2 inhibitor, has been approved

to rescue Treg differentiation and restore the population of

circulating Tregs in vitro and in vivo (194). In obese WT and ob/

ob (leptin-deficient) mice, a CD3-specific antibody or its F(ab’)2
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fragment can promote the predominance of Foxp3+ cells over Th1

cells (166).

Ethnopharmacological relevance Diabetea teame was verified to

promote the Treg/IL-17 ratio in clinical settings, suggesting the

protective effect of DT against diabetes-related complications in the

long term (195). In addition, Surfactin, a bacillus-produced natural

immunomodulator, could increase CD4+ CD25+ FOXP3+ Tregs while

simultaneously suppressing T cell proliferation and downregulating

the activated CD8+ T cells (196).
6.3 Recombinant human IL-2 and Tregs

IL-2 plays an essential role in the expansion of Tregs and can

reduce tissue damage by limiting immune response. A single ultra-

low dose of Aldesleukin (proleukin; recombinant human IL-2) has

been demonstrated to regulate early altered trafficking and

desensitization of Tregs in T1D (133). Simultaneously, low

expression of mlL-2 also prevents the progression of diabetes by

regulating Tregs in islets (135). Furthermore, combining low doses of

IL-2 with exogenously administered Tregs leads to an increase in the

number of Tregs, NK cells, mucosal associated invariant T cells, and

clonal CD8+ T cells (58).
6.4 Adoptive Treg immunotherapy

Recently, expanded Tregs have been used to treat deficits in the

number and suppressive activity of Tregs in immune-related diseases.

Two separate research groups have explored adoptive Treg

immunotherapy and demonstrated its safety, tolerance, and efficacy

in patients with DM (197, 198). Bluestone et al. reported a phase 1
TABLE 1 The therapeutic methods targeting to T cells in DKD.

The therapeutic methods Target T Potential mechanism Reference

Triptolide (TP) Th cells Regulating the Th1/Th2 cell balance in DN 152

miR-29b Th1 Rescues renal inflammation and fibrosis 190

Enalapril CD4+ and
CD8+ T

Promoting expansion and activation of T cells 191

TNF-a and TCR therapy T cells Reverse the diabetic metabolic state in T1DM 193

Paroxetine Tregs Rescued the differentiation and the population of Tregs 194

CD3-specific antibody Foxp3+ Promote the predominance of Foxp3+ cells over Th1 cells 166

Diabetea teame (DT) Tregs Promote the Treg/IL-17 ratio 195

Surfactin Tregs
CD8+ T

Increasing CD4+ CD25+ FOXP3+ Tregs
Suppress CD8+ T cells

196

Recombinant human IL-2 and Tregs Tregs Regulating the trafficking and desensitization of Tregs in Type 1 Diabetes
Increasing NK, MAIT, and CD8+ T cell

58, 133, 135

Adoptive Treg Immunotherapy Tregs Improved insulin sensitivity
Down-regulating the ACR in DN

165, 197, 198

MSCs CD8+T Impairing the activation and proliferation of CD8+T
Preventing the exacerbation of kidney injury

64, 199
f
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trial of adoptively transferred self-derived Tregs to repair or replace

Tregs in patients with T1D. Simultaneously, adoptive transfer of

CD4+ FoxP3+ Tregs significantly improved insulin sensitivity and

decreased the albumin-to-creatinine ratio in DN (165).
6.5 Mesenchymal stem cells

In the last decade, MSCs have been widely used to treat DN.

Intriguingly, MSC-CM pretreatment reduced CD8+ T cell priming

and proliferation capacities in the kidneys of DN rats (64).

Furthermore, MSC transplantation not only impairs the activation

and proliferation of CD8+ T cells but also prevents the exacerbation of

kidney injury, providing a new insight into the treatment of DN (199).
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7 Conclusion

With the increase in the number of patients suffering from DKD,

exploration of the function of T cells in DKD is increasingly important.

After circulating T cells are recruited into the renal tissue or T cells are

amplificated, differentiated, and activated in the kidney, T cells play

protective or pathogenic roles through multiple pathways, including

influencing insulin resistance, mediating podocyte damage, participating

in fibrosis, and regulating proteinuria (Table 2 and Figure 1).

As Table 1 showed, based on the significant functions of T cells

and cytokines, the application of T cell-associated therapies in DKD

has been attempted and preliminary achievements have been made.

Promising studies on T cell biology will unquestionably contribute to
TABLE 2 The fundamental function of T cells in DM and DN.

Regulatory
factors

T cells
population

Cytokine
secretions

Key finds in DM and DN Reference

STAT4↑
STAT1↑
T-bet↑
TIM3↓
IL-10↓
IL-4↓

Th1 IL-2↑
IFN-g↑
TNF-a↑
T-bet↑

Activating macrophages
Associated with proteinuria and creatinine clearance

17–25

GATA-3↑ Th2 IL-4↑
IL-5↑
IL-9↑
IL-10↑
IL-13↑

Suppress Th1 cell activation 26–33

JAK/STAT↑
STAT3↑
IL-2↓
STAT5↓
TGF-b↑
IL-1b↑
IL-6↑
IL-23↑

Th17 IL-17↑ Aggravating diabetic renal
Regulating Th17/Th1 and Th17/ Treg

Increase inflammatory
Correlated with GFR

26,
34–46

Th3 TGF-b↑ 47

Th9 IL-9 ↑ Associated with podocyte injury and ACR in T1DM 48

Th22 IL-22↑ 49

IL-6 and IL-21↑ Tfh IL21↑ Manipulate the level of estimated creatinine, urea and urinary protein level,
Fasting and postprandial blood glucose,
Hemoglobin A1c in diabetic nephropathy

50–55

IL-2↑ Tregs IL-2↑
IL-17↑
IL-10↓
IL-35↓
TGF-b↓

Maintaining the balance in the anti-inflammation and anti-inflammation in diabetes
condition

Limit the pro-inflammatory Th1 and Th17
Lessening glomerular hyperfiltration and albuminuria

56–63

CD8+ T Recruiting macrophages
Ameliorating systemic insulin resistance

Promoting podocyte injury
Accelerating glomerulosclerosis

64–66

NKT Kidney damage through FasL pathway
Taking part in the exacerbation of DM

67–72

gd T Upregulated, but the mechanism is unknown 73

MAIT IL-2
GM-CSF
IL-17

Influence the insulin resistance
Promoting the level of HbA1c

74–78
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a more profound understanding of DKDs, highlighting the need to

identify new therapeutic approaches.
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