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Beyond energy balance
regulation: The underestimated
role of adipose tissues in host
defense against pathogens

Johanna Barthelemy, Gemma Bogard and Isabelle Wolowczuk*

Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la
Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de
Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
Although the adipose tissue (AT) is a central metabolic organ in the regulation of

whole-body energy homeostasis, it is also an important endocrine and

immunological organ. As an endocrine organ, AT secretes a variety of bioactive

peptides known as adipokines – some of which have inflammatory and

immunoregulatory properties. As an immunological organ, AT contains a broad

spectrum of innate and adaptive immune cells that havemostly been studied in the

context of obesity. However, overwhelming evidence supports the notion that AT

is a genuine immunological effector site, which contains all cell subsets required to

induce and generate specific and effective immune responses against pathogens.

Indeed, AT was reported to be an immune reservoir in the host’s response to

infection, and a site of parasitic, bacterial and viral infections. In addition, besides

AT’s immune cells, preadipocytes and adipocytes were shown to express innate

immune receptors, and adipocytes were reported as antigen-presenting cells to

regulate T-cell-mediated adaptive immunity. Here we review the current

knowledge on the role of AT and AT’s immune system in host defense against

pathogens. First, we will summarize the main characteristics of AT: type,

distribution, function, and extraordinary plasticity. Second, we will describe the

intimate contact AT has with lymph nodes and vessels, and AT immune cell

composition. Finally, we will present a comprehensive and up-to-date overview

of the current research on the contribution of AT to host defense against

pathogens, including the respiratory viruses influenza and SARS-CoV-2.
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Introduction

Adipose tissues (ATs) are organized to form one of the largest organ in the body that

contributes to several essential functions of our organism including e.g., mechanical support,

thermoregulation, energy storage and release, regulation of appetite, and modulation of

immunity (1–4). There are three major types of adipose tissues – the white adipose tissue
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(WAT), the brown adipose tissue (BAT), and the beige adipose tissue.

WAT is the most prevalent of the tissue types and its primary role is

to control the storage and release of energy to supply the bioenergetic

needs to other organs. BAT is the major site of sympathetically

activated nonshivering thermogenesis during cold exposure and

after spontaneous hyperphagia, thereby controlling whole-body

energy expenditure and body fat (5). Remarkably, WAT has the

ability to reversibly acquire thermogenic characteristics in response to

certain stimuli in a process called “browning” or “beiging”,

corresponding to the beige (or brite) adipose tissue (6).

Since 20 years, it has been shown that WAT contains nearly every

innate and adaptive immune cell types (7–10). Thus, WAT can now

be considered as a true immunological organ, with important roles in

anti-microbial defense, wound healing, and inflammation (11). Akin

to WAT, immune cells have been recently reported to also infiltrate

and reside within thermogenic ATs (i.e., BAT and beige adipose

tissue) where they contribute to tissue’s homeostasis and activation

(12–14). Besides, not only do ATs contain immune cells, but even

adipocytes (ATs’ main constituent cells) can produce factors with

immunoregulatory and antimicrobial activities (15–18), and can act

as antigen-presenting cells to initiate adaptive immune

responses (19).

Here, after a description of the key features of ATs: their type,

distribution, function and remarkable flexibility, we review the key

literature illustrating the immune properties of ATs and describe the

important, yet underestimated, role ATs may play in the host defense

against pathogens, notably in influenza and SARS-CoV-2

respiratory infections.
Key features of adipose tissues: Type,
distribution, function and plasticity

ATs are specialized connective tissues that are organized to form a

large organ with discrete anatomy, specific vascular and nerve

supplies, complex cytology, and high physiological plasticity (1, 20,

21). ATs contribute to many of an organism’s basic needs, including
Frontiers in Immunology 02
energy metabolism, thermogenesis, and protection against pathogens

(1, 2, 4, 22).

Below, we will evoke the main characteristics of ATs: their type,

location, function and exceptional capacity to adapt to various

nutritional, hormonal and environmental changes; these have been

extensively reviewed elsewhere (21, 23–28).
The different types, locations, and functions
of adipose tissues

In mammals, two broad categories of ATs i.e., WAT and BAT,

function antagonistically to control systemic energy homeostasis (29,

30). The anabolic WAT collects, stores, and releases energy in the

form of lipids (31), whereas the catabolic BAT oxidizes lipids to

produce heat – a process known as adaptive thermogenesis (32–34).

Functionally distinct from WAT and BAT, the bone marrow adipose

tissue [also referred to as “yellow adipose tissue” or “marrow adipose

tissue” (MAT)] is a key regulator of bone metabolism (35, 36).

Although less well-documented than WAT and BAT, MAT has also

been acknowledged as contributing to systemic energy metabolism

regulation (37–40).

WAT is the most abundant form of ATs. It can be subdivided into

subcutaneous (SCAT) and visceral (VAT) adipose tissue (4, 41, 42),

although smaller depots are scattered throughout the body,

surrounding organs and lymph nodes (Figure 1A). SCAT and VAT

differ significantly with regard to their cellular, molecular, and

physiological characteristics, and oppositely contribute to the

metabolic syndrome (2, 47, 48). Indeed, while increased amount of

SCAT is associated with improved insulin sensitivity (49), VAT

accumulation is commonly associated with increased insulin

resistance, high-risk of type 2 diabetes, and high mortality (50, 51).

SCAT is located beneath the skin, and should be distinguished from

the less-characterized dermal WAT (DAT), which resides directly

below the reticular dermis (i.e., above the SCAT), and is involved in

thermal insulation, hair regeneration, wound healing and protection

against skin infections (17, 18, 52–55). VAT includes intrathoracic fat
BA

FIGURE 1

Major adipose tissue depots and anatomical locations in the mouse. There are two major types of adipose tissue: lipid-rich white adipose tissue (WAT;
involved in energy storing) and mitochondria-rich brown adipose tissue (BAT; involved in energy burning) (24, 29, 30). Besides, WAT can convert to
metabolically active fat through the process of browning (Beige/brite adipose tissue that is considered as the third adipose tissue type; inducible, energy
expending) (6, 43). (A) WAT is found in many anatomical locations. The largest WAT depots are subcutaneous (SCAT; for example, inguinal, gluteal and
femoral) and visceral (VAT; within the abdominal cavity, between the organs; for example, perirenal, mesenteric and perigonadal VAT). Intrathoracic
adipose tissue is an extra-abdominal WAT depot located in the thoracic cavity (for example, pericardial and mediastinal WAT). Smaller WAT depots are
also found around blood vessels (not shown), within the bone marrow (medullary WAT: MAT), in the dermis (dermal WAT: DAT), or as ectopic depots
within specific organs (pancreas, skeletal muscle, liver (not shown)). (B) Classical brown adipocytes are contained in the interscapular BAT depot. Clusters
of brown adipocytes are also found in other locations, including infrascapular, cervical, supraclavicular, axillary, paravertebral, epigonadal, perirenal and
supraspinal depots (24, 41, 44–46). Created with BioRender.com.
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depots (surrounding the heart: epicardial and pericardial fat, situated

within the mediastinum: mediastinal fat), and intraabdominal fat

depots (mesenteric, omental, perigonadal, perirenal and

retroperitoneal fat). In addition, under certain physiological (e.g.,

aging) or pathological (e.g., metabolic syndrome) conditions, fat

depots can also develop around or within skeletal muscles (56) and

in liver (57, 58).

Compared to WAT, BAT is located in more specific areas (41, 44,

45). In rodents, the largest and most investigated BAT depot is the

subcutaneous interscapular BAT, but BAT depots can also be found

in the supraclavicular region of the neck (46), and in perirenal region

(45) (Figure 1B). In humans, the supraclavicular region contains the

highest proportion of total body BAT volume, followed by the

mediastinal, thoracic paravertebral, perinephric, and adrenal loci

(59). While previously believed to be nonexistent or nonfunctional

in adult humans, several reports provide unequivocal evidence of the

presence and activity of BAT in this population (60, 61).

In stark contrast to WAT and BAT, MAT has a specific location

in the bone marrow of certain long bones and vertebrae, where it

resides side-by-side with hematopoietic and bone cells (36, 40, 62, 63).

MAT includes two distinct subtypes that have different locations in

bones – the “constitutive MAT”, concentrated in the distal skeletal

bones, and the “regulated MAT” that is diffusely distributed in the

spine and proximal limb bones, and is regulated by several

environmental factors (40, 64).
The remarkable plasticity and remodeling
capacity of adipose tissues: Introducing the
beige adipose tissue

A momentous property of ATs is their high degree of plasticity.

To meet the organism’s needs, ATs’ size, metabolism, structure, and

phenotype can change rapidly (25–27, 65).

The potential for ATs to grow and regress in size is substantial.

WAT can quickly expand its volume within days after initiation of an

obesogenic diet through an increase in the size (hypertrophy, due to

enhanced lipid storage capacity) and/or the number (hyperplasia) of

adipocytes, whereas it rapidly shrinks by lipolysis upon fasting or cold

exposure (66–69). This illustrates (i) the metabolic plasticity of WAT

i.e., the ability to switch between two opposing metabolic programs:

nutrient storage (lipogenesis) vs. nutrient release (lipolysis), and (ii)

the cellular plasticity of WAT since newly generated adipocytes can be

recruited during obesity development and relapse, as well as during

cold exposure (65, 70–73).

As observed in obesity, aging is also associated with expanded

WAT mass (resulting from decreased SCAT and DAT mass, and

marked increased VAT mass), and reduced BAT mass and activity

(74–77). At the molecular level, transcription control through forkhead

box protein A3 (FOXA3) has been proposed as a potential regulatory

factor for WAT accretion and BAT decline during aging and obesity

(78). In addition, it has been reported that aging and obesity are also

associated with increased MAT mass (79, 80). Most importantly, the

age- and obesity-related changes in ATs’ mass and location are

associated with progressive dysfunction of these tissues, ultimately

leading to systemic inflammation and occurrence of metabolic

disorders; this defines the concept of “adipaging” (77, 81, 82).
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Another striking example of ATs’ remarkable metabolic plasticity

is that, under various physiological, pathological and pharmacological

conditions, WAT can acquire oxidative BAT-like features and,

conversely, that BAT can convert into WAT-like tissue, in

processes respectively termed “WAT browning” (or “beiging”) (6,

43) and “BAT whitening” (83). Thermogenic adaptation of ATs has

been initially described during environmental cold exposure: BAT

mass increases together with elevated expression of thermogenic

genes (84). In WAT, especially in rodents, cold exposure induces

the development of thermogenic beige adipocytes within the tissue

(84, 85). Results from several studies further support that “inducible”

brown adipocytes (aka “beige” or “brite”) can emerge within classical

WAT depots in response to cold acclimatation and other stimuli such

as b 3-adrenergic stimulation (28, 86). The exact mechanism is

currently unclear (41, 87). Some have proposed that the browning/

beiging of WAT is a result of de novo production of beige adipocytes

(88), while other studies support that beige adipocytes derive from

preexisting adipocytes (89). It is noteworthy that both aging and

obesity are associated with impaired WAT browning (75, 90), and

enhanced BAT whitening (91). Very few studies have focused on

mechanisms involved in BAT whitening. For optimal thermogenic

activity, BAT requires an extensive vascularization to ensure efficient

supplies of oxygen needed to support the high energy consumption

(92). It has been proposed that BAT whitening may partly rely on

decreased vascularity of the tissue, leading to functional hypoxia and

decreased thermogenic activity (93). Moreover, beige adipocytes can

transform into energy-storing white adipocytes within days after

external stimuli are withdrawn (94, 95).

The biomedical interest in beige AT – now viewed as the third

type of ATs, is currently centered on the capacity of this oxidative

tissue to counteract obesity via induction of energy expenditure, and

to mitigate the vast array of obesity-associated diseases, including type

2 diabetes, heart disease, insulin resistance, hyperglycemia,

dyslipidemia, hypertension, and many types of cancer (96, 97).
Adipose tissues: A proper and
legitimate component of the
immune system

Immune organs represent sites of exclusive immunological

function, however, the definition of an immune tissue has been

extended to organs such as the liver (98), uterus (99), skeletal

muscle (100), hypothalamus (101), and small intestine (102).

Similarly, ATs (mostly described for WAT) are now defined as

proper immune organs (3, 11, 103, 104).
The adipose-lymphatic crosstalk

The lymphatic system is distributed throughout the body and

consists of lymphoid nodes and organs, and lymphatic vessels (105,

106). The lymphatic system forms a one-direction transit pathway

from the extracellular space toward the venous circulation to

maintain fluid homeostasis by removing the protein-rich lymph

from the extracellular space among tissues and returning it to the

bloodstream (107). In addition to its fluid homeostasis function, the
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lymphatic system is also important for transport of pathogens

[bacteria, viruses, prions (108)], antigens, exosomes and immune

cells (including antigen-presenting cells) to regional lymph nodes and

lymphoid structures, and management of immune cell trafficking and

inflammation (107, 109–114). Besides, it has been reported that

lymphatic endothelial cells regulate immune responses more

directly by controlling entry of immune cells into lymphatic

capillaries, presenting antigens on major histocompatibility complex

proteins, and modulating antigen presenting cells (115).

In humans, lymphatic density varies greatly from AT depot to

depot, but local lymphatic vessel function may still impact local

adipose health (116, 117). In mice, lymphatics are absent in BAT

and present in WAT (rare in gonadal VAT, sparse in SCAT). For

instance, SCAT lies in proximity to the dermal lymphatic vasculature,

and VAT surrounds the collecting lymphatic vessels of the mesentery,

cisterna chyli and thoracic duct, as well as the efferent and afferent

lymphatic vessels of intra-abdominal lymph nodes (118).

In addition, a close relationship exists between ATs and lymph

nodes – the organizing centers of immune surveillance and response.

Indeed, even in the leanest animals, lymph nodes are always found

surrounded by WAT (119). Extensive work by Pond and colleagues

further revealed the bidirectional functional partnership connecting

WAT and lymph nodes: through increasing its rate of lipolysis,

perinodal WAT serves as a reservoir of energy that is deployed to

power local immune responses while, vice-versa, chronic lymph node

activation results in increased WAT mass (119–124).
All immune-cell-types are present in
adipose tissues and functionally active

Despite a rather simple histological appearance, ATs’ cellular

composition is complex (125). Although contributing to more than

90% of ATs’ volume, mature, lipid-filled adipocytes represent less

than 50% of adipose cells (126). Other cell types in ATs (collectively

referred to as stromal-vascular cells) include e.g., multipotent

mesenchymal progenitor cells, preadipocytes, and a broad spectrum

of innate and adaptive immune cells – which all spatially and

functionally interact. Interest in adipose immune cells was

significantly accelerated by the discovery that ATs’ immune cell

composition is highly sensitive to metabolic and nutritional states
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(7, 8); this exemplifies another aspect of ATs’ cellular adaptability.

Although mainly described for WAT, in which they contribute to the

regulation of systemic metabolism by modulating the inflammatory

tone of the tissue, immune cells are also present in thermogenic ATs

(i.e., BAT and beige adipose tissue) where they have been proposed to

support and regulate tissue remodeling and thermogenic function

(12–14, 127, 128).

AT’s innate and adaptive immune cell types and functions have

been extensively documented, mainly for WAT and predominantly in

the context of obesity (7–10, 129). In the lean state, WAT contains

anti-inflammatory M2-like macrophages, regulatory T cells (Treg cells),

type 2 innate lymphoid cells (ILC2s), invariant natural killer cells (iNKT

cells), natural killer cells (NK cells), eosinophils, dendritic cells (DCs), and

gd T cells, which all cooperate to prevent inflammation and coordinate

metabolic responses. In the obese state, the profile of adipose immune

cells shifts towards a proinflammatory-type of cells: the number of

neutrophils, inflammatory M1 macrophages, mast cells, B cells, DCs,

CD8+ T cells, T helper (Th) 1 cells and Th17 cells increases, while the

number of eosinophils, iNKT cells, ILC2s and Treg cells decreases (9, 129).

Interestingly, in the context of mouse and human obesity it has been

reported that immune cell composition differ between SCAT and VAT

(130–132).

A summary of immune cells identified in ATs is presented

in Table 1.

In addition, it has to be mentioned that some intraabdominal and

intrathoracic VAT depots are rich in immune cell clusters called fat-

associated lymphoid clusters (FALCs). FALCs correspond to inducible,

atypical lymphoid tissues that were first identified in the omentum

where they were termed “milky spots” (158). Later, the presence of

FALCs was reported in other VAT depots (i.e., mesenteric, mediastinal,

gonadal and pericardial) (159–161). FALCs are in direct contact with

adipocytes, lack fibrous capsule (unlike lymph nodes), and contain B

cells, T cells, macrophages, dendritic cells, NKT cells, iNKT cells and

ILC2s (159). Importantly, FALCs can give rise to germinal centers

under certain conditions (162). These small clusters of immune cells

behave as a secondary lymphoid organ and are responsible for

modulating both innate and adaptive immune responses (163). The

presence of FALCs, together with the aforementioned resident adipose

immune cells, have led some authors to propose that ATs can be

considered as a tertiary lymphoid organ, with hallmarks of innate and

adaptive immune responses (164).
TABLE 1 Immune cells (innate, adaptive and bridging innate & adaptive immunity) found in adipose tissues.

Type of Immunity Immune cells References

Innate Immunity

Macrophages (M1, M2)
Neutrophils
Mast cells
Eosinophils

Dendritic cells
NK cells

(7, 133–142)

Bridge between Innate & Adaptive Immunity

iNKT
ILCs (ILC1s, ILC2s)

gd T cells
MAITs

(143–150)

Adaptive Immunity
B cells

CD4+ T cells (Th1, Th2, Th17, Treg cells)
CD8+ T cells

(132, 151–157)
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The mechanisms by which ATs contribute to immune responses

may be via direct effects of adipose immune cells, and/or via indirect

effects whereby adipocytes modulate immunity and inflammation

through endocrine, paracrine, autocrine or juxtacrine mechanisms of

action. As endocrine organs, ATs communicate with other organs

(including immunological organs) via the synthesis and secretion of a

multitude (>600) of molecules typically referred to as “adipokines”, such

as TNFa, IL-6, chemerin, resistin, visfatin, vaspin, irisin, omentin-1,

lipocalin-2, apelin, adiponectin and leptin, to name but a few (15, 50,

165–167). In ATs, adipokines can be released by adipocytes,

preadipocytes, adipose resident and -infiltrated immune cells, or other

cell types. In addition to their regulation of ATs’ metabolic homeostasis,

some adipokines have immunoregulatory and inflammatory functions.

For example, adiponectin has anti-inflammatory properties (168) and

can negatively regulate macrophage function (169). In contrast, leptin is a

proinflammatory factor (170) with broad actions on both the innate

(activation of monocytes/macrophages, neutrophils and NK cells) and

adaptive (promotion of CD4+ T cell proliferation and IL-2 secretion)

immunity (171, 172).

In addition, accumulating evidence indicates that adipocytes can

behave as immune cells and sense inflammatory cues; thereby playing

an important role in shaping immune responses. Indeed, adipocytes

have the ability to express innate immune receptors (173), produce

proinflammatory cytokines (50), express chemokines (174), and

present antigens (175–177). Most recently, Caputa et al., reported

that adipocytes can be licensed by adipose innate immune cells (i.e.,

NK cells and iNKT cells) to acquire anti-bacterial functions during

Listeria monocytogenes infection; this highlights the extra-metabolic

capacity of adipocytes to actively participate in the immune response

to bacterial infection (178). Such fascinating findings highlight the

intricacy and potential for adipocytes to robustly modulate ATs and

systemic inflammation that in turn impact global immune

responsiveness under homeostatic and disease state conditions.
Adipose tissues and host defense
against microbial infections

Unprecedented changes are occurring worldwide: populations age

and the prevalence of obesity and related comorbidities continue to

increase. This represents a major health challenge since obesity and

aging both predispose to health complications (including diabetes,

cardiovascular diseases, and cancer), and increase the risk of

infections [including respiratory infections, such as influenza (179,

180) and COVID-19 (181)] and premature death. Both obesity and

aging are characterized by enhanced low‐grade chronic inflammation

and altered innate and adaptive immune cell functions, which

contribute to the impaired immune surveillance and host defense in

obese and aged individuals (182). Another feature is shared by obesity

and aging i.e., the pathological expansion of WAT in general and

VAT depot in particular, together with changes in adipose immune

cell composition (48, 183); this suggests that WAT remodeling

occurring in aged and obese individuals may contribute to the

markedly increased vulnerability of these at-risk populations.

Next, we will show that ATs can be targeted by several pathogens

that can eventually accumulate and persist in the tissue, and even be a

site of active immune responses to infection.
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Adipose tissues can be “the place-to-be-
and-stay” for some pathogens

Pathogens that have been reported to infect ATs, and eventually

persist within, are listed in Table 2.

Bacteria
Mycobacterium tuberculosis (Mtb), the etiological agent of

tuberculosis, has the ability to persist in its host for a long time.

However, aside from the lungs and regional lymph nodes (which are

the main targets for Mtb), the other locations of the bacilli in latently

infected patients remain incompletely identified (228). WAT may

constitute, among others, an important reservoir for M. tuberculosis.

Indeed, Mtb could be isolated from the SCAT and several VAT depots

(i.e., perigonadal, perirenal, and mesenteric) of infected mice (184). In

individuals with active or latent tuberculosis, Mtb was found in

perinodal WAT (active tuberculosis) and in perirenal VAT,

abdominal SCAT, and perinodal WAT (latent tuberculosis) (185).

Furthermore, Neyrolles and colleagues showed that Mtb, after

binding to scavenger receptors, can infect adipocytes in vitro, where

it persists in a non-replicating, dormant, state (185). Importantly, the

presence and persistence of Mtb in WAT was shown to modulate

adipose tissue’s physiology. M. tuberculosis infection drives the

recruitment of Mtb-specific IFNg+ CD8+ T cells and IFNg+ NK cells

into the WAT, indicative of local inflammation (186). More recently,

it has been reported that M. tuberculosis infection also stimulates the

infiltration of inflammatory immune cells in BAT (229). Interestingly,

infection was associated with adipocyte hypertrophy in both WAT

and BAT, thereby modulating whole-body energy metabolism (229).

The important contribution of WAT to the host’s pathophysiological

response to M. tuberculosis infection was confirmed through the use

of transgenic inducible “fatless” mice (230). Using this elegant

approach, the authors demonstrated that the loss of fat cells during

the course of Mtb infection promote the severity of pulmonary

pathogenesis. Of note that Mycobacterium canettii, a rare

representative of the M. tuberculosis complex, has been reported to

successfully infect preadipocytes and adipocytes in vitro (231).

However, while WAT is undoubtedly a reservoir for Mtb, it is an

unlikely sanctuary for M. canettii, and it is still an open question

whether M. canettii and M. tuberculosis can persist in BAT.

Coxiella burnetii (C. burnetti), the agent of Q fever, is known to

persist in humans and rodents (232). Bechah and colleagues identified

WAT (SCAT and VAT) and BAT as tissue reservoirs for the

bacterium: C. burnetii can persist in mouse WAT and BAT for at

least four months after infection, while it was not detected in the

blood, spleen, liver or lungs as early as 30 days of infection (187).

Importantly, the transfer of VAT from convalescent mice to naive

immunodeficient mice resulted in the infection of the recipient

animals. Analysis of C. burnetii localization in WAT demonstrated

that the bacterium targets macrophages and adipocytes. In vitro

infection of mouse adipocytes showed that C. burnetii can infect

and replicate within adipocytes, where it resided in late phagosomes

(187). Whether ATs are reservoirs for C. burnetii in humans remains

to be shown.

Rickettsia prowazekii (R. prowazekii) is the causative agent of

epidemic typhus, also called louse-borne typhus. Until recently,

epidemic typhus was considered a disease of the past, however re-
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emergences have been reported (233). R. prowazekii can infect and

replicate in adipocytes in vitro, and the bacterium was detected in

murine WAT, but not in liver, spleen, lung, or central nervous system,

up to four months after recovery from the primary infection,

suggesting a role for WAT as a potential reservoir for dormant

infections with R. prowazekii (188). Whether ATs are reservoirs for

R. prowazekii in humans remains to be shown.

Listeria monocytogenes (L. monocytogenes) is a food-borne

bacterium responsible for a disease called listeriosis, which is

potentially lethal in immunocompromised individuals (234). It has

been reported that L. monocytogenes can infect adipocytes in vitro,
Frontiers in Immunology 06
inducing the upregulation of the expression of the genes coding

monocyte chemoattractant protein-1 (MCP-1, involved in

macrophage recruitment) and adiponectin (an anti-inflammatory,

insulin-sensitizing adipokine) (189). In addition, L. monocytogenes

was detected in the WAT of infected obese mice (189). Recently,

Caputa and colleagues explored the role of perinodal WAT in the

immune response to L. monocytogenes (178). Contrary to their

expectations, perinodal WAT was not required for the development

of the adaptive immune response during infection. However, the

authors found that, over the course of infection, perinodal WAT

adipocytes became infected and were rapidly cleared of bacteria.
TABLE 2 Pathogens found in adipose tissues.

Species Disease Type of ATs ATs’ targeted cells Refs

Mycobacterium
tuberculosis

Tuberculosis
- WAT (SCAT, VAT, perirenal, pericardial,
perinodal, mesenteric AT)
- BAT?

- Adipocytes
- Stromal vascular cells (preadipocytes,
CD8+T cells)

(184–
186)

Coxiella burnetii Q fever
- WAT (SCAT, VAT)
- BAT

- Adipocytes
- Stromal vascular cells (macrophages)

(187)

Rickettsia prowazekii Epidemic typhus
- WAT
- BAT?

- Adipocytes (188)

Listeria monocytogenes Listeriosis
- WAT
- BAT?

- Adipocytes
- Stromal vascular cells (CD8+T cells)

(189)

Clamydophyla
pneumoniae

Pneumoniae
- WAT?
- BAT?

- Adipocytes
(190,
191)

Staphylococcus aureus Sepsis, Pneumoniae, Skin infections
- WAT
- not BAT

- Adipocytes
(192,
193)

Trypanosoma cruzi Chagas disease
- WAT (SCAT)
- BAT

- Adipocytes
(194–
196)

Trypanosoma brucei
African trypanosomiasis (Sleeping
sickness)

- WAT (SCAT)
- BAT

- Interstitial spaces between adipocytes
(197–
199)

Plasmodium
falciparum

Malaria
- WAT (SCAT)
- BAT?

- Sequestration of infected red-blood-cells
inside ATs’ microvasculature

(200,
201)

Plasmodium berghei Malaria
- WAT (SCAT)
- BAT?

- Sequestration of infected red-blood-cells
inside ATs’ microvasculature

(202)

Leishmania infantum Visceral leishmaniasis
- WAT (VAT)
- BAT

- Adipocytes
(203,
204)

Adenovirus (Adv36) Mild-flu
- WAT (VAT)
- BAT?

- Adipocytes
- Stromal vascular cells (preadipocytes)

(205–
208)

HIV (SIV) AIDS
- WAT (SCAT & VAT)
- Not BAT

- Stromal vascular cells (CD4+ T cells,
macrophages )?

(209–
213)

Lymphocytic
choriomeningitis virus

Neurological disorders
- WAT (VAT)
- Not BAT

- Adipocytes
- Stromal vascular cells (T cells)

(214,
215)

Cytomegalovirus
Athero-sclerosis, Cardio-vascular
disorders, Prostate cancer

- WAT (VAT, peri-pancreatic AT)
- BAT

- Adipocytes
- Stromal vascular cells (preadipocytes, CD8+

T cells)

(216–
218)

Influenza virus Flu
- WAT (SCAT, epididymal, mesenteric, peri-
vascular VAT)
- BAT?

- Adipocytes
- Stromal vascular cells (preadipocytes,
hematopoietic cells)

(219–
222)

SARS-CoV-2 virus COVID-19
- WAT (SCAT, epididymal, mediastinal
VAT)
- BAT?

- Adipocytes
- Stromal vascular cells (macrophages)

(223–
226)
frontie
Green shading: bacteria, blue shading: parasites, yellow shading: viruses.
WAT, White adipose tissue; SCAT, Subcutaneous adipose tissue; VAT, Visceral adipose tissue; BAT, Brown adipose tissue; H(S)IV, Human (Simian) immunodeficiency virus; AIDS, Acquired
immunodeficiency syndrome; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; COVID-19, Coronavirus disease-19.
Completed from [Tanowitz et al., (227)].
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Importantly, the authors demonstrated that infected adipocytes

initiated a transcriptional response to IFN-g (produced by adipose

NK and iNKT cells) and shifted away from lipid metabolism toward

anti-bacterial functions (178). These major results clearly

demonstrate the repurposing of adipocytes away from lipid

metabolism toward fighting infection.

Chlamydophila pneumoniae (C. pneumonia), renamed from

Chlamydia pneumoniae in 1999, causes respiratory tract infections

such as pneumonia. The potential effect of C. pneumoniae infection

on fat cells was first investigated by Shi and colleagues in 2008: C.

pneumonia can successfully infect preadipocytes and adipocytes in

vitro. Strikingly, infection of preadipocytes impaired their

differentiation towards fully mature and insulin-sensitive adipocytes

through a TNFa-mediated inflammatory mechanism (190). Later on,

it was reported that C. pneumoniae proliferated in in-vitro-infected

mouse adipocytes by inducing lipolysis, thereby acquiring energy for

its own replication to the detriment of host’s lipid metabolism

pathway (191). The same authors further reported that C.

pneumoniae infection robustly induces fatty acid-binding protein 4

(FABP4, an intracellular lipid chaperone) secretion from adipocytes

partly by stimulating the endoplasmic reticulum stress/unfolded

protein response (235). However, no reports are available yet on

the detection of C. pneumonia in ATs.

Staphylococcus aureus (S. aureus) is a commensal bacterium and

opportunistic pathogen, causing potentially fatal disease. It represents

the most frequently isolated human bacterial pathogen from a range

of diseases including e.g., sepsis, pneumonia, and skin infections (236,

237). S. aureus is able to infect adipocytes in vitro, and to survive

inside these cells (192). Adipocyte infection with S. aureus decreases

adiponectin and resistin release whereas visfatin, monocyte

chemoattractant protein-1 (MCP-1), and IL-6 secretion are

increased (192). Because adipocyte viability is not affected during

infection, it has been proposed that ATs (and adipocytes within)

might function as hosts for S. aureus chronic infection. In vivo, Zhang

and colleagues reported massive expansion of the DAT in response to

a S. aureus subdermal infection in mice, resulting from both increased

adipocyte size (hypertrophy) and number (hyperplasia) (18).

Importantly, the authors showed that the local expansion of dermal

fat produces the antimicrobial peptide cathelicidin [which has been

described to inhibit bacterial growth, stimulate neutrophils and exert

proinflammatory activities (238)], but this response appears to

decline as adipocytes mature (18). The defective cathelicidin

production by mature adipocytes may explain observations of

elevated susceptibility to S. aureus infection during obesity and

insulin resistance that have been reported in experimental mouse

models (239, 240) and in humans (241, 242). Another possible

explanation for this apparent discrepancy is that insulin resistance,

leptin resistance and/or other aspects of the metabolic syndrome may

perturb the infection/adipogenesis/cathelicidin pathway identified by

Zhang and colleagues (18). Data on the regulation of cathelicidin are

still scarce but signaling by adipose-derived hormones such as resistin

could potentially influence its expression; Hochberg and colleagues

indeed reported a positive correlation between circulating cathelicidin

and resistin levels in obese subjects undergoing a bariatric surgery

(243). Besides, cathelicidin is post-translationally cleaved to its active

form (244), however, whether this process could also be influenced by

factors that are modulated in obesity and metabolic syndrome
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remains to be seen. In contrast to WAT, S. aureus infection has no

impact on BAT (245). However, the relevance of these observations

during S. aureus infection in humans still needs to be elucidated and

has to be investigated in future studies.

Parasites
Three parasite species are uniquely associated with ATs during

their life cycle: Trypanosoma cruzi, the causative agent of Chagas

disease; Trypanosoma brucei, the causative agent of African sleeping

sickness; and Plasmodium spp., the causative agents of malaria.

Recently, it has been reported that Leishmania infantum,

responsible of visceral leishmaniasis, can also reside in ATs.

In 1970, Shoemaker and colleagues first reported the presence of

Trypanosoma cruzi (T. cruzi) in the BAT of infected mice (194). Later

on, a high number of parasites was also reported in the WAT of

infected mice (195, 196). Using acute and chronic mouse models of T.

cruzi infection, it was subsequently demonstrated that the parasite

directly infects ATs (both WAT and BAT) where it can persist,

notably in adipocytes (246, 247). In humans, T. cruzi was found in the

SCAT of patients with chronic Chagas disease, confirming the role of

ATs as tissue reservoirs for the parasite from which recrudescence

may occur during immunosuppression (248). The presence of T. cruzi

in ATs is associated with local inflammation (notably increased

production of IL-6 and TNFa), macrophage recruitment and

oxidative stress, as well as with a reduction in lipid accumulation,

adipocyte size, and fat mass partly resulting from increased

expression of lipolytic enzymes (247, 249, 250).

African trypanosomiasis (also known as “sleeping sickness”),

caused by Trypanosoma brucei (T. brucei), is transmitted by tsetse

flies. In mammalian hosts, trypanosomes are thought to exist in two

major niches: early in infection, they populate the blood and later,

they breach the blood-brain barrier. Trindade and colleagues uncover

ATs (both WAT and BAT) as the third, and major, niches where

parasites can accumulate and replicate through their functional

adaptation to lipid-rich environment (197). Since skin is the entry

site for the parasite, many parasites can be found in the vicinity of

SCAT adipocytes, but not in adipocytes (198, 199). Thus, like for T.

cruzi, there is no doubt that ATs are major T. brucei reservoirs.

However, while T. cruzi resides inside adipocytes, T. brucei is found in

the interstitial spaces between adipocytes.

Five species of genus Plasmodium are known to cause malaria in

humans: Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and

P. knowlesi. However, infection with P. falciparum is being accounted

for more than 90% of the world’s malaria mortality (251). In addition,

P. berghei causes malaria in certain rodents, such as mice (252).

Examination of post-mortem tissues obtained from individuals who

died from severe malaria revealed that P. falciparum accumulate in

WAT (mainly SCAT), although the lung and the spleen are the main

sites of parasite accumulation (200, 201). In WAT, the sequestration

of P. berghei-infected-red-blood-cells (iRBCs) largely depends on

CD36 (202) – a scavenger receptor that regulates the process of

lipid storage and lipolysis (253). Importantly, it has been recently

reported that iRBCs sequestration in WAT microvasculature

increases the production of leptin (254), the circulating levels of

which are associated with severe (i.e., cerebral) malaria in mice (255,

256). Thus far, there is no report of Plasmodium spp.-iRBCs

sequestration in BAT.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1083191
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Barthelemy et al. 10.3389/fimmu.2023.1083191
Leishmania spp. are the causative agents of a spectrum of clinical

diseases, all termed leishmaniasis. Two species of Leishmania are

known to give rise to the visceral form of the disease, which is the

most severe form of leishmaniasis: L. donovani and L. infantum. The

report of several cases of relapses, even post-treatment, has raised the

unresolved question of host sites allowing parasite persistence (257).

L. infantum persistence in the VAT of intra-peritoneally infected mice

was described in 2011 (203). Recently, it has been reported that L.

infantum can reside and persist in the VAT and BAT of intravenously

infected mice, mostly in adipocytes (204). However, it remains to be

determined whether ATs and adipocytes could be a reservoir for L.

infantum in humans.

Viruses
Adenoviruses (Advs) are common viruses that typically cause

mild cold- or flu-like illness. More than 80 different Adv types can

infect humans (258). The possibility for Advs to be associated with

WAT in humans was initially considered in 1997 by Dhurandhar and

colleagues, who conducted a pioneer study linking a virus to obesity in

humans (259). Adv36 was the first human virus to be identified as

causing obesity in animals (260), and the only virus that was related to

obesity and/or metabolic alterations in naturally infected humans

(261). In non-human primates, it was reported that Adv36 reside in

VAT (205), an observation that has been repeatedly extended to

humans (206–208). In vitro, Adv36 infection promotes preadipocyte

differentiation toward mature, lipid-filled adipocytes (262, 263),

partly through the regulation of adipogenesis-related genes such as

CCAAT/enhancer-binding protein (C/EBP) a and b, peroxisome

proliferator-activated g (PPARg) and glycerol-3-phosphate

dehydrogenase (GPDH) (264). Importantly, Adv36 infection leads

to the decreased product ion of the proinflammatory ,

immunoregulatory adipokine leptin (263), and the increased

production of the anti-inflammatory adipokine adiponectin (265).

To our knowledge, there is to date no information regarding the

presence of Adv36 in BAT.

Human immunodeficient virus (HIV) is responsible for the

progressive immune dysfunction that leads to acquired

immunodeficiency syndrome (AIDS). The notion that ATs act as

reservoirs for HIV was first put forward by Dupin and colleagues in

2002 (266). However, the identification of ATs (exclusively WAT,

both SCAT and VAT) as long-lived sanctuaries for replicative viruses

and major sites of inflammation during chronic HIV (and its simian

homologue SIV) infection, came later (209–213). Although

adipocytes express the CD4, CCR5, and CXCR4 cell surface

receptors necessary for HIV entry, viruses seldomly infected

cultured adipocytes and, when entry does occur, the production of

viral particles is relatively poor (267, 268); adipocytes are thus not

likely to be the major cell hosts in WAT. In fact, HIV (and SIV) was

detected in WAT’s stromal vascular fraction (209), notably in CD4+ T

cells (210, 212). Of note that unambiguous data on adipose

macrophages are missing: the virus was found in these cells in the

SIV infection model but not in samples from HIV-infected

patients (212).

Cytomegalovirus (CMV) is a wide-spread virus, with

manifestations ranging from asymptomatic to severe end-organ

dysfunction in immunocompromised patients with congenital CMV

disease (269). During the last decades, CMV was implicated in the
Frontiers in Immunology 08
pathogenesis of atherosclerosis and cardiovascular disorders (270) as

well as prostate cancer (271). CMV can infect preadipocytes and

adipocytes in vitro (272, 273), and it has been recently reported that

mouse CMV infects VAT, resulting in the durable enrichment of

cytotoxic CMV-specific CD8+ T cells and that carry markers of tissue

residence (216). Of note that the presence of CMV in BAT has been

reported in an acute model of infection in rodents (217, 218).

Lymphocytic choriomeningitis virus (LCMV) is an important

cause of neurologic diseases in humans (274). It has been recently

reported that LCMV infects WAT (only reported for the perigonadal

VAT depot) and adipocytes (214). Virus-specific T cells accumulate

in the WAT and are likely responsible for clearing infection there.

These T cells then differentiate into memory T cells that appear

transcriptionally distinct from memory T cells in circulation or in

lymphoid tissues (214). Whether SCAT and/or BAT can also be

targeted by LCMV remains unknown.
Evidences for the contribution of adipose
tissues to the host’s memory/recall response
to pathogens

Tissue-resident memory CD8+ T cells (TRM) are a distinct

memory population that is generated and persists at the infection

site (275–277). Upon exposure to the same (or similar) pathogen, TRM

cells provide a first line of adaptive cellular defense and are crucial in

lethal challenge models (278). In mice, non-human primates and

humans, it has been shown that ATs (only reported for WAT) harbor

many TRM cells (279). Interestingly, WAT’s TRM cells metabolically

adapt to the tissue through up-regulating genes involved in lipid

metabolism, indicating that they use fatty acid metabolism for their

homeostasis (280).

So far, only few reports have underscored that ATs act as

reservoirs for CD8+ TRM cells: after infection (VAT) (193, 214),

dietary restriction (MAT) (281), and obesity (VAT) (214, 282, 283),

thereby likely participating to adaptive immune responses.

Han and colleagues reported that, following T. gondii or Y.

pseudotuberculosis infection, nearly half of all CD8+ T cells within

WAT are specific for the administered pathogen, suggesting that

CD8+ T cells home to and persist (as CD8+ TRM cells) within WAT

after infection (193). Importantly, the authors also demonstrated that

the induction of memory T cell responses in WAT results in the

remodeling of WAT’s physiology in favor of the activation of

antimicrobial response at the expense of lipid metabolism (193).

These observations were the first to identify WAT as immune

reservoirs sustaining pool of memory T cells and facilitating their

reactivation, thus potentially contributing to immunological memory

after infection. Whether WAT’s TRM cells are important for recall

responses to T. gondii and/or Y. pseudotuberculosis reinfections in

humans remains to be seen.

Misumi and colleagues brought the second demonstration of an

active anti-infectious role of ATs’ memory T cells (214). Following

lymphocytic choriomeningitis virus infection, the authors showed

that more memory IFNg+ CD8+ T cells accumulate in the WAT of

obese mice than in theWAT of lean mice. Strikingly, WATmemory T

cells of obese mice rapidly caused lethal immunopathology upon re-

challenge infection, whereas lean mice remained unaffected and could
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efficiently control the challenge (214). This demonstrates that obesity

gives rise to an unusual form of T-cell-mediated pathogenesis during

viral infection that leads to lethality.

Altogether, these major findings illustrate the importance of AT’s

T cells to infection and in memory/recall responses and may have

implications for the management of infections in individuals having

alterations in AT’s immune cell composition and function, such as

individuals with obesity and aged adults, who display impaired

immune responses to pathogens.

In addition, unlike stereotypical lymphoid organs that primarily

contain adaptive immune cells, ATs are enriched with several types of

innate immune cells (e.g., macrophages, DCs), as well as with ILCs

and innate-like T cells (e.g., iNKT cells, gd T cells) (Table 1), which are

likely contributing to host defense against infection. Indeed, adipose

iNKT cells and gd T cells have been reported to mediate host defense

by modulating the number and/or function of other adipose immune

cells (e.g., Tregs, DCs, NK cells and macrophages) (284), and DCs

were shown to control adaptive immune responses to AT’s infection

(133, 134, 285, 286).
The special case of influenza A and
SARS-CoV-2 respiratory viruses

Since the last twenty years, a growing number of new viruses has

emerged and entered the human population (287). Moreover,

influenza A (H1N1)pdm09 virus and severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) have caused global

pandemics (288, 289). Epidemiological evidence establishes obesity

and aging – two conditions associated with ATs dysfunctions – as

important risk factors for increased susceptibility and severity to viral

respiratory pneumonias associated with H1N1 and SARS-CoV-2

pandemics (290–292). This has prompted some researchers to (re)

address the role of ATs in influenza and COVID-19. In this section,

we will examine the impact of influenza virus and SARS-CoV-2

infection on ATs (Table 2), and comment on the contribution of ATs

to influenza and COVID-19 pathogenesis.

Influenza A viruses (IAVs) are very contagious pathogens

responsible for severe respiratory illnesses in humans and animals

worldwide. IAVs are enveloped, segmented negative-sense, single-

stranded RNA viruses that primarily infect respiratory epithelial cells

(293). With the exception of the reports showing that IAV can infect

adipocytes in vitro (272), and that IAV (H5N1) can target WAT in

vivo (219), no study has investigated the impact of influenza infection

on the WAT of lean mice until recently. Ayari and colleagues

evaluated the metabolic consequences of IAV (H3N2) infection in

lean mice, and the impact of infection on SCAT and VAT (220). The

authors showed that IAV-infected mice present alterations in whole-

body energy metabolism that persisted after the resolution of the

infection. Importantly, during the acute phase of infection, viral RNA

was detected in SCAT and, at a lower level, in VAT. Concomitantly,

viral-antigen-harboring hematopoietic cells (i.e., expressing CD45, a

leukocyte common antigen) were found in WAT (mostly in SCAT),

and this was associated with the parallel activation of type I IFN

signaling pathways and inhibition of cholesterol biosynthesis

pathways, suggesting activation of antiviral innate immune

responses. In addition, IAV infection induced a transient metabolic
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rewiring in SCAT (not VAT) – characterized by the emergence of

UCP1-expressing thermogenic brown-like/beige adipocytes in the

tissue. The latter may partly rely on a direct effect of the virus on

SCAT: preadipocytes committed to the thermogenic differentiation

program upon in vitro IAV infection (220). Since a growing body of

evidence suggests that immune cells are highly sensitive to thermal

stress (294, 295), SCAT browning may participate to the initial steps

of immune defense against the infection. Thus, influenza-induced

SCAT thermogenesis might help controlling antiviral immune

defenses, locally. From the virus side, it is conceivable that, since

the host expends energy to increase SCAT thermogenesis, it fails to

support an efficient immune response against infection locally,

thereby allowing the virus to propagate for a longer period of time

in the tissue (296). At this stage, many questions remain unanswered

about how the virus and/or infected cells reach the WAT, what is the

phenotype of these cells, and do they participate to the host’s defense

against infection?

In 2021, Zeng and colleagues reported that IAV can also infect the

mesenteric VAT. In this fat pad, infection was associated with

moderate decreased adipocyte number, increased release of leptin,

visfatin and chemerin, and decreased release of adiponectin (221).

The dissemination of IAV to ATs has been recently extended to the

perivascular AT in a pregnant mouse model of infection (222). In this

model, IAV preferentially disseminated into the perivascular AT of

the abdominal aorta, and this was associated with the recruitment of

proinflammatory monocytes and neutrophils, and the massive

infiltration and activation of T cells. This suggests that during

pregnancy, the perivascular AT might be a niche that supports IAV

dissemination and a site of marked inflammation and vascular

dysfunction, which may be central to the maternal and perinatal

complications following IAV infection during pregnancy (297).

Altogether, these findings demonstrate that, during the acute

phase of infection, IAV can disseminate to different adipose depots

(SCAT and epidydimal VAT) (220), mesenteric VAT (221), and

perivascular VAT of the abdominal aorta (222). To our knowledge,

there is no published report on IAV targeting BAT.

Coronaviruses are responsible for mild to severe respiratory tract

infections, similarly to influenza viruses (298). Coronaviruses are

enveloped, non-segmented positive sense, single-stranded RNA

viruses. To date, seven coronaviruses associated with human

infections have been identified, such as the severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) (299), which caused the

coronavirus disease 2019 (COVID-19) pandemic (300). Since

adipose cells express ACE2 – the major cell entry receptor for

SARS-CoV-2 (301) – and virus replication and its inflammatory

insult are favored by the presence of lipid droplets (302), the

hypothesis that ATs may serve as reservoir for storing and

replicating the virus, as well as a site for cytokine amplification, has

emerged as a potential explanation for the strong association between

obesity, aging and COVID-19 severity (303, 304). Recent studies have

shown that SARS-CoV-2 can indeed infect ATs’ cells, including

adipocytes, thus favoring a local inflammatory response and

resulting changes in lipid profiles (223–226, 305–307). In turn,

these changes are thought to contribute to insulin resistance and to

hamper patients’ recovery.

Reiterer and colleagues were the first to suggest that SARS-CoV-2

triggers WAT dysfunction, which in turn contributes to adverse
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COVID-19 outcomes (223). Indeed, these investigators reported that

mouse (but not human) adipocytes infected with SARS-CoV-2 in

vitro produced lower amounts of adiponectin – an insulin-sensitizing

adipokine (308). Importantly, viral RNA and low adiponectin

expression were evidenced in WAT from infected golden hamsters.

These changes were associated with a robust inflammatory antiviral

response in WAT and a systemic insulin-resistant state, suggesting

that hyperglycemia in severe COVID-19 might result (at least in part)

from infection-induced WAT dysfunction (223). Zickler and

colleagues showed SARS-CoV-2 is frequently detectable in the

WAT (SCAT and VAT) of patients deceased from COVID-19

(225). Remarkably, the virus was detected predominantly in the

WAT of males who were overweight or obese. In female

individuals, SARS-CoV-2 was also detected in WAT, although there

was no clear correlation between fat mass and virus mRNA levels. In a

hamster model of COVID-19, the authors also showed that SARS-

CoV-2 spreads from the respiratory tract into WAT, where it

continues to replicate, thereby leading to local inflammation and

changes in whole-body metabolism. In in vitro infection experiments,

the authors showed that ACE2 expression was strongly induced upon

adipocyte differentiation, and provided mechanistic insight that lipid

droplet metabolism is critical for SARS-CoV-2 propagation, since

blocking lipid breakdown drastically reduced viral replication in

mature adipocytes (225). Martinez-Colon and colleagues identified

mature, lipid-laden adipocytes and macrophages as the two main

cellular targets of SARS-CoV-2 in human WAT (226). Strikingly,

preadipocytes are not permissive to infection – reinforcing the notion

that lipid droplet metabolism is critical for SARS-CoV-2 propagation

(225, 302). Colleluori and colleagues confirmed SARS-CoV-2’s ability

to infect mature adipocytes and further showed that infected

adipocytes are less viable and have a smaller lipid droplet size and a

higher prevalence of pyknotic nuclei, which are suggestive of

infection-induced cell delipidation and death (305). In human

individuals who deceased from COVID-19, Basolo and colleagues

recently confirmed the presence of the SARS-CoV-2 genome in the

SCAT, and further showed that SARS-CoV-2 infection activates the

IFN-alpha pathway and induces the recruitment of NK cells,

macrophages and T cells in the tissue (306). Most recently, Saccon

and colleagues confirmed that WAT (i.e., thoracic SCAT) is a

frequent extrapulmonary site where SARS-CoV-2 can be detected

in patients who died from COVID-19 (307). Using adipocytes

differentiated from primary stromal-vascular cells isolated from the

SCAT or the VAT of individuals undergoing bariatric surgery, the

authors also provided evidence that VAT adipocytes are more

susceptible than SCAT adipocytes to SARS-CoV-2 infection in vitro

(307). Although these observations were made in vitro, it appears that

SARS-CoV-2 infection may have a depot-specific impact on ATs,

likely due to the intrinsic differences between SCAT and VAT with

regard to their cellular, molecular, and physiological characteristics,

notably regarding lipid metabolism (47, 48). In a non-human primate

model of COVID-19, SARS-CoV-2 was detected in SCAT but not in

VAT or in epicardial AT (309). However, when evaluating the

consequences of SARS-CoV-2 infection on WAT T cells, the

authors showed that both SCAT and VAT T cells showed a drastic

reduction in CD69 expression (309) – a standard marker of T cell
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activation and residency in tissues (310–312) that is expressed by

most tissue resident memory T cells (312–314). Thus, the loss of

CD69 expression on SCAT and VAT T cells in SARS-CoV-2-infected

animals might reflect a major change in the migratory potential of

adipose T cells, and/or functional alterations in adipose-resident-T

cells caused by inappropriate activation (315). Besides, it is

acknowledged that T cell activation requires a coordinated rewiring

of cellular metabolism (to support increase in cell size and clonal

expansion, lineage polarization, and acquisition of effector function) –

a process that is likely to be dependent upon tissue’s metabolic rates

and fuel requirements (316). Importantly, it has been reported that

CD69 can function as a metabolic gatekeeper in T cells, notably

regarding amino acid uptake (317). This demonstrates that in a model

of mild infection, SCAT is selectively infected by SARS-CoV-2

although changes in the immune properties of AT are observed in

both SCAT and VAT (309). Finally, while no reports are currently

available on the detection of SARS-CoV-2 in BAT, it is noteworthy

that ACE2 has been reported to be highly expressed in BAT, where it

participates to the maintenance of thermogenesis and energy

expenditure through the direct induction of UCP1 and activation of

mitochondrial function (318).

Altogether, these findings demonstrated that ATs infection

(mainly described for WAT) represents a relevant feature of

COVID-19 and thus should be considered when investigating the

mechanisms of disease pathogenesis (including immune responses),

notably in at risk-populations such as obese and aged individuals.
Concluding remarks

Historically viewed as inert sites for energy storage, adipose

tissues (ATs) are now appreciated as important regulators of many

aspects of whole-body physiology, including immune responses. In

this review, we remind that ATs harbor a plethora of innate and

adaptive immune cells that shape their endocrine and metabolic

functions and contribute to tissue repair and homeostasis as well as

to immunosurveillance and immunoregulation. These last years, a

wide range of pathogens (bacteria, parasites or viruses such as the

respiratory viruses influenza and SARS-CoV-2) have been reported to

target ATs, and eventually persist within. Notably, since ATs express

ACE2 and SARS-CoV-2 replication is favored by the presence of lipid

droplets, the hypothesis that ATs may constitute major reservoirs for

viral shedding/spread and potentiators of local and systemic

inflammation, has emerged as a possible explanation for the severe

forms of COVID-19 in obese and aged individuals as well as for the

enduring post-infection symptoms collectively termed long COVID.

More generally, the demonstration that both some infections can

persist in ATs that act as sources of subsequent disease, expands the

knowledge of host-pathogen interactions, in which ATs should not be

ignored. Beside inducing metabolic and inflammatory changes in the

tissue, we describe how these infections also lead to alterations in the

adipose immune landscape. We finally touch upon recent

groundbreaking evidence implicating adipose resident memory T

cells in host defense against certain pathogens, which show how

vital the adipose immune system is for host defense against infection.
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The translatability of these major breakthroughs to humans still

remains to be established. Nevertheless, these fascinating results

might allow to understand the differences in disease pathogenesis in

fragile populations such as the elderly and obese individuals – who

present with quantitative and qualitative changes in adipose immune

cells. Increasing our understanding of the role of ATs immune cells

might ultimately lead to the development of innovative preventive/

therapeutic strategies (targeted immunomodulation) for the

treatment of infectious diseases and effective vaccination in at-

risk populations.
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